English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 430-447 DOI: 10.7536/PC230720 前一篇   后一篇

• 综述 •

共价有机框架材料作为金属离子电池正极材料

周文博, 李晓曼, 罗民*()   

  1. 宁夏大学化学化工学院 煤炭高效利用与绿色化工国家重点实验室 银川 750021
  • 收稿日期:2023-07-20 修回日期:2023-10-08 出版日期:2024-03-24 发布日期:2024-02-26
  • 作者简介:

    罗民 教授,博士生导师。宁夏材料研究学会理事,中国化学学会高级会员,主要研究领域为能量转换材料制备和电化学性能研究。主持多项国家自然科学基金、教育部科学技术重点项目和宁夏自然科学基金项目。在J. Mater. Chem. A、J. Energy Chem.、ACS Sustain. Chem. Eng.、Nanoscale、J. Power Sources、Inorg. Chem. Front.、《化学进展》《无机材料学报》《无机化学学报》等学术刊物上发表60余篇研究论文。

  • 基金资助:
    国家自然科学基金项目(21965027); 中央引导地方科技发展项目(2023FRD05031); 宁夏大学双一流学科(化学工程与技术)建设项目(NXY-LXK2017A04)

Covalent Organic Frameworks as Cathode Materials for Metal Ion Batteries

Wenbo Zhou, Xiaoman Li, Min Luo()   

  1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
  • Received:2023-07-20 Revised:2023-10-08 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: luominjy@nxu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21965027); Central Guidance on Local Science and Technology Development Fund of Ningxia Province(2023FRD05031); National First-rate Discipline Construction Project of Ningxia: Chemical Engineering and Technology(NXY-LXK2017A04)

共价有机框架材料(Covalent organic frameworks,COFs)是一种具有周期性二维或三维网状结构的多孔有机材料,其结构由两种或更多有机分子通过共价键连接而成。COFs具有骨架密度低、比表面积大、孔隙率高、结构可设计性和功能可修饰性等特点,在储能领域展现出巨大的潜力。由于其丰富的氧化还原活性位点和开放的框架结构,COFs作为金属离子电池正极材料有着独特的优势。然而COFs导电性差、能量密度低、可用的活性位点较少和离子传输通道的阻塞等缺陷限制了其在储能领域的应用。本文系统综述了COFs作为金属离子电池正极材料的最新研究现状,包括对COFs的种类、合成方法以及设计策略进行总结,从不同活性基团的角度对其电化学储能机理进行概述,并介绍了COFs在不同金属离子电池方面的应用。最后总结和展望了COFs在储能领域应用的前景和挑战。

Covalent organic frameworks (COFs) are porous organic materials with periodic two-dimensional or three-dimensional network structures consisting of two or more organic molecules connected by covalent bonds. COFs have attracted considerable interest in energy storage due to their beneficial properties, including low skeletal density, high surface area, high porosity, structural designability and functional modifiability. COFs offer unique advantages as positive electrode materials for metal ion batteries due to their rich redox active sites and open framework structure. However, their application in energy storage is limited by challenges such as poor conductivity, low energy density, limited number of available active sites, and blockage of ion transport channels. This article provides a comprehensive review of recent research on COFs as positive electrode materials for metal ion batteries, discussing their types, design strategies, and synthesis methods. Additionally, it presents an overview of the electrochemical energy storage mechanisms from the perspective of different active groups, and the applications of COFs in various metal ion batteries. Finally, it highlights the prospects and challenges of using COFs in energy storage.

Contents

1 Introduction

2 Types of COFs

2.1 B-C containing

2.2 C-N containing

2.3 C=N containing

2.4 C=C containing

3 Synthesis method of COFs

3.1 Solvothermal synthesis

3.2 Ionic thermal synthesis

3.3 Microwave-assisted synthesis

3.4 Mechanochemical synthesis

3.5 Sonochemical synthesis

4 Microstructure design strategy for COFs

4.1 Introduction of redox active sites

4.2 Crystallinity adjustment

4.3 Interlayer stripping strategy

5 Application of COFs in different metal ion batteries

5.1 Lithium-ion batteries

5.2 Sodium-ion batteries

5.3 Potassium-ion batteries

5.4 Aqueous zinc batteries

6 Conclusion and prospect

()
表1 具有代表性的电极材料在金属离子电池中的性能比较
Table 1 Performance comparison of representative electrode materials in metal ion batteries
图1 COFs作为金属离子电池正极材料的发展史(COF-1[32], BPOE-COF[33], DTP-ANDI-COF[34], HqTp-COF[35], DAAQ- COF@CNT[36])
Fig. 1 Timeline of COFs as cathode materials for metal-ion batteries (COF-1 [32], BPOE-COF [33], DTP-ANDI-COF [34], HqTp-COF [35], DAAQ-COF@CNT [36])
图2 根据不同连接键对COFs种类的区分
Fig. 2 Differentiation of COFs types according to different connection keys
图3 不同种类COFs的化学合成反应示意图
Fig. 3 Schematic diagram of chemical synthesis of different type
图4 Cz-BD COF和Cz-DHBD COF的合成及结构示意图[62]
Fig. 4 The synthesis and structure diagram of Cz-BD COF and Cz-DHBD COF [62]
图5 离子热合成CTF-2[64]
Fig. 5 Ionic thermal synthesis of CTF-2[64]
图6 微波辐射合成TpPa-1[66]
Fig. 6 Microwave radiation synthesis TpPa-1[66]
图7 机械研磨法合成TpPa-1、TpPa-2、TpBD[67]
Fig. 7 Mechanical grinding synthesis TpPa-1, TpPa-2, TpBD [67]
图8 声化学合成亚胺类COF及其二维孔道示意图[69]
Fig. 8 Sonocheical synthesis of imide COF and its two-dimensional pore diagram [69]
表2 不同方法合成COFs的性能指标
Table 2 Performance indexes of COFs synthesized by different methods
图9 (a) 2,7-二氨基芘-4,5,9,10-四酮(PTO-NH2)的合成路线;(b) BT-PTO COF合成示意图[83]
Fig. 9 (a) Synthetic route of 2, 7-diaminopyrene-4, 5, 9, 10-tetraone (PTO-NH2); (b) schematic diagram of BT-PTO COF synthesis [83]
图10 (a) COF-TMT-BT的合成示意图;(b) COF-TMT-BT的充放电曲线;(c)长期循环性能;(d)重复单元的HOMO和LUMO轨道[29]
Fig.10 (a) Synthesis diagram of COF-TMT-BT; (b) charge/discharge curves at different current densities; (c) long-term cycling performance; (d) HOMO and LUMO orbitals of COF-TMT-BT repetitive unit [29]
图11 (a) HATTA的结构示意图;(b) HATTA的倍率性能;(c)不同电流密度下HATTA的充/放电曲线;(d) 在25 A·g-1下的长期循环性能[87]
Fig. 11 (a) Diagram of the structure of HATTA-COF; (b) the rate performance of the HATTA; (c) charge/discharge curves at different current densities; (d) long-term cycling performance at 25 A·g-1 [87]
图12 (a) COFs的合成示意图;(b) 碳纳米管外表面覆盖的孔道结构示意图;(c) 长期循环性能;(d)锂化过程中的结构演变[88]
Fig.12 (a) Diagram of the composition of COFs; (b) the surface of carbon nanotubes outside channel structure diagram; (c) long-term cycling performance; (d) structural evolution during lithification [88]
图13 (a) TAQ-BQ的合成及结构示意图;(b) 非原位FT-IR;(c) 不同电流密度下的充电/放电曲线;(d) 1 A·g?1下的长期循环性能[89]
Fig. 13 (a) Synthesis and structure diagram of TAQ-BQ; (b) out-of-situ FT-IR; (c) charge/discharge curves at different current densities; (d) long-term cycling performance at 1 A ·g-1[89]
图14 物理剥离法制备不同厚度DAAQ-COF纳米片的示意图[36]
Fig. 14 Schematic diagram of DAAQ-COF nanosheets stacked layer by layer with different thickness by physical stripping method [36]
图15 (a) 剥离后的E-TFPB-COF结构示意图;(b) E-TFPB- COF的长期循环性能;(c) E-TFPB-COF的倍率性能[97]
Fig. 15 (a) The structure diagram of E-TFPB-COF after stripping; (b) Long-term cyclic performance of E-TFPB-COF; (c) The magnification performance of E-TFPB-COF [97]
表3 COFs在不同金属离子电池正极材料中的应用
Table 3 COFs application in different metal ion battery cathode material
Name of the COFs Batteries Voltage
Window (V)
Discharge specific
capacity (mAh·g-1)
Cycle life (capacity retention/cycle/rate) ref
TPPDA-CuPor-COF
USTB-6-COF@G
BFPPQ-COF@CNT
IISERP-COF22
COF-N
TAQ-BQ-COF
HAQ-COF
S@TAPT-COF
GOPH-COF
BT-PTO-COF
TP-TA-COF
SCNMC-COF
TFPPy-ICTO-COF
HATN-HHTP@CNT
HATN-HHTP@CNT
BAV-COF-Br-
HATN-AQ-COF
TPF-1S-COF
DAPO-TpOMe-COF
TPDA-PMDA-COF
HTAQ-COF
PT-COF50
E-TP-COF
TPPDA-PI-COF
NTCDI-COF
PICOF-1
F-COF
TP-COF/CNTs
QPP-FAC-Pc-COF
COF-CRO
Tp-DANT-COF
PI-ECOFs/rGO
PD-NDI-Lp
PPTODB-COF
PIBN-G
TpBpy-COF
LIBs
LIBs
LIBs
AZIBs
MIBs
AZIBs
AZIBs
SIBs
AZIBs
AZIBs
LIBs
LIBs
LIBs
LIBs
KIBs
SIBs
LIBs
LIBs
LIBs
LIBs
AZIBs
LIBs
LIBs
LIBs
LIBs
SIBs
KIBs
KIBs
KIBs
LIBs
LIBs
LIBs
LIBs
LIBs
LIBs
AIBs
1.5~4.2
1.2~3.9
1.7~3.3
0.2~1.6
0.3~2.5
0.4~1.6
0.26~1.5
1.5~3.2
0.2~1.6
0.4~1.5
1.2~4.3
3.6~4.2
0.05~3.0
1.2~3.8
1.2~3.8
1.4~3.9
1.2~3.9
0.01~3
1.5~4.2
1.2~4.3
0.1~1.45
1.5~3.5
1.5~3.5
2.6~4.1
1.5~3.5
0.01~3
0.01~3
0.01~3
0.01~3
0.5~4.5
1.5~4.0
1.5~3.5
1.5~3.5
1.5~3.5
1.5~3.5
0.01~2.3
142/0.06 A·g-1
285/0.2 C
87.5/0.2 C
690/1.5 A·g-1
120/0.05 A·g-1
208/0.1 A·g-1
339/0.1 A·g-1
109/0.1 A·g-1
70.2/0.015 A·g-1
225/0.1 A·g-1
207/0.2 A·g-1
160.5/1 C
338/0.1 A·g-1
231/0.05 A·g-1
218/0.1 A·g-1
152/0.05 A·g-1
319/0.5 C
1563/0.08 C
81.9/0.1 A·g-1
233/0.5 A·g-1
305/0.04 A·g-1
280/0.2 A·g-1
110/0.2 A·g-1
47/0.2 A·g-1
212/0.1 A·g-1
237/0.1 C
248/0.05 A·g-1
290/0.1 A·g-1
424/0.05 A·g-1
268/0.1 C
144.4/0.34 C
124/0.1 C
77/0.5 C
198/0.02 A·g-1
271/0.1 C
307/0.1 A·g-1
85%/3000/1 A·g-1
70%/6000/5 C
86%/600/5 C
83%/6000/5 A·g-1
99%/300/0.2 A·g-1
87%/1000/1 A·g-1
99%/10000/5 A·g-1
76%/2000/2 A·g-1
82%/500/0.015 A·g-1
98%/10000/5 A·g-1
93%/1500/5A·g-1
87.5%/200/1 C
100%/1000/1 A·g-1
100%/6900/0.5 A·g-1
86.5%/2400/0.5 A·g-1
76.5%/500/0.25 A·g-1
80%/3000/10 C
43.5%/1000/2 C
94%/200/0.1 A·g-1
57.1%/1800/5 A·g-1
87%/1000/2 A·g-1
82%/3000/2 A·g-1
87.3%/500/0.2 A·g-1
65%/3000/1 A·g-1
86%/1500/2 A·g-1
84%/175/0.3 C
99.7%/5000 /1 A·g-1
80%/500/0.2 A·g-1
99.9%/10000/2 A·g-1
99%/100/0.1 C
95%/600/7.5 C
72.6%/300/1 C
80%/400/2.5 C
68.3%/150/0.02 A·g-1
86%/300/5 C
100%/13000/2 A·g-1
98
99
100
101
102
88
103
104
105
82
106
107
108
109
109
110
26
111
112
27
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
图16 (a) HATN-AQ-COF的合成示意图;(b) HATN-AQ-COF的电化学氧化还原机理;(c) 不同电流密度下的充放电曲线;(d) HATN-AQ-COF的长期循环性能[26]
Fig. 16 (a) Schematic diagram of HATN-AQ-COF synthesis; (b) the electrochemical redox mechanism of HATN-AQ-COF; (c) charge/discharge profiles for varied current densities; (d) long-term cycling performance of HATN-AQ-COF[26]
图17 (a) TH-COF的合成示意图;(b) TH-COF的电化学氧化还原机理;(c) TH-COF的长期循环性能;(d) TH-COF在5 C和20 C电流密度下的循环性能[132]
Fig. 17 (a) Schematic diagram of HATN-AQ-COF synthesis; (b) the electrochemical redox mechanism of HATN-AQ-COF; (c) long-term cycling performance of TH-COF; (d) long-term cycling performance of TH-COF at 5 C and 20 C [132]
图18 (a) Aza-COF的合成示意图;(b) 通过模型预测Aza-COF孔径;(c) Aza-COF的倍率性能;(d) Aza-COF的长期循环性能[135]
Fig. 18 (a) Schematic diagram of Aza-COF synthesis; (b) Aza-COF aperture was predicted by the model; (c) rate performance of Aza-COF; (d) long-term cycling performance of Aza-COF[135]
图19 (a) TQBQ-COF的化学结构和可能的电化学氧化还原机理;(b) TQBQ-COF在0.02 A·g-1下的充放电曲线;(c) TQBQ-COF的原位FTIR光谱;(d) TQBQ-COF在不同充/放电状态下的C 1s XPS谱;(e) TQBQ-COF的倍率性能;(f) TQBQ-COF的长期循环性能[28]
Fig. 19 (a) The chemical structure and possible electrochemical redox mechanism of TQBQ-COF; (b) Discharge/charge profiles of TQBQ-COF electrode at 0.02 A·g-1; (c) In-situ FTIR spectra of TQBQ-COF; (d) the C1s XPS spectra of TQBQ-COF electrodes at different charge/discharge states; (e) rate performance of TQBQ-COF; (f) long-term cycling performance of TQBQ-COF [28]
图20 (a) DAAQ-COF和DAAQ-COF@CNT合成示意图;(b) DAAQ-COF和DAAQ-COF@CNT的倍率性能;(c) DAAQ- COF@CNT的长期循环性能;(d) DAAQ- COF@CNT的电化学氧化还原机理[140]
Fig. 20 (a) Schematic illustration of synthesis of the DAAQ-COF and DAAQ-COF@CNT; (b) rate performances of the DAAQ-COF and DAAQ-COF@CNT; (c) long-term cycling performance of DAAQ-COF@CNT; (d) electrochemical redox mechanism of DAAQ-COF@CNT in charge and discharge process [140]
图21 (a) Tp-PTO-COF的合成及结构的示意图;(b) 不同电流密度下的充电/放电曲线;(c) 在2 A·g-1下的长期循环性能[25]
Fig. 21 (a) Schematic diagram of synthesis and structure of Tp-PTO-COF; (b) Charge/discharge curves at different current densities; (c) Long-term cycling performance at 2 A·g-1[25]
[1]
Jafta C J. Curr. Opin. Electrochem., 2022, 36: 101130.
[2]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[3]
Fu N, Xu Y T, Zhang S, Deng Q, Liu J, Zhou C J, Wu X W, Guo Y G, Zeng X X. J. Energy Chem., 2022, 67: 563.

doi: 10.1016/j.jechem.2021.08.057     URL    
[4]
Li X M, Wang X Y, Ma L T, Huang W. Adv. Energy Mater., 2022, 12(37): 2202068.

doi: 10.1002/aenm.v12.37     URL    
[5]
Kotal M, Jakhar S, Roy S, Sharma H K. J. Energy Storage, 2022, 47: 103534.

doi: 10.1016/j.est.2021.103534     URL    
[6]
Yang Y J, Zhou J B, Wang L L, Jiao Z, Xiao M Y, Huang Q A, Liu M M, Shao Q S, Sun X L, Zhang J J. Nano Energy, 2022, 99: 107424.

doi: 10.1016/j.nanoen.2022.107424     URL    
[7]
Cheng N, Ren L, Xu X, Du Y, Dou S X. Mater. Today Phys., 2020, 15: 100289.
[8]
Shea J J, Luo C. ACS Appl. Mater. Interfaces, 2020, 12(5): 5361.

doi: 10.1021/acsami.9b20384     URL    
[9]
Kong L J, Zhong M, Shuang W, Xu Y H, Bu X H. Chem. Soc. Rev., 2020, 49(8): 2378.

doi: 10.1039/C9CS00880B     URL    
[10]
Yang Y X, Zhang C H, Zhao G F, An Q, Mei Z Y, Sun Y J, Xu J, Wang X F, Guo H. Adv. Energy Mater., 2023, 2300725.
[11]
Zhang C H, Yang Y X, Sun Y J, Duan L Y, Mei Z Y, An Q, Jing Q, Zhao G F, Guo H. Sci. China Mater., 2023, 66(7): 2591.

doi: 10.1007/s40843-022-2396-x    
[12]
Rivera-Lugo Y Y, Félix-Navarro R M, Trujillo-Navarrete B, Reynoso-Soto E A, Silva-Carrillo C, Cruz-Gutiérrez C A, Quiroga-González E, Calva-Yáñez J C. Fuel, 2021, 287: 119463.

doi: 10.1016/j.fuel.2020.119463     URL    
[13]
Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. Small, 2020, 16(5): 1905842.

doi: 10.1002/smll.v16.5     URL    
[14]
Wang R Q, Chen T, Cao Y J, Wang N, Zhang J X. Ionics, 2021, 27(4): 1559.

doi: 10.1007/s11581-020-03880-3    
[15]
Wu L, Huang S Z, Dong W D, Li Y, Wang Z H, Mohamed H S H, Li Y, Su B L. J. Colloid Interface Sci., 2021, 594: 531.

doi: 10.1016/j.jcis.2021.03.032     URL    
[16]
Soundharrajan V, Sambandam B, Kim S, Mathew V, Jo J, Kim S, Lee J, Islam S, Kim K, Sun Y K, Kim J. ACS Energy Lett., 2018, 3(8): 1998.

doi: 10.1021/acsenergylett.8b01105     URL    
[17]
Zhou J, Shan L T, Wu Z X, Guo X, Fang G Z, Liang S Q. Chem. Commun., 2018, 54(35): 4457.

doi: 10.1039/C8CC02250J     URL    
[18]
Tang H, Xiong F Y, Jiang Y L, Pei C Y, Tan S S, Yang W, Li M S, An Q Y, Mai L Q. Nano Energy, 2019, 58: 347.

doi: 10.1016/j.nanoen.2019.01.053     URL    
[19]
Xue Y, Zheng L L, Wang J, Zhou J G, Yu F D, Zhou G J, Wang Z B. ACS Appl. Energy Mater., 2019, 2(4): 2982.

doi: 10.1021/acsaem.9b00564     URL    
[20]
Yao H, Bao X L, Ye S D, Sheng S Q, Chen Q, Meng L L, Yang J. Mater. Lett., 2023, 341: 134232.

doi: 10.1016/j.matlet.2023.134232     URL    
[21]
Qiao S Y, Dong S H, Yuan L L, Li T, Ma M, Wu Y F, Hu Y Z, Qu T, Chong S K. J. Alloys Compd., 2023, 950: 169903.

doi: 10.1016/j.jallcom.2023.169903     URL    
[22]
Song T Y, Yao W J, Kiadkhunthod P, Zheng Y P, Wu N Z, Zhou X L, Tunmee S, Sattayaporn S, Tang Y B. Angew. Chem. Int. Ed., 2020, 59(2): 740.

doi: 10.1002/anie.v59.2     URL    
[23]
Du C Y, Zhang Z H, Li X L, Luo R J, Ma C, Bao J, Zeng J, Xu X, Wang F, Zhou Y N. Chem. Eng. J., 2023, 451: 138650.

doi: 10.1016/j.cej.2022.138650     URL    
[24]
Wang S, Wang Q Y, Shao P P, Han Y Z, Gao X, Ma L, Yuan S, Ma X J, Zhou J W, Feng X, Wang B. J. Am. Chem. Soc., 2017, 139(12): 4258.

doi: 10.1021/jacs.7b02648     URL    
[25]
Ma D X, Zhao H M, Cao F, Zhao H H, Li J X, Wang L, Liu K. Chem. Sci., 2022, 13(8): 2385.

doi: 10.1039/D1SC06412F     URL    
[26]
Yang X Y, Gong L, Liu X L, Zhang P P, Li B W, Qi D, Wang K, He F, Jiang J Z. Angew. Chem. Int. Ed., 2022, 61: e202207043.

doi: 10.1002/anie.v61.31     URL    
[27]
Yao L Y, Ma C, Sun L B, Zhang D L, Chen Y Z, Jin E Q, Song X W, Liang Z Q, Wang K X. J. Am. Chem. Soc., 2022, 144(51): 23534.

doi: 10.1021/jacs.2c10534     URL    
[28]
Shi R J, Liu L J, Lu Y, Wang C C, Li Y X, Li L, Yan Z H, Chen J. Nat. Commun., 2020, 11: 178.

doi: 10.1038/s41467-019-13739-5    
[29]
Peng H J, Huang S H, Montes-García V, Pakulski D, Guo H P, Richard F, Zhuang X D, Samorì P, Ciesielski A. Angew. Chem. Int. Ed., 2023, 62(10): e202216136.

doi: 10.1002/anie.v62.10     URL    
[30]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.

doi: 10.1002/aenm.v12.20     URL    
[31]
Son E J, Kim J H, Kim K, Park C B. J. Mater. Chem. A, 2016, 4(29): 11179.

doi: 10.1039/C6TA03123D     URL    
[32]
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[33]
Sakaushi K, Hosono E, Nickerl G, Gemming T, Zhou H S, Kaskel S, Eckert J. Nat. Commun., 2013, 4: 1485.

doi: 10.1038/ncomms2481    
[34]
Xu F, Jin S B, Zhong H, Wu D C, Yang X Q, Chen X, Wei H, Fu R W, Jiang D L. Sci. Rep., 2015, 5: 8225.

doi: 10.1038/srep08225    
[35]
Khayum M A, Ghosh M, Vijayakumar V, Halder A, Nurhuda M, Kumar S, Addicoat M, Kurungot S, Banerjee R. Chem. Sci., 2019, 10(38): 8889.

doi: 10.1039/C9SC03052B     URL    
[36]
Gu S, Wu S F, Cao L J, Li M C, Qin N, Zhu J, Wang Z Q, Li Y Z, Li Z Q, Chen J J, Lu Z G. J. Am. Chem. Soc., 2019, 141(24): 9623.

doi: 10.1021/jacs.9b03467     URL    
[37]
Fujii S, Marqués-González S, Shin J Y, Shinokubo H, Masuda T, Nishino T, Arasu N P, Vázquez H, Kiguchi M. Nat. Commun., 2017, 8: 15984.

doi: 10.1038/ncomms15984     URL    
[38]
Li H Y, Tang M, Wu Y C, Chen Y, Zhu S L, Wang B, Jiang C, Wang E J, Wang C L. J. Phys. Chem. Lett., 2018, 9(12): 3205.

doi: 10.1021/acs.jpclett.8b01285     URL    
[39]
Li N, Chang Z, Huang H L, Feng R, He W W, Zhong M, Madden D G, Zaworotko M J, Bu X H. Small, 2019, 15(22): 1970118.

doi: 10.1002/smll.v15.22     URL    
[40]
Tao R, Yang T F, Wang Y, Zhang J M, Wu Z Y, Qiu L. Chem. Commun., 2023, 59(22): 3175.

doi: 10.1039/D2CC06573H     URL    
[41]
Feng X, Ding X S, Jiang D L. Chem. Soc. Rev., 2012, 41(18): 6010.

doi: 10.1039/c2cs35157a     URL    
[42]
Sun T, Xie J, Guo W, Li D S, Zhang Q C. Adv. Energy Mater., 2020, 10(19): 1904199.

doi: 10.1002/aenm.v10.19     URL    
[43]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10): 16068.

doi: 10.1038/natrevmats.2016.68    
[44]
Geng K Y, Arumugam V, Xu H J, Gao Y N, Jiang D L. Prog. Polym. Sci., 2020, 108: 101288.

doi: 10.1016/j.progpolymsci.2020.101288     URL    
[45]
Yusran Y, Fang Q R, Valtchev V. Adv. Mater., 2020, 32(44): 2002038.

doi: 10.1002/adma.v32.44     URL    
[46]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M. Science, 2007, 316(5822): 268.

doi: 10.1126/science.1139915     URL    
[47]
Chen X D, Zhang H, Ci C G, Sun W W, Wang Y. ACS Nano, 2019, 13(3): 3600.

doi: 10.1021/acsnano.9b00165     URL    
[48]
Wei S H, Wang J W, Li Y Z, Fang Z B, Wang L, Xu Y X. Nano Res., 2023, 16(5): 6753.

doi: 10.1007/s12274-022-5366-3    
[49]
Tang J Y, Su C, Shao Z P. Small Meth., 2021, 5(12): 2100945.

doi: 10.1002/smtd.v5.12     URL    
[50]
Ma X H, Kang J S, Wu Y W, Pang C H, Li S H, Li J P, Xiong Y H, Luo J H, Wang M Y, Xu Z. Trac Trends Anal. Chem., 2022, 157: 116793.

doi: 10.1016/j.trac.2022.116793     URL    
[51]
DeBlase C R, Silberstein K E, Truong T T, Abruña H D, Dichtel W R. J. Am. Chem. Soc., 2013, 135(45): 16821.

doi: 10.1021/ja409421d     URL    
[52]
Fang Q R, Zhuang Z B, Gu S, Kaspar R B, Zheng J, Wang J H, Qiu S L, Yan Y S. Nat. Commun., 2014, 5: 4503.

doi: 10.1038/ncomms5503    
[53]
Zhang Y, Huang Z, Ruan B, Zhang X K, Jiang T, Ma N, Tsai F C. Macromol. Rapid Commun., 2020, 41(22): 2000402.

doi: 10.1002/marc.v41.22     URL    
[54]
Lu Y X. Seventh Edition of Organic Chemistry. Beijing: People's Medical Publishing House, 2008, 06.
(吕以仙. 有机化学第七版. 北京: 人民卫生出版社, 2008, 06.)
[55]
Liao L F, Li M Y, Yin Y L, Chen J, Zhong Q T, Du R X, Liu S L, He Y M, Fu W J, Zeng F. ACS Omega, 2023, 8(5): 4527.

doi: 10.1021/acsomega.2c06961     URL    
[56]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y     URL    
[57]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem. Int. Ed., 2020, 59(29): 12162.

doi: 10.1002/anie.v59.29     URL    
[58]
Xu S Q, Wang G, Biswal B P, Addicoat M, Paasch S, Sheng W B, Zhuang X D, Brunner E, Heine T, Berger R, Feng X L. Angew. Chem. Int. Ed., 2019, 58(3): 849.

doi: 10.1002/anie.v58.3     URL    
[59]
Zhang F L, Dong X Y, Wang Y X, Lang X J. Small, 2023, 19(38): 2302456.

doi: 10.1002/smll.v19.38     URL    
[60]
Zhang C R, Cui W R, Yi S M, Niu C P, Liang R P, Qi J X, Chen X J, Jiang W, Liu X, Luo Q X, Qiu J D. Nat. Commun., 2022, 13: 7621.

doi: 10.1038/s41467-022-35435-7    
[61]
Zhang C R, Qi J X, Cui W R, Chen X J, Liu X, Yi S M, Niu C P, Liang R P, Qiu J D. Sci. China Chem., 2023, 66(2): 562.

doi: 10.1007/s11426-022-1466-9    
[62]
Abuzeid H R, EL-Mahdy A F M, Kuo S W. Microporous Mesoporous Mater., 2020, 300: 110151.

doi: 10.1016/j.micromeso.2020.110151     URL    
[63]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/anie.v47:18     URL    
[64]
Bojdys M J, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22(19): 2202.

doi: 10.1002/adma.v22:19     URL    
[65]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m     URL    
[66]
Martínez-Visus Í, Ulcuango M, Zornoza B. Chem. Eur. J., 2023, 29(15): e202203907.

doi: 10.1002/chem.v29.15     URL    
[67]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842     URL    
[68]
Karak S, Kandambeth S, Biswal B P, Sasmal H S, Kumar S, Pachfule P, Banerjee R. J. Am. Chem. Soc., 2017, 139(5): 1856.

doi: 10.1021/jacs.6b08815     URL    
[69]
Zhao W, Yan P Y, Yang H F, Bahri M, James A M, Chen H M, Liu L J, Li B Y, Pang Z F, Clowes R, Browning N D, Ward J W, Wu Y, Cooper A I. Nat. Synth., 2022, 1(1): 87.

doi: 10.1038/s44160-021-00005-0    
[70]
Yoo J, Cho S J, Jung G Y, Kim S H, Choi K H, Kim J H, Lee C K, Kwak S K, Lee S Y. Nano Lett., 2016, 16(5): 3292.

doi: 10.1021/acs.nanolett.6b00870     URL    
[71]
Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1): 319.

doi: 10.1021/ma802322j     URL    
[72]
Maschita J, Banerjee T, Savasci G, Haase F, Ochsenfeld C, Lotsch B V. Angew. Chem. Int. Ed., 2020, 59(36): 15750.

doi: 10.1002/anie.v59.36     URL    
[73]
Chen X D, Zhang H, Yan P, Liu B, Cao X H, Zhan C C, Wang Y W, Liu J H. RSC Adv., 2022, 12(18): 11484.

doi: 10.1039/D2RA01582J     URL    
[74]
Das G, Benyettou F, Sharama S K, Prakasam T, Gándara F, de la Peña-O’Shea V A, Saleh N, Pasricha R, Jagannathan R, Olson M A, Trabolsi A. Chem. Sci., 2018, 9(44): 8382.

doi: 10.1039/C8SC02842G     URL    
[75]
Zhao Y B, Guo L, Gándara F, Ma Y H, Liu Z, Zhu C H, Lyu H, Trickett C A, Kapustin E A, Terasaki O, Yaghi O M. J. Am. Chem. Soc., 2017, 139(37): 13166.

doi: 10.1021/jacs.7b07457     URL    
[76]
Yang H S, Du Y, Wan S, Trahan G D, Jin Y H, Zhang W. Chem. Sci., 2015, 6(7): 4049.

doi: 10.1039/C5SC00894H     URL    
[77]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7): 2682.

doi: 10.1039/C5TA10521H     URL    
[78]
Peng Y W, Xu G D, Hu Z G, Cheng Y D, Chi C L, Yuan D Q, Cheng H S, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(28): 18505.

doi: 10.1021/acsami.6b06189     URL    
[79]
Yang S T, Kim J, Cho H Y, Kim S, Ahn W S. RSC Adv., 2012, 2(27): 10179.

doi: 10.1039/c2ra21531d     URL    
[80]
Cao Y Y, He Y J, Gang H Y, Wu B C, Yan L J, Wei D, Wang H Y. J. Power Sources, 2023, 560: 232710.

doi: 10.1016/j.jpowsour.2023.232710     URL    
[81]
Liu X, Liu C F, Lai W Y, Huang W. Adv. Mater. Technol., 2020, 5(9): 2000154.

doi: 10.1002/admt.v5.9     URL    
[82]
Zhang X F, Xiao Z Y, Liu X F, Mei P, Yang Y K. Renew. Sustain. Energy Rev., 2021, 147: 111247.

doi: 10.1016/j.rser.2021.111247     URL    
[83]
Zheng S B, Shi D J, Yan D, Wang Q R, Sun T J, Ma T, Li L, He D, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(12): e202117511.

doi: 10.1002/anie.v61.12     URL    
[84]
Guo Z W, Ma Y Y, Dong X L, Huang J H, Wang Y G, Xia Y Y. Angew. Chem. Int. Ed., 2018, 130(36): 11911.

doi: 10.1002/ange.v130.36     URL    
[85]
Yusran Y, Fang Q R, Qiu S L. Isr. J. Chem., 2018, 58(9/10): 971.

doi: 10.1002/ijch.v58.9-10     URL    
[86]
Nagai A, Guo Z Q, Feng X, Jin S B, Chen X, Ding X S, Jiang D L. Nat. Commun., 2011, 2: 536.

doi: 10.1038/ncomms1542    
[87]
Li J H, Huang L L, Lv H, Wang J L, Wang G, Chen L, Liu Y Y, Guo W, Yu F, Gu T T. ACS Appl. Mater. Interfaces, 2022, 14(34): 38844.

doi: 10.1021/acsami.2c10539     URL    
[88]
Lei Z D, Yang Q S, Xu Y, Guo S Y, Sun W W, Liu H, Lv L P, Zhang Y, Wang Y. Nat. Commun., 2018, 9: 576.

doi: 10.1038/s41467-018-02889-7    
[89]
Lin Z R, Lin L, Zhu J Q, Wu W L, Yang X P, Sun X Q. ACS Appl. Mater. Interfaces, 2022, 14(34): 38689.

doi: 10.1021/acsami.2c08170     URL    
[90]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M. Science, 2018, 361(6397): 48.

doi: 10.1126/science.aat7679     URL    
[91]
Yao Z F, Zheng Y Q, Dou J H, Lu Y, Ding Y F, Ding L, Wang J Y, Pei J. Adv. Mater., 2021, 33(10): 2170075.

doi: 10.1002/adma.v33.10     URL    
[92]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722     URL    
[93]
Yang J, Kang F Y, Wang X, Zhang Q C. Mater. Horiz., 2022, 9(1): 121.

doi: 10.1039/D1MH00809A     URL    
[94]
Liu M Y, Jiang K, Ding X, Wang S L, Zhang C X, Liu J, Zhan Z, Cheng G, Li B Y, Chen H, Jin S B, Tan B E. Adv. Mater., 2019, 31(19): 1807865.

doi: 10.1002/adma.v31.19     URL    
[95]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun., 2015, 6: 8508.

doi: 10.1038/ncomms9508    
[96]
Thompson C M, Occhialini G, McCandless G T, Alahakoon S B, Cameron V, Nielsen S O, Smaldone R A. J. Am. Chem. Soc., 2017, 139(30): 10506.

doi: 10.1021/jacs.7b05555     URL    
[97]
Chen X D, Li Y S, Wang L, Xu Y, Nie A M, Li Q Q, Wu F, Sun W W, Zhang X, Vajtai R, Ajayan P M, Chen L, Wang Y. Adv. Mater., 2019, 31(29): 1901640.

doi: 10.1002/adma.v31.29     URL    
[98]
Gong L, Yang X Y, Gao Y, Yang G X, Yu Z H, Fu X Z, Wang Y H, Qi D D, Bian Y Z, Wang K, Jiang J Z. J. Mater. Chem. A, 2022, 10(31): 16595.

doi: 10.1039/D2TA03579K     URL    
[99]
Liu X L, Jin Y C, Wang H L, Yang X Y, Zhang P P, Wang K, Jiang J Z. Adv. Mater., 2022, 34(37): 2203605.

doi: 10.1002/adma.v34.37     URL    
[100]
Jia C, Duan A, Liu C, Wang W Z, Gan S X, Qi Q Y, Li Y J, Huang X Y, Zhao X. Small, 2023, 19(24): 2300518.

doi: 10.1002/smll.v19.24     URL    
[101]
Kushwaha R, Jain C, Shekhar P, Rase D, Illathvalappil R, Mekan D, Camellus A, Vinod C P, Vaidhyanathan R. Adv. Energy Mater., 2023, 13(34): 2301049.

doi: 10.1002/aenm.v13.34     URL    
[102]
Gui H D, Xu F. Mater. Lett., 2023, 346: 134549.

doi: 10.1016/j.matlet.2023.134549     URL    
[103]
Wang W X, Kale V S, Cao Z, Lei Y, Kandambeth S, Zou G D, Zhu Y P, Abouhamad E, Shekhah O, Cavallo L, Eddaoudi M, Alshareef H N. Adv. Mater., 2021, 33(39): 2103617.

doi: 10.1002/adma.v33.39     URL    
[104]
Shi J W, Tang W Y, Xiong B R, Gao F, Lu Q Y. Chem. Eng. J., 2023, 453: 139607.

doi: 10.1016/j.cej.2022.139607     URL    
[105]
Venkatesha A, Gomes R, Nair A S, Mukherjee S, Bagchi B, Bhattacharyya A J. ACS Sustainable Chem. Eng., 2022, 10(19): 6205.

doi: 10.1021/acssuschemeng.1c08678     URL    
[106]
Wu M M, Zhao Y, Zhao R Q, Zhu J, Liu J, Zhang Y M, Li C X, Ma Y F, Zhang H T, Chen Y S. Adv. Funct. Mater., 2022, 32(11): 2107703.

doi: 10.1002/adfm.v32.11     URL    
[107]
Saleem A, Majeed M K, Iqbal R, Hussain A, Naeem M S, Rauf S, Wang Y L, Javed M S, Shen J. Adv. Mater. Interfaces, 2022, 9(27): 2200800.

doi: 10.1002/admi.v9.27     URL    
[108]
Xu X Y, Zhang S Q, Xu K, Chen H Z, Fan X L, Huang N. J. Am. Chem. Soc., 2023, 145(2): 1022.

doi: 10.1021/jacs.2c10509     URL    
[109]
Li S W, Liu Y Z, Dai L, Li S, Wang B, Xie J, Li P F. Energy Storage Mater., 2022, 48: 439.
[110]
Tong Z Q, Wang H, Kang T X, Wu Y, Guan Z Q, Zhang F, Tang Y B, Lee C S. J. Energy Chem., 2022, 75: 441.

doi: 10.1016/j.jechem.2022.05.044     URL    
[111]
Qiu T Y, Tang W S, Han X, Li Y, Chen Z W, Yao R Q, Li Y Q, Wang Y H, Li Y G, Tan H Q. Chem. Eng. J., 2023, 466: 143149.

doi: 10.1016/j.cej.2023.143149     URL    
[112]
Meng Z Y, Zhang Y, Dong M Q, Zhang Y, Cui F M, Loh T P, Jin Y H, Zhang W, Yang H S, Du Y. J. Mater. Chem. A, 2021, 9(17): 10661.

doi: 10.1039/D0TA10785A     URL    
[113]
Liu Q, Xiao J, Chen, Yan W, Ma, Yi W, Lu, Hui M, Zhang, Bao Z, Yang. National Natural Science Foundation of China, 2023, 21975034.
[114]
Gao H, Neale A R, Zhu Q, Bahri M, Wang X, Yang H F, Xu Y J, Clowes R, Browning N D, Little M A, Hardwick L J, Cooper A I. J. Am. Chem. Soc., 2022, 144(21): 9434.

doi: 10.1021/jacs.2c02196     URL    
[115]
Zhao G F, Li H N, Gao Z H, Xu L F, Mei Z Y, Cai S, Liu T T, Yang X F, Guo H, Sun X L. Adv. Funct. Mater., 2021, 31(29): 2101019.

doi: 10.1002/adfm.v31.29     URL    
[116]
Gu S, Hao R, Chen J J, Chen X, Liu K, Hussain I, Liu G Y, Wang Z Q, Gan Q M, Guo H, Li M Q, Zhang K L, Lu Z G. Mater. Chem. Front., 2022, 6(17): 2545.

doi: 10.1039/D2QM00578F     URL    
[117]
Luo D R, Zhang J, Zhao H Z, Xu H, Dong X Y, Wu L Y, Ding B, Dou H, Zhang X G. Chem. Commun., 2023, 59(45): 6853.

doi: 10.1039/D3CC00700F     URL    
[118]
Shehab M K, Weeraratne K S, El-Kadri O M, Yadavalli V K, El-Kaderi H M. Macromol. Rapid Commun., 2023, 44(11): 2200782.

doi: 10.1002/marc.v44.11     URL    
[119]
Lee J Y, Lim H, Park J, Kim M S, Jung J W, Kim J, Kim I D. Adv. Energy. Mater., 2023, 13(26): 2300442.

doi: 10.1002/aenm.v13.26     URL    
[120]
Sun J L, Xu Y F, Li A, Tian R Q, Fei Y T, Chen B B, Zhou X S. ACS Appl. Nano Mater., 2022, 5(10): 15592.

doi: 10.1021/acsanm.2c03634     URL    
[121]
Yang X Y, Gong L, Wang K, Ma S H, Liu W P, Li B W, Li N, Pan H H, Chen X, Wang H L, Liu J M, Jiang J Z. Adv. Mater., 2022, 34(50): 2207245.

doi: 10.1002/adma.v34.50     URL    
[122]
Yang X Y, Hu Y M, Dunlap N, Wang X B, Huang S F, Su Z P, Sharma S, Jin Y H, Huang F, Wang X H, Lee S H, Zhang W. Angew. Chem. Int. Ed., 2020, 59(46): 20385.

doi: 10.1002/anie.v59.46     URL    
[123]
Yang D H, Yao Z Q, Wu D H, Zhang Y H, Zhou Z, Bu X H. J. Mater. Chem. A, 2016, 4(47): 18621.

doi: 10.1039/C6TA07606H     URL    
[124]
Wang Z L, Li Y J, Liu P J, Qi Q Y, Zhang F, Lu G L, Zhao X, Huang X Y. Nanoscale, 2019, 11(12): 5330-5335.

doi: 10.1039/C9NR00088G     URL    
[125]
Jhulki S, Feriante C H, Mysyk R, Evans A M, Magasinski A, Raman A S, Turcheniuk K, Barlow S, Dichtel W R, Yushin G, Marder S R. ACS Appl. Energy Mater., 2021, 4(1): 350.

doi: 10.1021/acsaem.0c02281     URL    
[126]
Yao C J, Wu Z Z, Xie J, Yu F, Guo W, Xu Z J, Li D S, Zhang S Q, Zhang Q C. ChemSusChem, 2020, 13(9): 2457.

doi: 10.1002/cssc.v13.9     URL    
[127]
Luo Z Q, Liu L J, Ning J X, Lei K X, Lu Y, Li F J, Chen J. Angew. Chem. Int. Ed., 2018, 57(30): 9443.

doi: 10.1002/anie.v57.30     URL    
[128]
Lu H Y, Ning F Y, Jin R, Teng C, Wang Y, Xi K, Zhou D S, Xue G. ChemSusChem, 2020, 13(13): 3447.

doi: 10.1002/cssc.v13.13     URL    
[129]
Mahmood N, Tang T Y, Hou Y L. Adv. Energy Mater., 2016, 6(17): 1600374.

doi: 10.1002/aenm.v6.17     URL    
[130]
Kim T H, Park J S, Chang S K, Choi S, Ryu J H, Song H K. Adv. Energy Mater., 2012, 2(7): 860.

doi: 10.1002/aenm.v2.7     URL    
[131]
Wu M M, Zhao Y, Sun B Q, Sun Z H, Li C X, Han Y, Xu L Q, Ge Z, Ren Y X, Zhang M T, Zhang Q, Lu Y, Wang W, Ma Y F, Chen Y S. Nano Energy, 2020, 70: 104498.

doi: 10.1016/j.nanoen.2020.104498     URL    
[132]
Liu Y, Cai X S, Chen D G, Qin Y, Chen Y, Chen J X, Liang C L. Int. J. Energy Res., 2022, 46(11): 15174.
[133]
Parker J F, Chervin C N, Pala I R, Machler M, Burz M F, Long J W, Rolison D R. Science, 2017, 356(6336): 415.

doi: 10.1126/science.aak9991     URL    
[134]
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1(4): 16013.

doi: 10.1038/natrevmats.2016.13    
[135]
Shehab M K, Weeraratne K S, Huang T, Lao K U, El-Kaderi H M. ACS Appl. Mater. Interfaces, 2021, 13(13): 15083.

doi: 10.1021/acsami.0c20915     URL    
[136]
Zhang X H, Yang D, Rui X H, Yu Y, Huang S M. Curr. Opin. Electrochem., 2019, 18: 24-30.
[137]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N. Adv. Energy Mater., 2017, 7(24): 1602911.

doi: 10.1002/aenm.v7.24     URL    
[138]
Rajagopalan R, Tang Y G, Ji X B, Jia C K, Wang H Y. Adv. Funct. Mater., 2020, 30(12): 1909486.

doi: 10.1002/adfm.v30.12     URL    
[139]
Dhir S, Wheeler S, Capone I, Pasta M. Chem, 2020, 6(10): 2442.

doi: 10.1016/j.chempr.2020.08.012     URL    
[140]
Duan J, Wang W T, Zou D G, Liu J, Li N, Weng J Y, Xu L P, Guan Y, Zhang Y J, Zhou P F. ACS Appl. Mater. Interfaces, 2022, 14(27): 31234.

doi: 10.1021/acsami.2c04831     URL    
[141]
Xu C J, Li B H, Du H D, Kang F Y. Angew. Chem. Int. Ed., 2012, 51(4): 933.

doi: 10.1002/anie.v51.4     URL    
[142]
Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Chem. Commun., 2015, 51(45): 9265.

doi: 10.1039/C5CC02585K     URL    
[143]
Pan H, Shao Y, Yan P, Cheng Y, Han K S, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller K T, Liu J. Nat. Energy., 2016, 1(5): 1.

doi: 10.1038/ng0492-1    
[144]
Yu P, Zeng Y X, Zhang H Z, Yu M H, Tong Y X, Lu X H. Small, 2019, 15(7): 1804760.

doi: 10.1002/smll.v15.7     URL    
[145]
Han S D, Rajput N N, Qu X H, Pan B F, He M N, Ferrandon M S, Liao C, Persson K A, Burrell A K. ACS Appl. Mater. Interfaces, 2016, 8(5): 3021.

doi: 10.1021/acsami.5b10024     URL    
[146]
Ma M C, Lu X F, Guo Y, Wang L C, Liang X J. Trac Trends Anal. Chem., 2022, 157: 116741.

doi: 10.1016/j.trac.2022.116741     URL    
[147]
Hong H, Guo X, Zhu J X, Wu Z X, Li Q, Zhi C Y. Sci. China Chem., 2023, 66: 1.

doi: 10.1007/s11426-022-1485-8    
[148]
Liu Y, Zhou W Q, Teo W L, Wang K, Zhang L Y, Zeng Y F, Zhao Y L. Chem, 2020, 6(12): 3172.

doi: 10.1016/j.chempr.2020.08.021     URL    
[149]
Jarju J J, Lavender A M, Espiña B, Romero V, Salonen L M. Molecules, 2020, 25(22): 5404.

doi: 10.3390/molecules25225404     URL    
[150]
Bagheri A R, Aramesh N. J. Mater. Sci., 2021, 56(2): 1116.

doi: 10.1007/s10853-020-05308-9    
[151]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550     URL    
[1] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 谢志莹, 郑新华, 王明明, 于海洲, 仇晓燕, 陈维. 水系锌离子电池[J]. 化学进展, 2023, 35(11): 1701-1726.
[4] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[5] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[6] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[7] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[8] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[9] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[10] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[11] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[12] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[13] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[14] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[15] 赵晨欢, 张文强, 于波*, 王建晨, 陈靖. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288.