English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 319-334 DOI: 10.7536/PC230716 前一篇   后一篇

• 综述 •

二维层状沸石的合成及其催化、吸附与分离应用

胡诗雨1, 闫玥儿2,*(), 张亚红1, 王振东3, 唐颐1,*()   

  1. 1 复旦大学 化学系 上海 200438
    2 复旦大学 中华古籍保护研究院 上海 200433
    3 中石化(上海)石油化工研究院有限公司 绿色化工与工业催化全国重点实验室 上海 201208
  • 收稿日期:2023-07-18 修回日期:2023-11-21 出版日期:2024-03-24 发布日期:2024-02-26
  • 基金资助:
    国家重点研发计划(2018YFA0209402); 国家自然科学基金(22072028); 国家自然科学基金(22088101); 上海市自然科学基金(22ZR1407200)

Synthesis of Two-Dimensional Layered Zeolites and Their Catalysis, Adsorption and Separation Applications

Shiyu Hu1, Yueer Yan2(), Yahong Zhang1, Zhendong Wang3, Yi Tang1()   

  1. 1 Department of Chemistry, Fudan University, Shanghai 200438, China
    2 Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University, Shanghai 200433, China
    3 State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201208
  • Received:2023-07-18 Revised:2023-11-21 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: yueeryan@fudan.edu.cn (Yueer Yan); yitang@fudan.edu.cn (Yi Tang)
  • Supported by:
    National Key R&D Program of China(2018YFA0209402); National Natural Science Foundation of China(22072028); National Natural Science Foundation of China(22088101); Shanghai Natural Science Foundation(22ZR1407200)

与三维沸石相比,二维层状沸石具有更大的表面积、更短的扩散距离和更具韧性的结构,在许多领域中都具有更大优势。近年来,二维层状沸石的研究已成为新热点。本文基于前期文献调研总结,从两类合成角度(Bottom-up和Top-down法)归纳了近年来二维沸石的合成方法,重点综述了同种类型沸石的不同合成法的进展。此外,本文简述了二维沸石在催化、吸附和分离领域中的应用,并展望了二维沸石广阔的应用前景,以期为二维沸石的合成与应用提供参考。

Compared with three-dimensional zeolites, two-dimensional layered zeolites have greater advantages in many fields, with larger surface area, shorter diffusion distance and more ductile structure. In recent years, the research on two-dimensional layered zeolites has become a new hotspot. Based on previous research and summary, this article summarizes the synthesis methods of two-dimensional zeolites in the past five years from two types of synthesis perspectives (bottom-up and top-down methods), with a focus on reviewing the progress of different synthesis methods for the same topology of zeolite. In addition, this article briefly describes the applications of two-dimensional zeolites in the fields of catalysis, adsorption, and separation and looks forward to the broad application prospects of two-dimensional zeolites so as to provide theoretical guidance and reference basis for the synthesis and application of two-dimensional zeolites.

Contents

1 Introduction

2 Synthesis of two-dimensional layered zeolites

2.1 Bottom-up synthesis method

2.2 Top-down synthesis method

3 Application of two-dimensional layered zeolite

3.1 Catalysis

3.2 Adsorption

3.3 Separation membrane

4 Conclusion and outlook

()
图1 IZA已认定的沸石拓扑结构,黄色图标为已确认的具有层状形式的结构
Fig. 1 Zeolite frameworks approved by the IZA Structure Commission in the alphabetical order and the confirmed structures with layered forms (yellow)
图2 二维沸石自下而上合成示意图
Fig. 2 Schematic diagram of bottom-up synthesis of 2D zeolite
图3 一步法制备表面增强活性二维MWW型沸石纳米晶层[38]
Fig. 3 Enhanced surface activity of MWW zeolite nanosheets prepared via a one-step synthesis[38]. Copyright ? 2020, American Chemical Society
图4 用C22-6-6/TPAOH摩尔比为10/0(a)、10/1(b)、10/2(c)、10/3(d)、10/5(e)、10/8(f)、10/12(g)和10/20(h)制备的MFI沸石的扫描电子显微镜(SEM)图像[44]。Si/Al比为~40(i)的商用MFI沸石作为对照
Fig. 4 SEM images of MFI zeolites obtained with C22-6-6/TPAOH molar ratio of (a) 10/0, (b) 10/1, (c) 10/2, (d) 10/3, (e) 10/5, (f) 10/8, (g) 10/12, and (h) 10/20, respectively, in the dual template synthesis. (i) Commercial MFI with Si/Al ratio of ~40 was used for comparison[44]. Copyright ? 2014, American Chemical Society
图5 二维沸石自上而下合成示意图
Fig. 5 Schematic diagram of top-down synthesis of 2D zeolite
图6 不同硅锗比水解沸石的SEM图像[62]。ITH-4(A), ITH-10(B), ITR-2(C), ITR-3(D), 0.1B-IWR-2(E), 0.1B-IWR-6(F), and 0.1B-IWR-2(G)
Fig. 6 SEM image of ITH-4 (A), ITH-10 (B), ITR-2 (C), ITR-3 (D), 0.1B-IWR-2 (E), 0.1B-IWR-6 (F), and 0.1B-IWR-2 (G)[62]. Copyright ? 2014, American Chemical Society
图7 三步离散操作(a)和一次性操作(b)条件下二维沸石气相柱撑(VPP)实验示意图[25]
Fig. 7 Schematic diagram of two-dimensional zeolite vapor phase column (VPP) experiment under three-step discrete operation (a) or one-time operation conditions (b)[25] Copyright ? 2019, American Chemical Society
图8 MCM-22(P)柱撑工艺[72]
Fig. 8 Illustration showing the reversible swelling of MCM-22(P) and pillaring of the swollen material[72]. Copyright ? 2008, American Chemical Society
图9 (a)纯MFI微粒与(b~e)BMLM粒子在不同水浓度合成条件下的SEM图像[102]
Fig. 9 SEM images of (a) 10 μm bare MFI and (b~e) BMLM particles at varying water concentrations in the synthesis [102]. Copyright ? 2012, American Chemical Society
[1]
Čejka J, Millini R, Opanasenko M, Serrano D P, Roth W J. Catal. Today, 2020, 345: 2.

doi: 10.1016/j.cattod.2019.10.021     URL    
[2]
Wang J, Fan Y, Jiang J, Wan Z, Pang S, Guan Y, Xu H, He X, Ma Y, Huang A, Wu P. Angew. Chem., Int. Ed., 2023, 62(25): e202304734.

doi: 10.1002/anie.v62.25     URL    
[3]
Diao D D, Zhang H Y, Wang J G, Xiao Q. Microporous Mesoporous Mater., 2022, 330: 111629.

doi: 10.1016/j.micromeso.2021.111629     URL    
[4]
Li C G, Moliner M, Corma A. Angew. Chem. Int. Ed., 2018, 57(47): 15330.

doi: 10.1002/anie.v57.47     URL    
[5]
Přech J, Pizarro P, Serrano D P, Čejka J. Chem. Soc. Rev., 2018, 47(22): 8263.

doi: 10.1039/C8CS00370J     URL    
[6]
Heard C J, Čejka J, Opanasenko M, Nachtigall P, Centi G, Perathoner S. Adv. Mater., 2019, 31(3): 1801712.

doi: 10.1002/adma.v31.3     URL    
[7]
Zi W, Zhang J, Jiang J, Qu K, Tao S, Zhang J,. Chem. Eur. J., 2023, 29(11): e202202754.

doi: 10.1002/chem.v29.11     URL    
[8]
Xu H, Wu P. Catal. Rev. Sci. Eng., 2021, 63(2): 234.

doi: 10.1080/01614940.2021.1948298     URL    
[9]
Shao X, Wang S, Zhang X, Li J, Wang N, Wang Z, Yuan Z. Prog. Chem., 2022, 34(12): 2651.
[10]
Ni X, Ding H, Zhang J, Zeng Z, Bai P, Guo X. Prog. Chem., 2018, 30(7): 976.
[11]
Zhang Y, Che S. Angew. Chem.Int. Edit., 2020, 59(1): 50.
[12]
Li N, Wang M Y, You Q, Bi C Y, Chen H Y, Liu B Y, Sun M, Hao Q Q, Zhang J B, Ma X X. Catal. Sci. Technol., 2020, 10(5): 1323.

doi: 10.1039/C9CY02282A     URL    
[13]
Zhang C N, Lin F, Kong L T, Ye Z Q, Pan D, Li H B, Li H, Liu P, Zhang Y H, Zhang H B, Tang Y. Inorg. Chem. Front., 2022, 9(16): 4030.

doi: 10.1039/D2QI00928E     URL    
[14]
Zhang C N, Huang Y Y, Zhao H B, Zhang H B, Ye Z Q, Liu P, Zhang Y H, Tang Y. ACS Appl. Nano Mater., 2021, 4(10): 10645.

doi: 10.1021/acsanm.1c02097     URL    
[15]
Chen J Q, Li Y Z, Hao Q Q, Chen H, Liu Z T, Dai C, Zhang J, Ma X, Liu Z W. Natl. Sci. Rev., 2021, 8(7): nwaa236.

doi: 10.1093/nsr/nwaa236     URL    
[16]
Grzybek J, Roth W J, Gil B, Korzeniowska A, Mazur M, Čejka J, Morris R E. J. Mater. Chem. A, 2019, 7(13): 7701.

doi: 10.1039/C8TA09826C     URL    
[17]
Xu L, Ji X Y, Jiang J G, Han L, Che S N, Wu P. Chem. Mater., 2015, 27(23): 7852.

doi: 10.1021/acs.chemmater.5b03658     URL    
[18]
Ramos F S O, de Pietre M K, Pastore H O. RSC Adv., 2013, 3(7): 2084.

doi: 10.1039/C2RA21573J     URL    
[19]
Wang X G, Firdous A, Xu L, Chen P H, Liao F H, Lin J H, Sun J L. Cryst. Growth Des., 2019, 19(4): 2272.

doi: 10.1021/acs.cgd.8b01907     URL    
[20]
Bae J N, Cichocka M O, Zhang Y, Bacsik Z, Bals S, Zou X D, Willhammar T, Hong S B. Angew. Chem. Int. Ed., 2019, 58(30): 10230.

doi: 10.1002/anie.v58.30     URL    
[21]
Zhao Z C, Zhang W P, Ren P J, Han X W, Müller U, Yilmaz B, Feyen M, Gies H, Xiao F S, De Vos D, Tatsumi T, Bao X H. Chem. Mater., 2013, 25(6): 840.

doi: 10.1021/cm303131c     URL    
[22]
Gil B, Makowski W, Marszalek B, Roth W J, Kubu M, Čejka J, Olejniczak Z. Dalton Trans., 2014, 43(27): 10501.

doi: 10.1039/c4dt00130c     URL    
[23]
Gies H, Feyen M, De Baerdemaeker T, De Vos D E, Yilmaz B, Müller U, Meng X J, Xiao F S, Zhang W P, Yokoi T, Tatsumi T, Bao X H. Microporous Mesoporous Mater., 2016, 222: 235.

doi: 10.1016/j.micromeso.2015.09.051     URL    
[24]
Bian C Q, Wu Q M, Zhang J, Chen F, Pan S X, Wang L, Meng X J, Müller U, Feyen M, Yilmaz B, Gies H, Zhang W P, Bao X H, De Vos D, Yokoi T, Tatsumi T, Xiao F S. Microporous Mesoporous Mater., 2015, 214: 204.

doi: 10.1016/j.micromeso.2015.04.017     URL    
[25]
Wei L, Song K C, Wu W, Holdren S, Zhu G H, Shulman E, Shang W J, Chen H Y, Zachariah M R, Liu D X. J. Am. Chem. Soc., 2019, 141(22): 8712.

doi: 10.1021/jacs.9b03479     URL    
[26]
Roth W J, Gil B, Mayoral A, Grzybek J, Korzeniowska A, Kubu M, Makowski W, Čejka J, Olejniczak Z, Mazur M. Dalton Trans., 2018, 47(9): 3029.

doi: 10.1039/C7DT03718J     URL    
[27]
De Baerdemaeker T, Feyen M, Vanbergen T, Müller U, Yilmaz B, Xiao F S, Zhang W P, Yokoi T, Bao X H, De Vos D E, Gies H. Chem. Mater., 2015, 27(1): 316.

doi: 10.1021/cm504014d     URL    
[28]
Yang Z J, Li Y F, Wu Q B, Ren N, Zhang Y H, Liu Z P, Tang Y. J. Catal., 2011, 280(2): 247.

doi: 10.1016/j.jcat.2011.03.026     URL    
[29]
Corma A, Fornes V, Pergher S B, Maesen T L M, Buglass J G. Nature, 1998, 396(6709): 353.

doi: 10.1038/24592     URL    
[30]
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W Q, Cho H J, Fetisov E O, Thyagarajan R, DeJaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Nature, 2017, 543(7647): 690.

doi: 10.1038/nature21421    
[31]
Liu Y. Chem. J. Chin. Univ. Chin., 2021, 42(1): 117.
[32]
Margarit V J, Martínez-Armero M E, Navarro M T, Martínez C, Corma A. Angew. Chem. Int. Ed., 2015, 54(46): 13724.

doi: 10.1002/anie.v54.46     URL    
[33]
Luo H Y, Michaelis V K, Hodges S, Griffin R G, Román-Leshkov Y. Chem. Sci., 2015, 6(11): 6320.

doi: 10.1039/C5SC01912E     URL    
[34]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461(7261): 246.

doi: 10.1038/nature08288    
[35]
Jin S Q, Tao G J, Zhang S L, Luo Y, Fu W H, Wang Z D, Gao H X, Sun H M, Yang W M. Catal. Sci. Technol., 2018, 8(23): 6076.

doi: 10.1039/C8CY01947A     URL    
[36]
Wang Z D, Cichocka M O, Luo Y, Zhang B, Sun H M, Tang Y, Yang W M. Chin. J. Catal., 2020, 41(7): 1062.
[37]
Lu K, Huang J, Ren L, Li C, Guan Y J, Hu B W, Xu H, Jiang J G, Ma Y H, Wu P. Angew. Chem. Int. Ed., 2020, 59(15): 6258.

doi: 10.1002/anie.v59.15     URL    
[38]
Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. J. Am. Chem. Soc., 2020, 142(18): 8211.

doi: 10.1021/jacs.9b13596     URL    
[39]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.

doi: 10.1021/ja908382n     URL    
[40]
Jo C, Cho K, Kim J, Ryoo R. Chem. Commun., 2014, 50(32): 4175.

doi: 10.1039/C4CC01070A     URL    
[41]
Karwacki L, Stavitski E, Kox M H F, Kornatowski J, Weckhuysen B M. Angew. Chem., 2007, 119(38): 7366.

doi: 10.1002/ange.v119:38     URL    
[42]
Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S N. Angew. Chem. Int. Ed., 2018, 57(3): 724.

doi: 10.1002/anie.v57.3     URL    
[43]
Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S N. Nat. Commun., 2014, 5: 4262.

doi: 10.1038/ncomms5262    
[44]
Emdadi L, Wu Y Q, Zhu G H, Chang C C, Fan W, Pham T, Lobo R F, Liu D X. Chem. Mater., 2014, 26(3): 1345.

doi: 10.1021/cm401119d     URL    
[45]
Huang Y H, Zhang H C, Gao L, Yan T L, Yan Y E, Zhang Y H, Tang Y. Microporous Mesoporous Mater., 2022, 341: 112110.

doi: 10.1016/j.micromeso.2022.112110     URL    
[46]
Wang M Y, Wang X, You Q, Wu Y S, Yang X, Chen H Y, Liu B Y, Hao Q Q, Zhang J B, Ma X X. Microporous Mesoporous Mater., 2021, 323: 111207.

doi: 10.1016/j.micromeso.2021.111207     URL    
[47]
Varoon Agrawal K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Science, 2011, 334(6052): 72.

doi: 10.1126/science.1208891     URL    
[48]
Agrawal K V, Topuz B, Jiang Z Y, Nguenkam K, Elyassi B, Francis L F, Tsapatsis M, Navarro M. AlChE. J., 2013, 59(9): 3458.

doi: 10.1002/aic.v59.9     URL    
[49]
Rangnekar N, Shete M, Agrawal K V, Topuz B, Kumar P, Guo Q, Ismail I, Alyoubi A, Basahel S, Narasimharao K, Macosko C W, Mkhoyan K A, Al-Thabaiti S, Stottrup B, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(22): 6571.

doi: 10.1002/anie.v54.22     URL    
[50]
Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Angew. Chem. Int. Ed., 2016, 55(25): 7009.

doi: 10.1002/anie.v55.25     URL    
[51]
Sabnis S, Tanna V A, Li C, Zhu J X, Vattipalli V, Nonnenmann S S, Sheng G, Lai Z P, Winter H H, Fan W. Chem. Commun., 2017, 53(52): 7011.

doi: 10.1039/C7CC03256K     URL    
[52]
Gou Y H, Xiao L, Yang Y T, Guo X H, Zhang F M, Zhu W D, Xiao Q. Microporous Mesoporous Mater., 2021, 315: 110930.

doi: 10.1016/j.micromeso.2021.110930     URL    
[53]
Ogino I, Nigra M M, Hwang S J, Ha J M, Rea T, Zones S I, Katz A. J. Am. Chem. Soc., 2011, 133(10): 3288.

doi: 10.1021/ja111147z     URL    
[54]
Eilertsen E A, Ogino I, Hwang S J, Rea T, Yeh S, Zones S I, Katz A. Chem. Mater., 2011, 23(24): 5404.

doi: 10.1021/cm202364q     URL    
[55]
Ogino I, Eilertsen E A, Hwang S J, Rea T, Xie D, Ouyang X, Zones S I, Katz A. Chem. Mater., 2013, 25(9): 1502.

doi: 10.1021/cm3032785     URL    
[56]
Ouyang X, Wanglee Y J, Hwang S J, Xie D, Rea T, Zones S I, Katz A. Dalton Trans., 2014, 43(27): 10417.

doi: 10.1039/C4DT00383G     URL    
[57]
Ouyang X, Hwang S J, Runnebaum R C, Xie D, Wanglee Y J, Rea T, Zones S I, Katz A. J. Am. Chem. Soc., 2014, 136(4): 1449.

doi: 10.1021/ja410141u     URL    
[58]
Okrut A, Aigner M, Schöttle C, Grosso-Giordano N A, Hwang S J, Ouyang X Y, Zones S, Katz A. Dalton Trans., 2018, 47(42): 15082.

doi: 10.1039/C8DT03044H     URL    
[59]
Roth W J, Sasaki T, Wolski K, Song Y J, Tang D M, Ebina Y, Ma R Z, Grzybek J, Kałahurska K, Gil B, Mazur M, Zapotoczny S, Ceka J. Sci. Adv., 2020, 6(12): eaay8163.

doi: 10.1126/sciadv.aay8163     URL    
[60]
Maluangnont T, Yamauchi Y, Sasaki T, Roth W J, Čejka J, Kubu M. Chem. Commun., 2014, 50(55): 7378.

doi: 10.1039/c4cc02540g     URL    
[61]
Opanasenko M, Shamzhy M, Wang Y Z, Yan W F, Nachtigall P, Čejka J. Angew. Chem. Int. Ed., 2020, 59(44): 19380.

doi: 10.1002/anie.v59.44     URL    
[62]
Shamzhy M, Opanasenko M, Tian Y Y, Konysheva K, Shvets O, Morris R E, Čejka J. Chem. Mater., 2014, 26(19): 5789.

doi: 10.1021/cm502953s     URL    
[63]
Lu K, Huang J, Jiao M C, Zhao Y H, Ma Y, Jiang J G, Xu H, Ma Y H, Wu P. Microporous Mesoporous Mater., 2021, 310: 110617.

doi: 10.1016/j.micromeso.2020.110617     URL    
[64]
Kasneryk V, Shamzhy M, Zhou J T, Yue Q D, Mazur M, Mayoral A, Luo Z L, Morris R E, Čejka J, Opanasenko M. Nat. Commun., 2019, 10: 5129.

doi: 10.1038/s41467-019-12882-3    
[65]
Chlubná-Eliášová P, Tian Y Y, Pinar A B, Kubů M, Čejka J, Morris R E. Angew. Chem. Int. Ed., 2014, 53(27): 7048.

doi: 10.1002/anie.v53.27     URL    
[66]
Kasneryk V, Shamzhy M, Opanasenko M, Wheatley P S, Morris S A, Russell S E, Mayoral A, Trachta M, Čejka J, Morris R E. Angew. Chem., 2017, 129(15): 4388.

doi: 10.1002/ange.v129.15     URL    
[67]
Firth D S, Morris S A, Wheatley P S, Russell S E, Slawin A M Z, Dawson D M, Mayoral A, Opanasenko M, Položij M, Čejka J, Nachtigall P, Morris R E. Chem. Mater., 2017, 29(13): 5605.

doi: 10.1021/acs.chemmater.7b01181     URL    
[68]
Liu X, Luo Y, Mao W T, Jiang J G, Xu H, Han L, Sun J L, Wu P. Angew. Chem. Int. Ed., 2020, 59(3): 1166.

doi: 10.1002/anie.v59.3     URL    
[69]
Liu X, Mao W T, Jiang J G, Lu X Q, Peng M M, Xu H, Han L, Che S A, Wu P. Chem., 2019, 25(17): 4520.
[70]
Kang J H, Xie D, Zones S I, Davis M E. Chem. Mater., 2020, 32(5): 2014.

doi: 10.1021/acs.chemmater.9b05072     URL    
[71]
Machoke A G, Knoke I Y, Lopez-Orozco S, Schmiele M, Selvam T, Marthala V R R, Spiecker E, Unruh T, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2014, 190: 324.

doi: 10.1016/j.micromeso.2014.02.026     URL    
[72]
Maheshwari S, Jordan E, Kumar S, Bates F S, Penn R L, Shantz D F, Tsapatsis M. J. Am. Chem. Soc., 2008, 130(4): 1507.

doi: 10.1021/ja077711i     URL    
[73]
Kim S Y, Ban H J, Ahn W S. Catal. Lett., 2007, 113(3): 160.

doi: 10.1007/s10562-007-9022-z     URL    
[74]
Přech J, Eliášová P, Aldhayan D, Kubů M. Catal. Today, 2015, 243: 134.

doi: 10.1016/j.cattod.2014.07.002     URL    
[75]
Liu B Y, Mu Q W, Huang J J, Tan W, Xiao J. Front. Chem. Sci. Eng., 2020, 14(5): 772.

doi: 10.1007/s11705-019-1859-3    
[76]
Wu W, Tran D T, Wu X Y, Oh S C, Wang M Y, Chen H Y, Emdadi L, Zhang J Y, Schulman E, Liu D X. Microporous Mesoporous Mater., 2019, 278: 414.

doi: 10.1016/j.micromeso.2019.01.010     URL    
[77]
Liu B Y, Wattanaprayoon C, Oh S C, Emdadi L, Liu D X. Chem. Mater., 2015, 27(5): 1479.

doi: 10.1021/cm5033833     URL    
[78]
van der Waal J C, Rigutto M S, Appl. Catal. A Gen., 1998, 167(2): 331.

doi: 10.1016/S0926-860X(97)00323-2     URL    
[79]
Eimer G A, Díaz I, Sastre E, Casuscelli S G, Crivello M E, Herrero E R, Perez-Pariente J. Appl. Catal. A Gen., 2008, 343(1/2): 77.

doi: 10.1016/j.apcata.2008.03.028     URL    
[80]
Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1(8): 901.

doi: 10.1021/cs2002143     URL    
[81]
Wang J G, Xu L, Zhang K, Peng H G, Wu H H, Jiang J G, Liu Y M, Wu P. J. Catal., 2012, 288: 16.

doi: 10.1016/j.jcat.2011.12.023     URL    
[82]
Wilde N, Přech J, Pelz M, Kubů M, Čejka J, Gläser R. Catal. Sci. Technol., 2016, 6(19): 7280.

doi: 10.1039/C6CY01232A     URL    
[83]
Liu M, Jia W Z, Liu X H, Li J H, Zhu Z R. Catal. Lett., 2018, 148: 1396-1406.

doi: 10.1007/s10562-018-2307-6    
[84]
Bian K, Hou Z. J. Chin. Univ., 2019, 40(4): 784.
[85]
Naranov E R, Sadovnikov A A, Vatsouro I M, Maximov A L. Inorg. Chem. Front., 2020, 7(6): 1400.

doi: 10.1039/D0QI00012D     URL    
[86]
Tian Y J, Zhang B F, Liang H R, Hou X, Wang L, Zhang X W, Liu G Z. Appl. Catal. A Gen., 2019, 572: 24.

doi: 10.1016/j.apcata.2018.12.029     URL    
[87]
Zhang L L, Song Y, Li G D, Zhang Q, Zhang S L, Xu J, Deng F, Gong Y J. RSC Adv., 2015, 5(75): 61354.

doi: 10.1039/C5RA09561A     URL    
[88]
Feng R, Yan X L, Hu X Y, Zhang Y X, Wu J J, Yan Z F. Appl. Catal. A Gen., 2020, 594: 117464.

doi: 10.1016/j.apcata.2020.117464     URL    
[89]
Meng L Q, Zhu X C, Wannapakdee W, Pestman R, Goesten M G, Gao L, van Hoof A J F, Hensen E J M. J. Catal., 2018, 361: 135.

doi: 10.1016/j.jcat.2018.02.032     URL    
[90]
Chen Y H, Han D M, Zhang Q, Cui H X. J. Porous Mater., 2020, 27(5): 1265.

doi: 10.1007/s10934-020-00898-w    
[91]
Ji Y J, Xu F Y, Wei W, Gao H, Zhang K, Zhang G L, Xu Y Y, Zhang P L. J. Solid State Chem., 2021, 295: 121917.

doi: 10.1016/j.jssc.2020.121917     URL    
[92]
van den Bergh J, Ban S, Vlugt T J H, Kapteijn F. J. Phys. Chem. C, 2009, 113(52): 21856.

doi: 10.1021/jp908076r     URL    
[93]
Kim N S, Numan M, Nam S C, Park S E, Jo C. J. Hazard. Mater., 2021, 403: 123659.

doi: 10.1016/j.jhazmat.2020.123659     URL    
[94]
Chang A, Yang T C, Chen M Y, Hsiao H M, Yang C M. J. Hazard. Mater., 2020, 400: 123241.

doi: 10.1016/j.jhazmat.2020.123241     URL    
[95]
Schnell S K, Wu L L, Koekkoek A J J, Kjelstrup S, Hensen E J M, Vlugt T J H. J. Phys. Chem. C, 2013, 117(46): 24503.

doi: 10.1021/jp409316a     URL    
[96]
Robeson L M. J. Membr. Sci., 2008, 320(1/2): 390.

doi: 10.1016/j.memsci.2008.04.030     URL    
[97]
Zainuddin M I F, Ahmad A L. J. CO2 Util., 2022, 62: 102094.
[98]
Rehman A U, Arepalli D, Alam S F, Kim M Z, Choi J, Cho C H. Nanomaterials, 2021, 11(9): 2327.

doi: 10.3390/nano11092327     URL    
[99]
Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Sci. Adv., 2018, 4(11): eaau8634.

doi: 10.1126/sciadv.aau8634     URL    
[100]
Min B, Yang S W, Korde A, Kwon Y H, Jones C W, Nair S. Angew. Chem. Int. Ed., 2019, 58(24): 8201.

doi: 10.1002/anie.v58.24     URL    
[101]
Wang Q, Wu A M, Zhong S L, Wang B, Zhou R F. J. Membr. Sci., 2017, 540: 50.

doi: 10.1016/j.memsci.2017.06.009     URL    
[102]
Kim W, Zhang X, Lee J S, Tsapatsis M, Nair S. ACS Nano, 2012, 6(11): 9978.

doi: 10.1021/nn3036254     URL    
[103]
Shen J, Sun Q, Cao J, Wang P, Jia W L, Wang S Y, Zhao P, Wang Z P. New J. Chem., 2022, 46(14): 6720.

doi: 10.1039/D1NJ05908D     URL    
[104]
Azizi B, Vessally E, Ahmadi S, Ebadi A G, Azamat J. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 641: 128527.

doi: 10.1016/j.colsurfa.2022.128527     URL    
[105]
Wolf C, Angellier-Coussy H, Gontard N, Doghieri F, Guillard V. J. Membr. Sci., 2018, 556: 393.

doi: 10.1016/j.memsci.2018.03.085     URL    
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[3] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[4] 王雪丽, 王倩茹, 李缔, 魏俊年, 郭建平, 于良, 邓德会, 陈萍, 席振峰. 固氮反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 904-917.
[5] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[6] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[7] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[8] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[9] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[10] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[11] 刘苏慧, 张飞飞, 王小青, 刘普旭, 杨江峰. 钛基金属有机框架材料合成的研究进展[J]. 化学进展, 2023, 35(12): 1752-1763.
[12] 邓祥宇, 张宝昌, 曲倩. 蛋白化学合成中的片段增溶策略[J]. 化学进展, 2023, 35(11): 1579-1594.
[13] 付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才. 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展, 2023, 35(10): 1415-1437.
[14] 陈欣怡, 夏开胜, 高强, 杨振, 李雨蝶, 孟伊, 陈亮, 刘成林. 锂离子选择性吸附材料的制备与提取应用[J]. 化学进展, 2023, 35(10): 1519-1533.
[15] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.