English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 335-356 DOI: 10.7536/PC230714 前一篇   后一篇

• 综述 •

羟基化合物的催化转化研究:酚类与醇类化合物转化为醚与酯

王晓宇1,*(), 王瑞义2, 孔祥鹏1, 牛宇岚1,*(), 郑占丰2,*()   

  1. 1 太原工业学院 化学与化工系 太原 030008
    2 中国科学院山西煤炭化学研究所 太原 030001
  • 收稿日期:2023-07-17 修回日期:2023-09-28 出版日期:2024-03-24 发布日期:2024-01-10
  • 基金资助:
    山西省基础研究计划(20210302124472); 国家自然科学基金项目(22072176); 山西省科技计划项目(20210302123012); 山西省科技计划项目(201801D221093); 山西省科技计划项目(202203021211003)

Catalytic Conversion of Hydroxyl Compounds : Conversion of Phenols and Alcohols to Ethers and Esters

Xiaoyu Wang1(), Ruiyi Wang2, Xiangpeng Kong1, Yulan Niu1(), Zhanfeng Zheng2()   

  1. 1 Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
    2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
  • Received:2023-07-17 Revised:2023-09-28 Online:2024-03-24 Published:2024-01-10
  • Contact: * e-mail:wed2005290043@126.com (Xiaoyu Wang); niuyl@tit.edu.cn (Yulan Niu);zfzheng@sxicc.ac.cn (Zhanfeng Zheng)
  • Supported by:
    Fundamental Research Program of Shanxi Province(20210302124472); National Natural Science Foundation of China(22072176); Shanxi Science and Technology Department(20210302123012); Shanxi Science and Technology Department(201801D221093); Shanxi Science and Technology Department(202203021211003)

在当前经济快速发展的背景下,高附加值化学品的高效绿色合成备受关注,而羟基化合物的催化转化产物醚与酯是近年来受到国内外广泛关注的环保型绿色化工产品。然而,苛刻的反应条件限制了其在催化有机合成领域的发展。基于此,本文概述了酚烷基化制备醚与醇氧化酯化制备酯的研究进展,重点总结了对催化体系改性的策略以及催化机理。主要对非均相催化体系及其机理进行讨论与概述,发现酸碱位协同催化以及金属与载体间的协同催化有利于实现醚与酯的低温、绿色合成。此外,光催化被认为是一种富有潜力的绿色合成方法,本文还介绍了光催化在醇氧化酯化反应中的应用。最后,对羟基化合物催化转化的研究工作进行了总结,并对其在催化技术中面临的挑战及未来的发展进行了展望,我们认为新型催化剂的合成与改性及其催化机理的探索仍是前景广阔的研究领域。

With the background of rapid economic development, the green synthesis of high-value-added chemicals has attracted great interest. Ethers and Esters, the products of hydroxyl compound conversion, are important green chemical products. However, the harsh reaction conditions limit their application. Herein, we review the developments in the catalysis of phenols alkylation to ethers and alcohols oxidative esterification to esters. The modification strategy and catalytic mechanism of the catalytic systems are summarized. The heterogeneous catalytic system and its mechanisms have been mainly discussed. It is found that the acid-base synergistic catalysis and the synergistic effect between metal and support are favorable for the green synthesis of ethers and esters under mild reaction condition. Besides, the application of photocatalysis in oxidative esterification of alcohols is highlighted because the photocatalytic reaction is considered a promising green synthesis method. Finally, the research on the catalytic conversion of hydroxyl compounds are summarized and prospected, and we believe that the synthesis and modification of new catalysts and the exploration of catalytic mechanisms is still a promising research field.

Contents

1 Introduction

2 Activation of phenols hydroxyl group: alkylation of phenols

2.1 Homogeneous catalyst

2.2 Heterogeneous catalyst

2.3 Alkylating agent

2.4 Catalytic mechanism of phenols alkylation

3 Activation of alcohols hydroxyl group: oxidative esterification of alcohols

3.1 Homogeneous catalyst

3.2 Heterogeneous catalyst and catalytic mechanism

4 Photocatalytic oxidative esterification of alcohols

5 Conclusions and outlook

()
图1 多种分子筛催化苯酚与甲醇烷基化反应的催化性能研究(反应温度:473~573 K)
Fig. 1 Catalytic performance of various zeolites for the alkylation of phenol with methanol, reaction temperature: 473~573 K
表1 不同烷基化剂在酚烷基化反应中性能的比较
Table 1 Activity comparison of different alkylating agents used in the alkylation of phenols
图2 多种分子筛催化间甲酚与甲醇烷基化反应的催化性能研究(反应温度:523 K)
Fig. 2 Catalytic results for the alkylation of m-cresol with methanol over various molecular sieves, reaction temperature: 523 K
图3 Al-MCM-41催化苯酚与甲醇的烷基化反应
Fig. 3 Alkylation of phenol and methanol over Al-MCM-41
图4 固体酸催化对苯二酚与乙醇的O-烷基化反应
Fig. 4 O-alkylation of hydroquinone with alcohol over the solid acid catalyst
图5 苯酚分子的苯环以水平方式吸附于催化剂表面的酸性位点
Fig. 5 Parallel orientation of the aromatic ring of phenol molecule on the acidic site of catalyst surface
图6 苯酚分子的苯环以垂直方式吸附于催化剂表面的酸性位点
Fig. 6 Vertical orientation of the aromatic ring of phenol molecule on the acidic site of catalyst surface
图7 邻苯二酚与DMC在酸碱对活性位点上发生O-甲基化反应的作用机制
Fig. 7 Plausible mechanism of the O-methylation of catechol with DMC over acid-base pair sites
图8 [PdCl2(CH3CN)2]催化苯甲醇同系物与甲醇的氧化酯化反应方程式
Fig. 8 Reaction formulas of the oxidative esterification of the homologues of benzyl alcohol with methanol using the [PdCl2 (CH3CN)2] catalyst
图9 [Ru(p-cymene)Cl2]2催化苯甲醇与对硝基苯酚的氧化酯化反应方程式
Fig. 9 Reaction formulas of the oxidative esterification of benzyl alcohol with p-nitrophenol using the [Ru(p-cymene)Cl2]2 catalyst
表2 不同均相催化剂在苯甲醇与甲醇氧化酯化反应中性能的比较
Table 2 Comparison of different homogeneous catalysts activity in the oxidative esterification of benzyl alcohol with methanol
图10 Ru/MCM-41催化醇直接酯化的反应机理示意图[46]
Fig. 10 Mechanism of direct esterification of alcohols over Ru/MCM-41 catalyst. Reprinted (adapted) with permission from ref 46. Copyright (2011) American Chemical Society
图11 Co3O4-N@C催化苯甲醇与甲醇的氧化酯化反应方程式
Fig. 11 Reaction formulas of the oxidative esterification of benzyl alcohol with methanol on the Co3O4-N@C catalyst
图12 不添加碱的条件下,Co@CN(800)催化对硝基苯甲醇与甲醇的氧化酯化反应示意图[49]
Fig. 12 Schematic illustration of the oxidative esterification of p-nitrobenzyl alcohol with methanol on Co@CN(800) catalyst without the addition of base. Reprinted (adapted) with permission from ref 49. Copyright (2015) American Chemical Society
图13 PdAu合金催化乙醇的自酯化反应示意图[50]
Fig. 13 Self-esterification of ethanol over PdAu alloy catalyst. Reproduced with permission from. Reprinted (adapted) with permission from ref 50. Copyright (2019) American Chemical Society
图14 PdBiTe催化醇氧化制备酯的反应机理示意图[53]
Fig. 14 Proposed reaction mechanism for the aerobic oxidation of alcohols to methyl esters over PdBiTe. Reprinted (adapted) with permission from ref 53. Copyright (2018) American Chemical Society
图15 Pt/SnO2催化伯醇的脱氢酯化反应机理示意图
Fig. 15 Proposed pathway of the dehydrogenative esterification of primary alcohols over Pt/SnO2
图16 Au纳米颗粒负载型催化剂催化醇的氧化酯化反应机理示意图[62]
Fig. 16 A proposed mechanism for aerobic oxidation esterification of alcohols on gold nanoparticles-supported catalyst. Reprinted (adapted) with permission from ref 62. Copyright (2015) Elsevier
图17 Au-Pd@HT-PO43-光催化脂肪醇的直接氧化酯化反应机理示意图[64]
Fig. 17 Proposed reaction pathway of the direct oxidative esterification of aliphatic alcohols on Au-Pd@HT-PO43- photocatalyst. Reprinted (adapted) with permission from ref 64. Copyright (2015) American Chemical Society
图18 AgPd合金在可见光下催化苯甲醇直接酯化的反应机理示意图[65]
Fig. 18 Proposed mechanism for direct benzyl alcohol esterification on AgPd nanoalloy under visible-light irradiation. Reprinted (adapted) with permission from ref 65. Copyright (2021) Elsevier
图19 Au/UiO-66-HCl在可见光下催化苯甲醇与甲醇的氧化酯反应机理示意图[66]
Fig. 19 Proposed mechanism for the oxidative esterification of benzyl alcohol and methanol to methyl benzoate on Au/UiO-66-HCl under visible-light irradiation. Reprinted (adapted) with permission from ref 66. Copyright (2020) Elsevier
[1]
Winkler L D E, Mortimer R H. US 2448942, 1948-09-07.
[2]
Hamilton S B. US 3479410, 1969-11-18.
[3]
Hamilton S B. US 3446856, 1969-05-27.
[4]
Fuhrmann E, Talbiersky J. Org. Process Res. Dev., 2005, 9(2): 206.

doi: 10.1021/op050001h     URL    
[5]
Fiege H, Voges H W, Hamamoto T. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: 2012.
[6]
Bryner F, US 2726270: 1955-12-06.
[7]
Ouk S, Thiébaud S, Borredon E, Le Gars P. Appl. Catal. A Gen., 2003, 241(1-2): 227.

doi: 10.1016/S0926-860X(02)00524-0     URL    
[8]
Barcelo G, Grenouillat D, Senet J P, Sennyey G. Tetrahedron, 1990, 46(6): 1839.

doi: 10.1016/S0040-4020(01)89753-2     URL    
[9]
Choi W C, Kim J S, Lee T H, Woo S I. Catal. Today, 2000, 63(2-4): 229.
[10]
Santacesaria E, Grasso D, Gelosa D, Carrá S. Appl. Catal., 1990, 64: 83.

doi: 10.1016/S0166-9834(00)81555-9     URL    
[11]
Li J, Liu J, Applied Chemical Industry, 2004, 33 (4): 11.
[12]
Chary K V R, Ramesh K, Vidyasagar G, Venkat Rao V. J. Mol. Catal. A Chem., 2003, 198(1-2): 195.

doi: 10.1016/S1381-1169(02)00685-4     URL    
[13]
Wang Y L, Song Y Y, Huo W T, Jia M J, Jing X Y, Yang P P, Yang Z, Liu G, Zhang W X. Chem. Eng. J., 2012, 181-182: 630.
[14]
Wu G D, Wang X L, Chen B, Li J P, Zhao N, Wei W, Sun Y H. Appl. Catal. A Gen., 2007, 329: 106.

doi: 10.1016/j.apcata.2007.06.031     URL    
[15]
Jyothi T M, Raja T, Talawar M B, Rao B S. Appl. Catal. A Gen., 2001, 211(1): 41.

doi: 10.1016/S0926-860X(00)00839-5     URL    
[16]
Subramanian T, Dhakshinamoorthy A, Pitchumani K. Tetrahedron Lett., 2013, 54(52): 7167.
[17]
Talawar M B, Jyothi T M, Raja T, Rao B S, Sawant P D. Green Chem., 2000, 2(6): 266.

doi: 10.1039/b006077l     URL    
[18]
Duan Z Y, Gu Y L, Zhang J, Zhu L Y, Deng Y Q. J. Mol. Catal. A Chem., 2006, 250(1-2): 163.

doi: 10.1016/j.molcata.2006.01.030     URL    
[19]
Lee S C, Lee S W, Kim K S, Lee T J, Kim D H, Kim J C. Catal. Today, 1998, 44(1-4): 253.

doi: 10.1016/S0920-5861(98)00168-0     URL    
[20]
Zhao X, Shen J, Li H, Liu D, Zhou P. Chemical Engineering of Oil or Gas, 2008, 37 (1): 12.
[21]
Lewis H F, Shaffer S, Trieschmann W, Cogan H. Ind. Eng. Chem., 1930, 22(1): 34.

doi: 10.1021/ie50241a009     URL    
[22]
Oae S, Kiritani R. Bull. Chem. Soc. Jpn., 1966, 39(3): 611.

doi: 10.1246/bcsj.39.611     URL    
[23]
Tundo P, Selva M. Acc. Chem. Res., 2002, 35(9): 706.

doi: 10.1021/ar010076f     URL    
[24]
Xue B, Jia K, Xu J, Liu N, Liu P, Xu C F, Li Y X. React. Kinet. Mech. Catal., 2012, 107(2): 435.

doi: 10.1007/s11144-012-0486-5     URL    
[25]
Khusnutdinov R I, Shchadneva N A, Mayakova Y Y. Russ. J. Org. Chem., 2014, 50(6): 790.

doi: 10.1134/S1070428014060050     URL    
[26]
Gjyli S, Korpa A, Tabanelli T, Trettin R, Cavani F, Belviso C. Microporous Mesoporous Mater., 2019, 284: 434.

doi: 10.1016/j.micromeso.2019.04.065     URL    
[27]
Acevedo M D, Bedogni G A, Okulik N B, Padró C L. Catal. Lett., 2014, 144(11): 1946.

doi: 10.1007/s10562-014-1358-6     URL    
[28]
Sarala Devi G, Giridhar D, Reddy B M. J. Mol. Catal. A Chem., 2002, 181(1-2): 173.

doi: 10.1016/S1381-1169(01)00343-0     URL    
[29]
Bhattacharyya K G, Talukdar A K, Das P, Sivasanker S. J. Mol. Catal. A Chem., 2003, 197(1-2): 255.

doi: 10.1016/S1381-1169(02)00519-8     URL    
[30]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A A, Urbano M R. React. Kinet. Catal. Lett., 1997, 62(1): 47.

doi: 10.1007/BF02475712     URL    
[31]
Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Romero A, Navio J A, Macias M. Appl. Catal. A Gen., 1993, 99(2): 161.

doi: 10.1016/0926-860X(93)80097-A     URL    
[32]
Wang X Y, Wang R Y, Zheng Z F. J. Photochem. Photobiol. A Chem., 2020, 400: 112695.

doi: 10.1016/j.jphotochem.2020.112695     URL    
[33]
Velu S, Swamy C S. Appl. Catal. A Gen., 1997, 162(1-2): 81.

doi: 10.1016/S0926-860X(97)00243-3     URL    
[34]
Bolognini M, Cavani F, Scagliarini D, Flego C, Perego C, Saba M. Catal. Today, 2002, 75(1-4): 103.

doi: 10.1016/S0920-5861(02)00036-6     URL    
[35]
Liu C, Wang J, Meng L K, Deng Y, Li Y, Lei A W. Angew. Chem. Int. Ed., 2011, 50(22): 5144.

doi: 10.1002/anie.v50.22     URL    
[36]
Bai X F, Ye F, Zheng L S, Lai G Q, Xia C G, Xu L W. Chem. Commun., 2012, 48(68): 8592.

doi: 10.1039/c2cc34117d     URL    
[37]
Gowrisankar S, Neumann H, Beller M. Angew. Chem. Int. Ed., 2011, 50(22): 5139.

doi: 10.1002/anie.v50.22     URL    
[38]
Wang L Y, Li J, Dai W, Lv Y, Zhang Y, Gao S. Green Chem., 2014, 16(4): 2164.

doi: 10.1039/c3gc42075b     URL    
[39]
Zhang D, Pan C D. Catal. Commun., 2012, 20: 41.

doi: 10.1016/j.catcom.2011.12.041     URL    
[40]
Owston N A, Parker A J, Williams J M J. Chemical Communications, 2008, (5): 624.
[41]
Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc., 2005, 127(31): 10840.

doi: 10.1021/ja052862b     URL    
[42]
Nobuta T, Fujiya A, Hirashima S I, Tada N, Miura T, Itoh A. Tetrahedron Lett., 2012, 53(39): 5306.

doi: 10.1016/j.tetlet.2012.07.091     URL    
[43]
Wu X F. Chem., 2012, 18(29): 8912.
[44]
Wan X Y, Deng W P, Zhang Q H, Wang Y. Catal. Today, 2014, 233: 147.

doi: 10.1016/j.cattod.2013.12.012     URL    
[45]
Ahmed M S, Mannel D S, Root T W, Stahl S S. Org. Process Res. Dev., 2017, 21(9): 1388.

doi: 10.1021/acs.oprd.7b00223     URL    
[46]
Del Pozo C, Iglesias M, Sánchez F. Organometallics, 2011, 30(8): 2180.

doi: 10.1021/om101179a     URL    
[47]
Jagadeesh R V, Junge H, Pohl M M, Radnik J, Brückner A, Beller M. J. Am. Chem. Soc., 2013, 135(29): 10776.

doi: 10.1021/ja403615c     URL    
[48]
Panwar V, Ray S S, Jain S L. Mol. Catal., 2017, 427: 31.
[49]
Zhong W, Liu H L, Bai C H, Liao S J, Li Y W. ACS Catal., 2015, 5(3): 1850.

doi: 10.1021/cs502101c     URL    
[50]
Evans E J Jr, Li H, Han S, Henkelman G, Mullins C B. ACS Catal., 2019, 9(5): 4516.

doi: 10.1021/acscatal.8b04820     URL    
[51]
Brett G L, Miedziak P J, Dimitratos N, Lopez-Sanchez J A, Dummer N F, Tiruvalam R, Kiely C J, Knight D W, Taylor S H, Morgan D J, Carley A F, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 97.

doi: 10.1039/C1CY00254F     URL    
[52]
Hu Y K, Xia J W, Li J, Li H J, Li Y X, Li S Z, Duanmu C S, Li B D, Wang X. J. Mater. Sci., 2021, 56(12): 7308.

doi: 10.1007/s10853-020-05726-9    
[53]
Mannel D S, King J, Preger Y, Ahmed M S, Root T W, Stahl S S. ACS Catal., 2018, 8(2): 1038.

doi: 10.1021/acscatal.7b02886     URL    
[54]
Costa V V, Estrada M, Demidova Y, Prosvirin I, Kriventsov V, Cotta R F, Fuentes S, Simakov A, Gusevskaya E V. J. Catal., 2012, 292: 148.

doi: 10.1016/j.jcat.2012.05.009     URL    
[55]
Moromi S K, Hakim Siddiki S M A, Ali M A, Kon K, Shimizu K I. Catal. Sci. Technol., 2014, 4(10): 3631.

doi: 10.1039/C4CY00979G     URL    
[56]
Verma S, Verma D, Sinha A K, Jain S L. Appl. Catal. A Gen., 2015, 489: 17.

doi: 10.1016/j.apcata.2014.10.004     URL    
[57]
Smolentseva E, Costa V V, Cotta R F, Simakova O, Beloshapkin S, Gusevskaya E V, Simakov A. ChemCatChem, 2015, 7(6): 1011.

doi: 10.1002/cctc.v7.6     URL    
[58]
Zhou Y X, Chen Y Z, Cao L N, Lu J L, Jiang H L. Chem. Commun., 2015, 51(39): 8292.

doi: 10.1039/C5CC01588J     URL    
[59]
Parreira L A, Bogdanchikova N, Pestryakov A, Zepeda T A, Tuzovskaya I, Farías M H, Gusevskaya E V. Appl. Catal. A Gen., 2011, 397(1-2): 145.

doi: 10.1016/j.apcata.2011.02.025     URL    
[60]
Cui W J, Jia M L, Ao W L, Zhaorigetu B. React. Kinet. Mech. Catal., 2013, 110(2): 437.

doi: 10.1007/s11144-013-0608-8     URL    
[61]
Kang X C, Zhang J L, Shang W T, Wu T B, Zhang P, Han B X, Wu Z H, Mo G, Xing X Q. J. Am. Chem. Soc., 2014, 136(10): 3768.

doi: 10.1021/ja5001517     URL    
[62]
Wei H L, Li J Y, Yu J, Zheng J W, Su H Q, Wang X J. Inorg. Chim. Acta, 2015, 427: 33.

doi: 10.1016/j.ica.2014.11.024     URL    
[63]
Taketoshi A, Gangarajula Y, Sodenaga R, Nakayama A, Okumura M, Sakaguchi N, Murayama T, Shimada T, Takagi S, Haruta M, Qiao B T, Wang J H, Ishida T. ACS Appl. Mater. Interfaces, 2023, 15(28): 34290.

doi: 10.1021/acsami.3c05974     URL    
[64]
Xiao Q, Liu Z, Bo A, Zavahir S, Sarina S, Bottle S, Riches J D, Zhu H Y. J. Am. Chem. Soc., 2015, 137(5): 1956.

doi: 10.1021/ja511619c     URL    
[65]
Han P F, Jin P, Li X, Xu Y, Li K, Wang S Y, Nie Z. Appl. Catal. B Environ., 2021, 298: 120598.

doi: 10.1016/j.apcatb.2021.120598     URL    
[66]
Fan C Y, Wang R Y, Kong P, Wang X Y, Wang J, Zhang X C, Zheng Z F. Catal. Commun., 2020, 140: 106002.

doi: 10.1016/j.catcom.2020.106002     URL    
[67]
Wang X Y, Wang R Y, Wang J, Fan C Y, Zheng Z F. Phys. Chem. Chem. Phys., 2020, 22(3): 1655.

doi: 10.1039/C9CP05992J     URL    
[1] 陈安淇, 蒋智威, 唐俊涛, 喻桂朋. 共价有机框架材料用于光催化产过氧化氢[J]. 化学进展, 2024, 36(3): 357-366.
[2] 于江波, 于婧, 刘杰, 吴占超, 匡少平. 光催化去除水体中的抗生素[J]. 化学进展, 2024, 36(1): 95-105.
[3] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[12] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[13] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[14] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[15] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.