English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 448-462 DOI: 10.7536/PC230713 前一篇   

• 综述 •

生物质多环碳氢高密度航空燃料合成

孔冲亚1, 谭芳芳4,*(), 王一卓5, 王洪5,6, 李占超1,2,3,*()   

  1. 1 四川轻化工大学化学与环境工程学院 自贡 643000
    2 绿色催化四川省高校重点实验室 自贡 643000
    3 精细化工助剂及表面活性剂四川省高校重点实验室 自贡 643000
    4 渭南师范学院化学与材料学院 渭南 714099
    5 西安交通大学前沿科学技术研究院 西安 710054
    6 西安交通大学动力工程多相流国家重点实验室 西安 710054
  • 收稿日期:2023-07-17 修回日期:2023-09-18 出版日期:2024-03-24 发布日期:2024-02-26

Synthesis of Multi-Cyclic Hydrocarbon High-Density Aviation Fuels from Biomass

Chongya Kong1, Fangfang Tan4(), Yizhuo Wang5, Hong Wang5,6, Zhanchao Li1,2,3()   

  1. 1 School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
    2 Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Zigong 643000, China
    3 Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, Zigong 643000, China
    4 College of Chemistry and Materials Science, Weinan Normal University, Weinan 714099, China
    5 Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
    6 State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710054, China
  • Received:2023-07-17 Revised:2023-09-18 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: pp19881208@126.com (Zhanchao Li);tanfangfang@yau.edu.cn(Fangfang Tan)

高密度航空燃料是一类为提高航空航天飞行器的飞行性能而人工合成的液体碳氢化合物。与常规燃料相比,它具有高密度和高体积燃烧热值等优点,能有效提高飞行器的航程、航速、载荷等飞行性能。随着全球化石资源的日益减少和生态环境的持续恶化,以生物质为原料合成高密度航空燃料成为研究热点。本文综述了近年来由生物质平台分子及其衍生物合成多环碳氢高密度航空燃料的研究进展,主要介绍了高密度燃料合成中常见的构筑多环结构的C-C键偶联方法,包括羟醛缩合反应、烷基化反应、羟醛缩合-氢化脱氧-分子内烷基化反应、Diels-Alder反应、光照2+2环加成反应、重排反应;讨论了催化剂对C-C键偶联反应的影响因素;总结了大量的多环碳氢高密度航空燃料的性能,讨论了分子结构和组成对燃料性能的影响,取代基的适当引入、多组分燃料的形成是提高燃料综合性能的主要方法,以平台分子合成石油基型高密度燃料也是提高生物质高密度航空燃料综合性能的一种策略;最后,展望了生物质多环碳氢高密度航空燃料合成的新趋势。

High-density aviation fuels are a type of hydrocarbon which are synthesized to improve the flight performance of aerospace vehicles. They have the advantages of high density, high volumetric net heat of combustion value, and can effectively improve the flight performance of vehicles such as range, speed, load, etc. With the decrease of global fossil resources and the continuous deterioration of the ecological environment, the synthesis of high-density aviation fuels from biomass has become a research hotspot. In this review, the research progress in synthesis of multi-cyclic hydrocarbon high-density aviation fuels from platform molecules and derivatives in recent years is discussed. The common C-C bond coupling methods for constructing the multi-cyclic structure are introduced, including aldol condensation reaction, alkylation reaction, aldol-hydrodeoxygenation-alkylation reaction, Diels-Alder reaction, photoinduced 2+2 cycloaddition, rearrangement reaction. The new progress in synthesis of petroleum based high-density aviation fuels or multi-cyclic hydrocarbon mixed fuels from platform molecules is listed. The properties of a large number of multi-cyclic hydrocarbon high-density aviation fuels are summarized, and the influence of molecular structure and composition on fuel properties are discussed. Introduction of the appropriate substituent groups and synthesis of multi-component fuels are the main methods to improve the comprehensive properties of fuels. Synthesis of petroleum-based high-density fuels using platform molecules is another strategy to improve the properties of fuels. Finally, the development trend of synthesis of multi-cyclic hydrocarbon high-density aviation fuels using platform molecules from biomass is prospected.

Contents

1 Introduction

2 Aldol condensation reaction

3 Alkylation and Aldol-Hydrodeoxygenation- Alkylation reaction

4 Diels-Alder reaction

5 Photoinduced 2+2 cycloaddition reaction

6 Rearrangement reaction

7 Summary of fuel properties

8 Conclusion and outlook

()
图1 生物质平台分子及其衍生物
Fig.1 The platform molecules and derivatives from biomass
图2 由环戊酮合成多环戊烷[23?~25]
Fig. 2 Synthesis of multi-cyclopentane from cyclopentanone[23?~25]
图3 由环戊酮和环己酮合成多组分的环烷烃[26]
Fig. 3 Synthesis of multi-component cycloalkane from cyclopentanone and cyclohexanone[26]
图4 由环戊酮和香兰素合成多环烷烃[27]
Fig. 4 Synthesis of multi-cycloalkane from cyclopentanone and vanillin[27]
图5 由环戊酮和香兰素合成多环烷烃混合物[28]
Fig. 5 Synthesis of multi-cyclopentane mixture from cyclopentanone and vanillin[28]
图6 由2, 5-己二酮合成甲基双环戊烷及三环戊烷[29]
Fig. 6 Synthesis of methyl substituted dicyclopentane and tricyclopentane from 2, 5-hexanedione[29]
图7 由异佛尔酮合成多甲基取代双环己烷[31]
Fig.7 Synthesis of multi-methyl substituted bicyclohexane from isophorone[31]
图8 Nafion催化β-pinene二聚制备高密度燃料[32]
Fig. 8 Synthesis of high-density fuel from β-pinene dimerization catalyzed by Nafion[32]
图9 由苯甲醇和4-乙基苯酚合成乙基取代双环己基甲烷[34]
Fig. 9 Synthesis of ethyl substituted dicyclohexylmethane from benzylalcohol and 4-ethylphenol[34]
图10 由苯酚和环戊醇合成多组分的多环烷烃[36]
Fig. 10 Synthesis of multi-cycloalkane mixture from phenol and cyclopentanol[36]
图11 由木质素油和环戊醇合成多组分的多环烷烃[37]
Fig. 11 Synthesis of multi-cycloalkane mixture from ligin oil and cyclopentanol[37]
图12 由2-苄基苯酚合成全氢芴[38]
Fig. 12 Synthesis of perfluorofluorene from 2- benzylphenol[38]
图13 由甲基苯甲醛和环己酮合成甲基全氢芴[39]
Fig. 13 Synthesis of methylperfluorofluorene from methyl- benzaldehyde and cyclohexanone[39]
图14 由甲基苯甲醛和丙酮合成二甲基八氢茚[40]
Fig. 14 Synthesis of dimethyl substituted octahydro-indones from methylbenzaldehyde and acetone[40]
图15 由烷基苯甲醛和甲基异丁基酮合成烷基取代的八氢茚[42]
Fig. 15 Synthesis of alkyl substituted octahydro-indones from alkylbenzaldehyde and methyl isobutyl ketone[42]
图16 由环己酮和香兰素合成二环己基甲烷和全氢芴混合物[43]
Fig. 16 Synthesis of the mixture of dicyclohexylmethane and dodecahydroflurene from cyclohexanone and vanillin[43]
图17 利用Mannnich-Diels-Alder反应合成螺环化合物[44]
Fig. 17 Synthesis of spiro-compounds by Mannich-Diels- Alder reaction[44]
图18 2-甲基呋喃和二环戊二烯Diels-Alder反应合成高密度燃料[45]
Fig. 18 Synthesis of high-density fuels from 2-methylfuran and dicyclopentadiene by Diels-Alder reaction[45]
图19 以芳樟醇为原料合成RJ-4[46]
Fig. 19 Synthesis of RJ-4 from linalool[46]
图20 以呋喃甲醇为原料合成JP-10[47]
Fig. 20 Synthesis of JP-10 from furfuryl alcohol[47]
图21 以5-甲基糠醛为原料合成RJ-4[48]
Fig. 21 Synthesis of RJ-4 from 5-methylfurfural[48]
图22 由2, 5-己二酮合成甲基环戊二烯[49?~51]
Fig. 22 Synthesis of methyl cyclopentadiene from 2, 5- hexanedione[49?~51]
图23 由木糖合成环戊二烯和甲基环戊二烯[52]
Fig. 23 Synthesis of cyclopentadiene and methyl cyclopenta- diene from xylose[52]
图24 由2-甲基-2, 4-戊二醇和对苯醌制备二甲基十氢化萘[53]
Fig. 24 Synthesis of dimethyl naphthane from 2-methyl-2, 4-pentanediol and p-quinone[53]
图25 由异戊二烯和对苯醌制备二甲基十四氢蒽[54]
Fig. 25 Synthesis of dimethyl tetradecahydroanthracenes from isophene and p-quinone[54]
图26 光催化异佛尔酮和环己烯的2+2环加成反应合成高密度燃料[57]
Fig. 26 Synthesis of high-density fuels by photo-catalytic 2+2 cycloaddition reaction from isophorone and cyclohexene[57]
图27 光催化异佛尔酮和β-蒎烯的2+2环加成反应合成高密度燃料[58]
Fig. 27 Synthesis of high-density fuels by photocatalytic 2+2 cycloaddition reaction from isophorone and β-pinene[58]
图28 通过频那醇重排合成螺环高密度燃料[59]
Fig. 28 Synthesis of spiro high-density fuels by pinacol rearrangement[59]
图29 通过碳正离子重排反应合成十氢化萘[60]
Fig. 29 Synthesis of naphthane by carbocation rearrangement [60]
图30 通过碳正离子重排反应合成二甲基十氢化萘[61]
Fig. 30 Synthesis of dimethylnaphthane by carbocation rearrangement[61]
图31 通过碳正离子重排反应一锅合成甲基和环戊基取代十氢化萘[62]
Fig. 31 Synthesis of methyl and cyclopentyl substituted naphthane by carbocation rearrangement in one-pot[62]
表1 由生物质原料合成的多环碳氢高密度航空燃料性能总结
Table 1 Properties of multi-cyclic hydrocarbon high-density aviation fuels from biomass
Feedstock Main component structure Density (20 ℃, g/mL) Freezing point (℃) Heat value (MJ/L) Viscosity (25 ℃, mm2/s) Ref
Cyclopentanone 0.866 -38 36.7 1.62 23
Cyclopentanone and
n-propanol
0.854 < -80 38.12 2.294
(20 ℃)
21
Cyclopentanone and benzyl alcohol 0.906 -58 39.42 9.923
(20 ℃)
21
Cyclopentanone 0.91 4.774 24
Cyclopentanone 0.943 -39.5 25
2, 5-hexanedione 0.88 -48 29
Linalool or
5-methylfurfural
0.94 < -40 39.0 60
(-40 ℃)
46,48
Furfuryl alcohol
or xylose
0.94 -79 39.6 19
(-40 ℃)
47
Cyclopentanone 0.87 -76 37.16 2.12 59
Cyclopentanone and cyclopentadiene 0.952 -53 40.18 5.9 44
Cyclohexanone 0.887 1.2 38.11 3.72 63
Cyclohexanone and dimedone 0.87 -26 37.81 6.589
(20 ℃)
18
Isophorone 0.858 -51 31
Cyclohexanone 0.893 -51 38.41 4.37 59
Dimedone
and cyclohexenone
0.921 -20 39.63 8.624
(20 ℃)
18
2-benzylphenol 0.959 -15 40.1 1752
(20 ℃)
38
4-methylbenzaldehyde and cyclohexanone 0.99 -22 39
2-methylbenzaldehyde and cyclohexanone 0.96 -3 39
Cyclopentanol 0.896 -37 60
Cyclohexanol and methylcyclopentane 0.88 < -51 37 22
(-40 ℃)
61
Isophorone and cyclohexene 0.903 -55 38.77 7.2 57
Isophorone 0.892 -40 38.58 22.4 57
Isophorone and
β-pinenes
0.911 -51 38.67 58
2-benzylphenol 0.876 -20 36.96 5.1
(20 ℃)
38
Benzylalcohol and
4-ethylphenol
0.873 -42 37.27 10.7
(20 ℃)
34
Dimedone, benzaldehyde and acetone 0.883 -70 38.51 49.47
(20 ℃)
18
Dimedone and 5-methylfurfural -55 43.4 MJ/kg 17
2-methylbenzaldehyde and t-butyl methyl ketone 0.895 -43 36.96 5.1
(20 ℃)
42
4-ethylbenzaldehyde and t-butyl methyl ketone 0.902 -50 37.27 10.7
(20 ℃)
42
2-methylbenzaldehyde and acetone 0.91 -44 40
4-ethylbenzaldehyde and acetone 0.94 -41 40
Cyclopentanone and vanillin 0.943 -35 27
Cyclopentanone and vanillin 0.89 < -60 28
2-methylfuran and dicyclopentadiene 0.984 -58 41.96 15.5
(20 ℃)
45
β-Pinenes 0.94 < -30 39.5 4199
(-10 ℃)
32
Cyclohexanone and vanillin 0.95 -17 39.3 43
2-methyl-2,4-pentanediol and p-quinone 0.91 -48∽-27 53
Isophene and p-quinone 45.7 MJ/kg 54
Cyclohexanol and methylcyclopentane 0.90 < -72 38.0 4.3
(20 ℃)
62
Phenol and cyclopentanol 0.88 < -75 37.4 3.5 (20 ℃)
10.4 (-20 ℃)
36
Cyclopentanone and cyclohexanone 0.905 < -50 38.67 7.6
(20 ℃)
26
Lignin oil and cyclopentanol 0.91 < -60 39.0 5.59
(20 ℃)
37
[1]
Zou J J, Zhang X W, Wang L, Mi Z T. Chinese Journal of Energetic Materials, 2007, 15(4): 411.
(邹吉军, 张香文, 王笠, 米镇涛. 含能材料, 2007, 15(4): 411.)
[2]
Zou J J, Guo C, Zhang X W, Wang L, Mi Z T. Journal of Propulsion Technology, 2014, 35(10): 1419.
(邹吉军, 郭成, 张香文, 王笠, 米镇涛. 推进技术, 2014, 35(10): 1419.)
[3]
Zhang X W, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2018, 180: 95.
[4]
Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Energy Fuels, 1999, 13(3): 641.

doi: 10.1021/ef980195k     URL    
[5]
Pan L, Deng Q, E X T F, Nie G K, Zhang X W, Zou J J. Progress in Chemistry, 2015, 27(11): 1531.
(潘伦, 邓强, 鄂秀天凤, 聂根阔, 张香文, 邹吉军. 化学进展, 2015, 27(11): 1531.)
[6]
Xie J W, Zhang X W, Xie J J, Nie G K, Pan L, Zou J J. Progress in Chemistry, 2018, 30(9): 1424.
(谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军. 化学进展, 2018, 30(9): 1424.)
[7]
Huertas D, Florscher M, Dragojlovic V. Green Chem., 2009, 11(1): 91.

doi: 10.1039/B813485E     URL    
[8]
Nguyen M, Nguyen L, Jeon E, Kim J, Cheong M, Kim H, Lee J. J. Catal., 2008, 258(1): 5.

doi: 10.1016/j.jcat.2008.05.008     URL    
[9]
Wang Z, Wei H, He F, Wei H Y. Missiles and Space Vehicles, 2011, 3: 41.
(王贞, 卫豪, 贺芳, 卫宏远. 导弹与航天运载技术, 2011, 3: 41.)
[10]
Isikgor F H, Becer C R. Polym. Chem., 2015, 6(25): 4497.

doi: 10.1039/C5PY00263J     URL    
[11]
McKendry P. Bioresour. Technol., 2002, 83(1): 37.

doi: 10.1016/S0960-8524(01)00118-3     URL    
[12]
Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107(6): 2411.

doi: 10.1021/cr050989d     URL    
[13]
Stöcker M,. Angew. Chem. Int. Ed., 2008, 47(48): 9200.
[14]
Li C Z, Zhao X C, Wang A Q, Huber G W, Zhang T. Chem. Rev., 2015, 115(21): 11559.

doi: 10.1021/acs.chemrev.5b00155     URL    
[15]
Li H, Riisager A, Saravanamurugan S, Pandey A, Sangwan R S, Yang S, Luque R. ACS Catal., 2018, 8(1): 148.

doi: 10.1021/acscatal.7b02577     URL    
[16]
Wang X Y, Jia T H, Pan L, Liu Q, Fang Y M, Zou J J, Zhang X W. Trans. Tianjin Univ., 2021, 27(2): 87.

doi: 10.1007/s12209-020-00273-5    
[17]
Wang Y Z, Li Z C, Li Q, Wang H. ACS Omega, 2022, 7(23): 19158.

doi: 10.1021/acsomega.1c07241     URL    
[18]
Li Z C, Wang Y Z, Li Q, Xu L Q, Wang H. Green Energy Environ., 2023, 8(1): 331.

doi: 10.1016/j.gee.2021.04.012     URL    
[19]
Li Z C, Wang Y Z, Wang H. Energy Technol., 2019, 7(7): 1900418.

doi: 10.1002/ente.v7.7     URL    
[20]
Muldoon J A, Harvey B G. ChemSusChem, 2020, 13(22): 5777.

doi: 10.1002/cssc.v13.22     URL    
[21]
Li Z C, Li Q, Wang Y Z, Zhang J, Wang H. Energy Fuels, 2021, 35(8): 6691.

doi: 10.1021/acs.energyfuels.1c00185     URL    
[22]
Zhao C, Camaioni D M, Lercher J A. J. Catal., 2012, 288: 92.

doi: 10.1016/j.jcat.2012.01.005     URL    
[23]
Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. Chem. Commun., 2014, 50(20): 2572.

doi: 10.1039/c3cc46588h     URL    
[24]
Sheng X R, Li G Y, Wang W T, Cong Y, Wang X D, Huber G W, Li N, Wang A Q, Zhang T. AlChE. J., 2016, 62(8): 2754.

doi: 10.1002/aic.v62.8     URL    
[25]
Wang W, Li N, Li G Y, Li S S, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2017, 5(2): 1812.

doi: 10.1021/acssuschemeng.6b02554     URL    
[26]
Liu Y N, Nie G K, Yu S T, Pan L, Wang L, Zhang X W, Shi C X, Zou J J. Chem. Eng. Sci., 2021, 238: 116592.
[27]
Wang W, An L, Qian C, Li Y Q, Li M P, Shao X Z, Ji X H, Li Z Z. Molecules, 2023, 28(13): 5029.

doi: 10.3390/molecules28135029     URL    
[28]
Zhang X H, Song M J, Liu J G, Zhang Q, Chen L G, Ma L L. J. Energy Chem., 2023, 79: 22.
[29]
Liu Y T, Li G Y, Hu Y C, Wang A Q, Lu F, Zou J J, Cong Y, Li N, Zhang T. Joule, 2019, 3(4): 1028.

doi: 10.1016/j.joule.2019.02.005     URL    
[30]
Sato T, Rode C V, Sato O, Shirai M. Appl. Catal. B Environ., 2004, 49(3): 181.

doi: 10.1016/j.apcatb.2003.12.010     URL    
[31]
Wang W, Liu Y T, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2017, 7: 6111.
[32]
Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24(1): 267.

doi: 10.1021/ef900799c     URL    
[33]
Zhu B Q, Yuan B, Yu F L, Xie C X. Journal of Qingdao University of Science and Technology Natural Science Edition, 2022, 43(5): 14.
(朱本强, 袁冰, 于凤丽, 解从霞. 青岛科技大学学报(自然科学版), 2022, 43(5): 14.)
[34]
Li Z, Pan L, Nie G K, Xie J J, Xie J W, Zhang X W, Wang L, Zou J J. Chem. Eng. Sci., 2018, 191: 343.
[35]
Nie G K, Wang H Y, Li Q, Pan L, Liu Y N, Song Z Q, Zhang X W, Zou J J, Yu S T. Appl. Catal. B Environ., 2021, 292: 120181.

doi: 10.1016/j.apcatb.2021.120181     URL    
[36]
Nie G K, Dai Y Y, Liu Y N, Xie J J, Gong S, Afzal N, Zhang X W, Pan L, Zou J J. Chem. Eng. Sci., 2019, 207: 441.
[37]
Yang S C, Shi C X, Shen Z S, Pan L, Huang Z F, Zhang X W, Zou J J. J. Energy Chem., 2023, 77: 452.
[38]
Nie G K, Zhang X W, Pan L, Han P J, Xie J J, Li Z, Xie J W, Zou J J. Chem. Eng. Sci., 2017, 173: 91.
[39]
Xu J L, Li N, Li G Y, Han F G, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2018, 20(16): 3753.

doi: 10.1039/C8GC01628C     URL    
[40]
Timothy A A, Han F G, Li G Y, Xu J L, Wang A Q, Cong Y, Li N. Sustain. Energy Fuels, 2020, 4(11): 5560.

doi: 10.1039/D0SE01110J     URL    
[41]
Zhang X J, Han F A, Lin S Z, Chen F, Sun M J, Liu J J, Li G Y, Tang H, Wang A Q, Cong Y, Li N. ACS Sustainable Chem. Eng., 2019, 7(14): 12023.
[42]
Han F G, Xu J Y, Li G Y, Xu J L, Wang A Q, Cong Y, Zhang T, Li N. Sustain. Energy Fuels, 2021, 5(2): 556.

doi: 10.1039/D0SE01544J     URL    
[43]
Gao H F, Han F G, Li G Y, Wang A Q, Cong Y, Li Z Z, Wang W, Li N. Sustain. Energy Fuels, 2022, 6(6): 1616.

doi: 10.1039/D1SE01732B     URL    
[44]
Pan L, Xie J J, Nie G K, Li Z, Zhang X W, Zou J J. AlChE. J., 2020, 66(1): e16789.

doi: 10.1002/aic.v66.1     URL    
[45]
Xie J J, Zhang X W, Liu Y K, Li Z, E X T F, Xie J W, Zhang Y C, Pan L, Zou J J. Catal. Today, 2019, 319: 139.

doi: 10.1016/j.cattod.2018.04.053     URL    
[46]
Meylemans H A, Quintana R L, Goldsmith B R, Harvey B G. ChemSusChem, 2011, 4(4): 465.

doi: 10.1002/cssc.v4.4     URL    
[47]
Li G Y, Hou B L, Wang A Q, Xin X L, Cong Y, Wang X D, Li N, Zhang T,. Angew. Chem. Int. Ed., 2019, 58(35): 12154.
[48]
Nie G K, Shi C X, Dai Y Y, Liu Y N, Liu Y K, Ma C, Liu Q, Pan L, Zhang X W, Zou J J. Green Chem., 2020, 22(22): 7765.

doi: 10.1039/D0GC02361B     URL    
[49]
Woodroffe J D, Harvey B G. ChemSusChem, 2021, 14(1): 339.

doi: 10.1002/cssc.v14.1     URL    
[50]
Liu Y T, Wang R, Qi H F, Liu X Y, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. Nat. Commun., 2021, 12: 46.

doi: 10.3406/comm.1968.1171     URL    
[51]
Wang R, Liu Y T, Li G Y, Wang A Q, Wang X D, Cong Y, Zhang T, Li N. ACS Catal., 2021, 11(8): 4810.

doi: 10.1021/acscatal.1c00223     URL    
[52]
Yu Z J, Zou Z F, Wang R, Li G Y, Wang A Q, Cong Y, Zhang T, Li N,. Angew. Chem. Int. Ed., 2023, 62(13): e202300008.
[53]
Liu C W, Hu Y C, Li G Y, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. Sustain. Energy Fuels, 2022, 6(3): 834.

doi: 10.1039/D1SE01684A     URL    
[54]
Luo X L, Lu R, Si X Q, Jiang H F, Shi Q, Ma H X, Zhang C, Xu J, Lu F. J. Energy Chem., 2022, 69: 231.
[55]
McCoy D E, Feo T, Harvey T A, Prum R O. Nat. Commun., 2018, 9: 1.
[56]
Luo N C, Montini T, Zhang J, Fornasiero P, Fonda E, Hou T T, Nie W, Lu J M, Liu J X, Heggen M, Lin L, Ma C T, Wang M, Fan F T, Jin S Y, Wang F. Nat. Energy, 2019, 4(7): 575.

doi: 10.1016/0360-5442(79)90085-9     URL    
[57]
Xie J J, Zhang X W, Shi C X, Pan L, Hou F, Nie G K, Xie J W, Liu Q, Zou J J. Sustain. Energy Fuels, 2020, 4(2): 911.

doi: 10.1039/C9SE00863B     URL    
[58]
Xie J J, Pan L, Nie G K, Xie J W, Liu Y K, Ma C, Zhang X W, Zou J J. Green Chem., 2019, 21(21): 5886.

doi: 10.1039/C9GC02790D     URL    
[59]
Xie J J, Zhang X W, Pan L, Nie G K, E X T F, Liu Q, Wang P, Li Y F, Zou J J. Chem. Commun., 2017, 53(74): 10303.

doi: 10.1039/C7CC05101H     URL    
[60]
Tang H, Chen F, Li G Y, Yang X F, Hu Y C, Wang A Q, Cong Y, Wang X D, Zhang T, Li N. J. Energy Chem., 2019, 29: 23.
[61]
Nie G K, Zhang X W, Pan L, Wang M, Zou J J. Chem. Eng. Sci., 2018, 180: 64.
[62]
Dai Y Y, Nie G K, Gong S, Wang L, Pan L, Fang Y M, Zhang X W, Zou J J. Fuel, 2020, 275: 117962.

doi: 10.1016/j.fuel.2020.117962     URL    
[63]
Deng Q, Nie G K, Pan L, Zou J J, Zhang X W, Wang L. Green Chem., 2015, 17(8): 4473.

doi: 10.1039/C5GC01287B     URL    
[1] 李其伟, 廖建国. 离子掺杂介孔生物活性玻璃的合成及应用研究[J]. 化学进展, 2024, 36(2): 271-284.
[2] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[3] 金诗萍, 孙莹, 张雪勤. 聚合物水凝胶材料的透氧性能[J]. 化学进展, 2023, 35(9): 1304-1312.
[4] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[5] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 李立清, 钟秀敏, 章礼旭, 刘昆明, 王全兵, 马杰. 双网络水凝胶制备及其力学改性[J]. 化学进展, 2023, 35(11): 1674-1685.
[8] 李婷婷, 李海宾, 刘炳辉, 赵成吉, 李昊龙. 主链全碳型芳基聚合物质子交换膜[J]. 化学进展, 2023, 35(11): 1559-1578.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[11] 职怡缤, 于兰, 李欢欢, 陶冶, 陈润锋, 黄维. 芳基硅磷光主体材料在有机电致发光器件中的应用[J]. 化学进展, 2022, 34(5): 1109-1123.
[12] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[13] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[14] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[15] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.