English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 401-415 DOI: 10.7536/PC230711 前一篇   后一篇

• 综述 •

球磨-点击化学反应:无溶剂绿色反应方式

关歆琪, 桑远, 刘海玲*()   

  1. 辽宁石油化工大学 抚顺 113001
  • 收稿日期:2023-07-17 修回日期:2023-09-15 出版日期:2024-03-24 发布日期:2024-02-26
  • 作者简介:

    刘海玲 博士,教授,硕士生导师。主持国家自然科学基金,入选辽宁省“兴辽英才”青年拔尖人才。在Macromolecules, ACS sustainable Chemistry & Engineering等杂志发表论文十余篇。主要研究方向为机械化学、木质素基高分子的绿色合成及改性、生物质应用于功能性材料的制备。

  • 基金资助:
    国家自然科学基金项目(52103005); 辽宁省“兴辽英才”-青年拔尖人才(XLYC2203072); 辽宁石油化工大学博士启动资金(2021XJJL-003)

Ball-Milled Click Chemistry: A Solvent-Free Green Chemistry

Xinqi Guan, Yuan Sang, Hailing Liu()   

  1. Liaoning Petrochemical University, Fushun 113001, China
  • Received:2023-07-17 Revised:2023-09-15 Online:2024-03-24 Published:2024-02-26
  • Contact: * e-mail: HL2490053@outlook.com
  • About author:
    † These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(52103005); Liaoning Revitalization Talents Program(XLYC2203072); startup funding of Liaoning Petrochemical University(2021XJJL-003)

点击化学因反应简单、选择性高、产物单一、且无有害副产物的优点被广泛使用。作为诺贝尔化学奖项,点击化学最初被设计用于水相或绿色有机溶剂。然而在实际应用中,受限于反应物溶解性,点击化学常在极性高的有毒溶剂中进行。溶剂的使用不仅违背了绿色化学的初衷,还增加了生产成本。为了解决这些问题,球磨引起的机械化学被用来实现点击化学反应。机械化学作为一种新型的反应方式,无需溶剂。球磨-点击化学反应具有额外的优点,例如缩短反应时间、降低反应温度、减少催化剂的使用等。本文通过综述整理,报道了球磨条件下点击化学反应的研究进展,包括CuAAc、Diels-Alder、胺-异硫氰酸酯反应、胺-硫醇反应和氧氮自由基偶联反应。为了给读者提供实际操作的指导,本文也包含了球磨机选择指南,液体/固体辅助研磨物质的加入,以及影响反应转化率因素的探究,包括催化剂的选择、添加剂的加入、研磨球大小的选择、化学计量学的探讨、和球磨时间的影响。

Click chemistry won the Noble Prize in 2022 due to easy synthesis, high selectivity, single product, and no toxic side product. Click chemistry was originally designed as green chemistry to work in aqueous solutions or environmentally friendly organic solvents. However, due to the poor solubility of reactants, polar and toxic solvents are usually required to use. The solvent used violates the concept of green chemistry, as well as increases the cost. These issues hinder click chemistry to be a state-of-art green chemistry. One of the solutions to optimize click chemistry is to avoid using any solvent. Herein, ball-milled mechanochemistry does not limit reactants’ solubility and could avoid solvent use. Ball-milled mechanochemistry is a new kind of chemical reaction that is conducted in a ball mill, is induced by mechanical force, and needs no solvent or a minimal amount of solvent. As a new way of organic synthesis, ball-milled mechanochemistry could easily achieve the low-energy carbon-heteroatom bonds, which constitute the linkages in click chemistry. Therefore, it could integrate with click chemistry and achieves ball-milled click chemistry. In comparison to traditional solution click chemistry, ball-milled click chemistry avoids solvent use. Moreover, it is even superior in the ways that the reaction time is shortened, the reaction temperature is lowered, and the catalyst used is simplified. In this review, ball-milled click chemistry examples are reported as much as the authors can find, including CuAAc, Diels-Alder, amine and isothiocyanate reactions, amine thiol reactions, and nitroxide radical coupling reactions. To provide readers with a better ball-milled click chemistry manual, this paper also contains ball mill machine choice guidance, liquid-assisted grinding choice guidance, and factors impacting ball-milled click chemistry conversion, including catalyst choice, additive choice, ball choice, stoichiometry, and milling time.

Contents

1 Introduction

1.1 Ball mill machines

1.2 Liquid/solid assisted grinding

2 Ball-milled click chemistry

2.1 Ball-milled CuAAc

2.2 Ball-milled Diels-Alder

2.3 Ball-milled amine and isothiocyanate reactions

2.4 Ball-milled amine thiol reactions

2.5 Ball-milled nitroxide radical coupling reactions

3 Factors impacting ball-milled click chemistry

3.1 Catalysts

3.2 Milling balls

3.3 Additive

3.4 Stoichiometry

3.5 Reaction time

4 Conclusion and outlook

()
图1 球磨机照片:震动球磨机(a),行星球磨机(b),搅拌球磨机(c),滚筒球磨机(d)
Fig. 1 Photos of ball mill machines: mixer ball mill (a); planetary ball mill (b); stir ball mill (c); and roller ball mill (d)
表1 震动球磨机、行星球磨机和搅拌球磨机适用情况
Table 1 Introduction of mixer ball mill, planetary ball mill, and stir ball mill
图式1 2011年首次发表的球磨实现的CuAAc反应[55]
Scheme 1 First published ball-milled CuAAc reaction in 2011[55]
图式2 铜粉催化球磨-CuAAc反应并应用于环糊精[56]
Scheme 2 Ball-milled copper powder catalyzed CuAAc reaction and its application in cyclodextrin[56]
图式3 球磨-CuAAc反应被三种价态铜催化剂催化[57]
Scheme 3 Ball-milled CuAAc reaction catalyzed by Cu, Cu+, and Cu2+[57]
表2 球磨-CuAAc反应与溶液-CuAAc产率对比
Table 2 Yields from Ball-milled CuAAc versus CuAAc in solution reaction
图式4 铜罐铜球实现的一锅法球磨-CuAAc[58]
Scheme 4 One pot CuAAc milled by copper balls in copper vial[58]
图式5 Cu/Al2O3催化的一锅法球磨-CuAAc反应[59]
Scheme 5 Ball-milled one pot CuAAc reaction catalyzed by Cu/Al2O3[59]
图式6 球磨-CuAAc反应制备奎宁-三唑分子骨架的杂化抗原生动物化合物[60]
Scheme 6 Ball-milled CuAAc synthesizing quinine-triazole scaffold with antiprotozoal potency[60]
图式7 球磨-CuAAc反应制备金属缓蚀剂[61]
Scheme 7 Ball-milled CuAAc reaction synthesizing metal corrosion inhibitor[61]
图式8 球磨-CuAAc反应制备葡萄糖醛酸糖树状分子[62]
Scheme 8 Ball-milled CuAAc reaction synthesizing glucuronic acid glycodendrimers[62]
图式9 球磨实现的Diels-Alder反应[67]
Scheme 9 Ball-milled Diels-Alder reaction[67]
图式10 三氯化铁催化的苯乙烯与氮-芳香亚胺球磨- Diels-Alder反应[68]
Scheme 10 Ball-milled Diels-Alder reaction between styrene and N-aryl aldimines promoted by FeCl3[68]
图式11 球磨实现的Diels-Alder反应应用于冠状物改性[69]
Scheme 11 Ball-milled Diels-Alder reaction in rotaxane modification[69]
图式12 球磨实现的Diels-Alder反应应用于石墨烯制备[70]
Scheme 12 Ball-milled Diels-Alder reaction in synthesizing graphene[70]
图式13 球磨实现的Diels-Alder反应应用于功能化石墨烯制备[71]
Scheme 13 Ball-milled Diels-Alder reaction in synthesizing functioned graphene[71]
图式14 球磨实现的Diels-Alder反应湿法制备石墨烯
Scheme 14 Ball-milled Diels-Alder reaction in wet-synthesizing graphene[72]
图式15 球磨实现的胺-异硫氰酸酯反应制备硫脲[91??~94]
Scheme 15 Ball-milled amines and isothiocyanates synthesizing thiourea[91??~94]
图式16 球磨实现的胺-硫醇反应[95]
Scheme 16 Ball-milled amine?thiol scrambling[95]
图式17 球磨实现的氧氮自由基偶联反应[98]
Scheme 17 Ball-milled nitroxide radical coupling reactions[98]
表3 醋酸铜、碘化铜、黄铜球的催化下,球磨CuAAc的反应产率
Table 3 Ball-milled CuAAc yields catalyzed by Cu(OAc)2, CuI, or brass ball
表4 一锅法球磨CuAAc在不定量的催化剂下的产率
Table 4 One pot ball-milled CuAAc yields under varied catalyst dose
表5 球磨Diels-Alder反应中Lewis酸和Bronsted酸催化剂对产率的影响
Table 5 Ball-milled Diels-Alder reaction yields catalyzed by Lewis acids or Bronsted acids
表6 相同总质量,不同大小和数量研磨球对反应的影响
Table 6 Yields from different mill balls in terms of sizes and numbers
表7 一锅法球磨CuAAC在不定量K2CO3添加剂下的产率
Table 7 One pot ball-milled CuAAC yields with varied K2CO3 additives
表8 球磨CuAAc中试剂比例对产率的影响
Table 8 Ball-milled CuAAc yields impact by stoichiometric ratio
表9 一锅法球磨CuAAc在不同反应时间下的产率
Table 9 One pot ball-milled CuAAc yields under varied reaction time
[1]
Friščić T, Mottillo C, Titi H M. Angew. Chem., 2020, 132(3): 1030.

doi: 10.1002/ange.v132.3     URL    
[2]
Gomollón-Bel F. Chem. Int., 2019, 41(2): 12.
[3]
Takacs L. Chem. Soc. Rev., 2013, 42(18): 7649.

doi: 10.1039/c2cs35442j     URL    
[4]
Gu W, Li Z Q, Zhu S M, Zhang D. Acta. Chim. Sinica, 2008, (09): 1097.
(谷威, 李志强, 朱申敏, 张荻. 化学学报, 2008, (09): 1097.
[5]
Zhang X C, Cai X L, Zhou L, Qiao Y B, Wu C, Zhang S, Zhu W. Mater. Rev., 2018, 32(15): 2653.
(张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 材料导报, 2018, 32(15): 2653.)
[6]
Zhang B J, Lin S F, Dai L Y, Liu Z J. Mater. Rev., 2014, 28(S1): 403.
(张宝剑, 林少芬, 戴乐阳, 刘志杰. 材料导报, 2014, 28(S1): 403.)
[7]
Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J M, Delogu F, Dutková E, Gaffet E, Gotor F J, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K. Chem. Soc. Rev., 2013, 42(18): 7571.

doi: 10.1039/c3cs35468g     URL    
[8]
James S L, Adams C J, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris K D M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Chem. Soc. Rev., 2012, 41(1): 413.

doi: 10.1039/C1CS15171A     URL    
[9]
Friščić T, Fábián L. CrystEngComm, 2009, 11(5): 743.

doi: 10.1039/b822934c     URL    
[10]
Burmeister C F, Kwade A. Chem. Soc. Rev., 2013, 42(18): 7660.

doi: 10.1039/c3cs35455e     URL    
[11]
Shi Y X, Xu K, Clegg J K, Ganguly R, Hirao H, Friščić T, García F. Angew. Chem. Int. Ed., 2016, 55(41): 12736.

doi: 10.1002/anie.v55.41     URL    
[12]
Grätz S, Borchardt L. RSC Adv., 2016, 6(69): 64799.

doi: 10.1039/C6RA15677K     URL    
[13]
Walsh P J, Li H M, de Parrodi C A. Chem. Rev., 2007, 107(6): 2503.

doi: 10.1021/cr0509556     URL    
[14]
Brown N, Alsudairy Z, Behera R, Akram F, Chen K C, Smith-Petty K, Motley B, Williams S, Huang W Y, Ingram C, Li X L. Green Chem., 2023, 25(16): 6287.

doi: 10.1039/D3GC01927F     URL    
[15]
Hou D F, Li M L, Li P Y, Zhou L, Zhang K, Liu Z Y, Yang W, Yang M B. ACS Sustainable Chem. Eng., 2023, 11(20): 7655.

doi: 10.1021/acssuschemeng.2c07364     URL    
[16]
Sheldon R A. Green Chem., 2005, 7(5): 267.

doi: 10.1039/b418069k     URL    
[17]
Buono P, Duval A, Avérous L, Habibi Y. ChemSusChem, 2018, 11(15): 2472.

doi: 10.1002/cssc.v11.15     URL    
[18]
Moses J E, Moorhouse A D. Chem. Soc. Rev., 2007, 36(8): 1249.

doi: 10.1039/B613014N     URL    
[19]
Xi W, Scott T F, Kloxin C J, Bowman C N. Adv. Funct. Mater., 2014, 24: 2572.

doi: 10.1002/adfm.v24.18     URL    
[20]
Hazra P P, Mondal B, Das D, Majhi P, Pradhan U, Mallick S, Shukla A K, Das R K, Roy U K. Tetrahedron, 2023, 139: 133442.

doi: 10.1016/j.tet.2023.133442     URL    
[21]
Pickhardt W, Grätz S, Borchardt L. Chem., 2020, 26(57): 12903.
[22]
Androsov A, Nerger L, Schnur R, Schröter J, Albertella A, Rummel R, Savcenko R, Bosch W, Skachko S, Danilov S. J. Geod., 2019, 93(2): 141.

doi: 10.1007/s00190-018-1151-1    
[23]
Krusenbaum A, Grätz S, Bimmermann S, Hutsch S, Borchardt L. RSC Adv., 2020, 10(43): 25509.

doi: 10.1039/D0RA05279E     URL    
[24]
Grätz S, Zink S, Kraffczyk H, Rose M, Borchardt L. Beilstein J. Org. Chem., 2019, 15: 1154.

doi: 10.3762/bjoc.15.112    
[25]
Hernández J G. Beilstein J. Org. Chem., 2017, 13: 1463.

doi: 10.3762/bjoc.13.144     URL    
[26]
Štrukil V, Sajko I. Chem. Commun., 2017, 53(65): 9101.

doi: 10.1039/C7CC03510A     URL    
[27]
Friščić T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimäki V, Dinnebier R E. Nat. Chem., 2013, 5: 66.

doi: 10.1038/nchem.1505    
[28]
Štrukil V, Gracin D, Magdysyuk O V, Dinnebier R E, Friščić T. Angew. Chem. Int. Ed., 2015, 54(29): 8440.

doi: 10.1002/anie.v54.29     URL    
[29]
Gracin D, Štrukil V, Friščić T, Halasz I, Užarević K. Angew. Chem. Int. Ed., 2014, 53(24): 6193.

doi: 10.1002/anie.v53.24     URL    
[30]
Tireli M, Juribašić Kulcsár M, Cindro N, Gracin D, Biliškov N, Borovina M, Ćurić M, Halasz I, Užarević K. Chem. Commun., 2015, 51(38): 8058.

doi: 10.1039/C5CC01915J     URL    
[31]
Halasz I, Puškarić A, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Dinnebier R E, Patel B, Jones W, Štrukil V, Friščić T. Angew. Chem. Int. Ed., 2013, 52(44): 11538.

doi: 10.1002/anie.v52.44     URL    
[32]
Halasz I, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Nightingale R C, Dinnebier R E, Friščić T. Nat. Protoc., 2013, 8(9): 1718.

doi: 10.1038/nprot.2013.100    
[33]
Batzdorf L, Fischer F, Wilke M, Wenzel K J, Emmerling F. Angew. Chem., 2015, 127(6): 1819.

doi: 10.1002/ange.v127.6     URL    
[34]
Schiffmann J G, Emmerling F, Martins I C B,Van Wüllen L. Solid State Nucl. Magn. Reson., 2020, 109: 101687.

doi: 10.1016/j.ssnmr.2020.101687     URL    
[35]
Xu W W. Masteral Dissertation of Kunming University of Science and Technology, 2017.
(许维维. 昆明理工大学硕士论文, 2017.)
[36]
Peters K, Cremer W. Angew. Chem., 1934, 47(32): 576.

doi: 10.1002/ange.v47:32     URL    
[37]
Crawford D E, Casaban J. Adv. Mater., 2016, 28(27): 5747.

doi: 10.1002/adma.v28.27     URL    
[38]
Friščić T, Childs S L, Rizvi S A A, Jones W. CrystEngComm, 2009, 11(3): 418.

doi: 10.1039/B815174A     URL    
[39]
Schmidt R, Thorwirth R, Szuppa T, Stolle A, Ondruschka B, Hopf H. Chem., 2011, 17(29): 8129.
[40]
Shan N, Toda F, Jones W. Chem. Commun., 2002(20): 2372.
[41]
Hasa D, Marosa M, Bučar D K, Corpinot M K, Amin D, Patel B, Jones W. Cryst. Growth Des., 2020, 20(2): 1119.

doi: 10.1021/acs.cgd.9b01431     URL    
[42]
Lyons T W, Sanford M S. Chem. Rev., 2010, 110(2): 1147.

doi: 10.1021/cr900184e     URL    
[43]
Davies H M L, Du Bois J, Yu J Q. Chem. Soc. Rev., 2011, 40(4): 1855.

doi: 10.1039/c1cs90010b     URL    
[44]
Kumar N, Biswas K. Rev. Sci. Instrum., 2015, 86: 083903.

doi: 10.1063/1.4929325     URL    
[45]
Do J L, Mottillo C, Tan D, Štrukil V, Friščić T. J. Am. Chem. Soc., 2015, 137(7): 2476.

doi: 10.1021/jacs.5b00151     URL    
[46]
Hutchings B P, Crawford D E, Gao L, Hu P J, James S L. Angew. Chem., 2017, 129(48): 15454.

doi: 10.1002/ange.v129.48     URL    
[47]
Egbert J D, Cazin C S J, Nolan S P. Catal. Sci. Technol., 2013, 3(4): 912.

doi: 10.1039/c2cy20816d     URL    
[48]
Lin J C Y, Huang R T W, Lee C S, Bhattacharyya A, Hwang W S, Lin I J B. Chem. Rev., 2009, 109(8): 3561.

doi: 10.1021/cr8005153     URL    
[49]
Lazreg F, Nahra F, Cazin C S J. Coord. Chem. Rev., 2015, 293/294: 48.

doi: 10.1016/j.ccr.2014.12.019     URL    
[50]
Díez-González S, Nolan S. Synlett, 2007, 2007(14): 2158.

doi: 10.1055/s-2007-985577     URL    
[51]
Proutiere F, Schoenebeck F. Angew. Chem. Int. Ed., 2011, 50(35): 8192.

doi: 10.1002/anie.v50.35     URL    
[52]
Howard J L, Sagatov Y, Repusseau L, Schotten C, Browne D L. Green Chem., 2017, 19(12): 2798.

doi: 10.1039/C6GC03139K     URL    
[53]
Dong R, Zhang Y L, Xu H Z, Bao L Y, Ma S H, Wang X G, Yu Q L, Cai M R, Zhou F, Liu W M. Chem. Eng. J., 2023, 454: 139772.

doi: 10.1016/j.cej.2022.139772     URL    
[54]
Biewend M, Michael P, Binder W H. Soft Matter, 2020, 16(5): 1137.

doi: 10.1039/C9SM02185J     URL    
[55]
Thorwirth R, Stolle A, Ondruschka B, Wild A, Schubert U S. Chem. Commun., 2011, 47(15): 4370.

doi: 10.1039/c0cc05657j     URL    
[56]
Rinaldi L, Martina K, Baricco F, Rotolo L, Cravotto G. Molecules, 2015, 20(2): 2837.

doi: 10.3390/molecules20022837     URL    
[57]
Tireli M, Maračić S, Lukin S, Kulcsár M J, Žilić D, Cetina M, Halasz I, Raić-Malić S, Užarević K. Beilstein J. Org. Chem., 2017, 13: 2352.

doi: 10.3762/bjoc.13.232     URL    
[58]
Cook T L, Walker J A, Mack J. Green Chem., 2013, 15(3): 617.

doi: 10.1039/c3gc36720g     URL    
[59]
Mukherjee N, Ahammed S, Bhadra S, Ranu B C. Green Chem., 2013, 15(2): 389.

doi: 10.1039/C2GC36521A     URL    
[60]
Sahu A, Agrawal R K, Pandey R. Bioorg. Chem., 2019, 88: 102939.

doi: 10.1016/j.bioorg.2019.102939     URL    
[61]
Sampath S, Vadivelu M, Ravindran R, Perumal P T, Velkannan V, Karthikeyan K. ChemistrySelect, 2020, 5(7): 2130.

doi: 10.1002/slct.v5.7     URL    
[62]
García-Oliva C, Merchán A, Perona A, Hoyos P, Rumbero Á, Hernáiz M J. New J. Chem., 2022, 46(14): 6389.

doi: 10.1039/D1NJ06132A     URL    
[63]
Mamedov E G, Klabunovskii E I. Russ. J. Org. Chem., 2008, 44(8): 1097.

doi: 10.1134/S1070428008080010     URL    
[64]
Shao C W, Wang X Y, Zhang Q, Luo S, Zhao J C, Hu Y F. J. Org. Chem., 2011, 76(16): 6832.

doi: 10.1021/jo200869a     URL    
[65]
Jędrzejowski D, Ryndak M, Zakrzewski J J, Hodorowicz M, Chorazy S, Matoga D. ACS Appl. Mater. Interfaces, 2023, 15(21): 25661.

doi: 10.1021/acsami.3c00788     URL    
[66]
Torkaman N F, Kley M, Bremser W, Wilhelm R. RSC Adv., 2022, 12(27): 17249.

doi: 10.1039/D2RA02566C     URL    
[67]
Zhang Z, Peng Z W, Hao M F, Gao J G. Synlett, 2010, 2010(19): 2895.

doi: 10.1055/s-0030-1259030     URL    
[68]
Tan Y J, Zhang Z, Wang F J, Wu H H, Li Q H. RSC Adv., 2014, 4(67): 35635.

doi: 10.1039/C4RA05252H     URL    
[69]
Hsu C C, Chen N C, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2008, 47(39): 7475.

doi: 10.1002/anie.v47:39     URL    
[70]
Yu W G, Gao X F, Yuan Z C, Liu H H, Wang X C, Zhang X X. RSC Adv., 2022, 12(28): 17990.

doi: 10.1039/D2RA01668K     URL    
[71]
Seo J M, Jeon I Y, Baek J B. Chem. Sci., 2013, 4(11): 4273.

doi: 10.1039/c3sc51546j     URL    
[72]
Xu J F, Zhao X M, Liu F X, Jin L, Chen G H. New J. Chem., 2020, 44(4): 1236.

doi: 10.1039/C9NJ05309C     URL    
[73]
Van Daele I, Munier-Lehmann H, Froeyen M, Balzarini J,Van Calenbergh S. J. Med. Chem., 2007, 50(22): 5281.

doi: 10.1021/jm0706158     URL    
[74]
Bukvić Krajačić M, Novak P, Dumić M, Cindrić M,Paljetak H Č, Kujundžić N. Eur. J. Med. Chem., 2009, 44(9): 3459.

doi: 10.1016/j.ejmech.2009.02.001     URL    
[75]
Bukvić Krajačić M, Perić M, Smith K S,Ivezić Schönfeld Z, Žiher D, Fajdetić A, Kujundžić N, Schönfeld W, Landek G, Padovan J, Jelić D, Ager A, Milhous W K, Ellis W, Spaventi R, Ohrt C. J. Med. Chem., 2011, 54(10): 3595.

doi: 10.1021/jm2001585     URL    
[76]
Mahajan A, Yeh S, Nell M, van Rensburg C E J, Chibale K. Bioorg. Med. Chem. Lett., 2007, 17(20): 5683.
[77]
Bloom J D, Dushin R G, Curran K J, Donahue F, Norton E B, Terefenko E, Jones T R, Ross A A, Feld B, Lang S A, DiGrandi M J. Bioorg. Med. Chem. Lett., 2004, 14. 3401.
[78]
Küçükgüzel İ, Tatar E, Küçükgüzel Ş G, Rollas S, De Clercq E. Eur. J. Med. Chem., 2008, 43(2): 381.

doi: 10.1016/j.ejmech.2007.04.010     URL    
[79]
Hallur G, Jimeno A, Dalrymple S, Zhu T, Jung M K, Hidalgo M, Isaacs J T, Sukumar S, Hamel E, Khan S R. J. Med. Chem., 2006, 49(7): 2357.

doi: 10.1021/jm051261s     URL    
[80]
Sharma S K, Wu Y, Steinbergs N, Crowley M L, Hanson A S, Casero R A, Woster P M. J. Med. Chem., 2010, 53(14): 5197.

doi: 10.1021/jm100217a     URL    
[81]
Sohtome Y, Takemura N, Takagi R, Hashimoto Y, Nagasawa K. Tetrahedron, 2008, 64(40): 9423.

doi: 10.1016/j.tet.2008.07.087     URL    
[82]
Kotke M, Schreiner P R. Tetrahedron, 2006, 62(2/3): 434.

doi: 10.1016/j.tet.2005.09.079     URL    
[83]
Herrera R P, Ricci A, Dessole G. Synlett, 2004(13): 2374.
[84]
Herrera R P, Sgarzani V, Bernardi L, Ricci A. Angew. Chem., 2005, 117(40): 6734.

doi: 10.1002/ange.v117:40     URL    
[85]
Fleming E M, McCabe T, Connon S J. Tetrahedron Lett., 2006, 47(39): 7037.
[86]
Liu X G, Jiang J J, Shi M. Tetrahedron Asymmetry, 2007, 18(23): 2773.

doi: 10.1016/j.tetasy.2007.11.008     URL    
[87]
Maher D J, Connon S J. Tetrahedron Lett., 2004, 45(6): 1301.

doi: 10.1016/j.tetlet.2003.11.062     URL    
[88]
Sohtome Y, Tanatani A, Hashimoto Y, Nagasawa K. Tetrahedron Lett., 2004, 45(29): 5589.

doi: 10.1016/j.tetlet.2004.05.137     URL    
[89]
Mack J, Shumba M. Green Chem., 2007, 9(4): 328.

doi: 10.1039/B612983H     URL    
[90]
Wang C G, Zhou Z H, Tang C C. Org. Lett., 2008, 10(9): 1707.

doi: 10.1021/ol8003035     URL    
[91]
Kaupp G, Schmeyers J, Boy J. Tetrahedron, 2000, 56(36): 6899.

doi: 10.1016/S0040-4020(00)00511-1     URL    
[92]
Li J P, Wang Y L, Wang H, Luo Q F, Wang X Y. Synth. Commun., 2001, 31(5): 781.

doi: 10.1081/SCC-100103270     URL    
[93]
Štrukil V, Igrc M D, Eckert-Maksić M, Friščić T. Chem., 2012, 18(27): 8464.
[94]
Štrukil V, Igrc M D, Fábián L, Eckert-Maksić M, Childs S L, Reid D G, Duer M J, Halasz I, Mottillo C, Friščić T. Green Chem., 2012, 14(9): 2462.

doi: 10.1039/c2gc35799b     URL    
[95]
Wu T H, Liang T Y, Hu W, Du M Q, Zhang S J, Zhang Y F, Anslyn E V, Sun X L. ACS Macro Lett., 2021, 10(9): 1125.

doi: 10.1021/acsmacrolett.1c00548     URL    
[96]
Kulis J, Bell C A, Micallef A S, Jia Z F, Monteiro M J. Macromolecules, 2009, 42(21): 8218.

doi: 10.1021/ma9014565     URL    
[97]
Candan O A, Kopan D, Durmaz H, Hizal G, Tunca U. Eur. Polym. J., 2013, 49(7): 1796.

doi: 10.1016/j.eurpolymj.2013.03.035     URL    
[98]
Kubota K, Toyoshima N, Miura D, Jiang J L, Maeda S, Jin M, Ito H. Angew. Chem., 2021, 133(29): 15793.

doi: 10.1002/ange.v133.29     URL    
[99]
Hein J E, Fokin V V. Chem. Soc. Rev., 2010, 39(4): 1302.

doi: 10.1039/b904091a     URL    
[100]
Chassaing S, Bénéteau V, Pale P. Catal. Sci. Technol., 2016, 6(4): 923.

doi: 10.1039/C5CY01847A     URL    
[1] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[4] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[5] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[6] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[7] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[8] 夏勇, 姚洪涛, 缪智辉, 王芳, 祁争健, 孙宇. 利用点击化学制备有机硅材料及应用[J]. 化学进展, 2015, 27(5): 532-538.
[9] 王志鹏, 邓耿, 袁金颖. 机械力响应高分子体系的原理、构建与应用[J]. 化学进展, 2014, 26(07): 1160-1171.
[10] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[11] 王志鹏, 袁金颖* . Diels-Alder反应在构建特殊结构高分子中的应用[J]. 化学进展, 2012, 24(12): 2342-2351.
[12] 徐源鸿, 熊兴泉, 蔡雷, 唐忠科, 叶章基. 巯基-烯点击化学[J]. 化学进展, 2012, 24(0203): 385-394.
[13] 杨正龙, 陈秋云, 周丹, 卜弋龙. 硫醇-烯/炔点击化学合成功能聚合物材料[J]. 化学进展, 2012, 24(0203): 395-404.
[14] 邱素艳, 高森, 林振宇, 陈国南. 点击化学最新进展[J]. 化学进展, 2011, 23(4): 637-648.
[15] 袁伟忠, 张锦春, 魏静仁. 点击化学与活性自由基聚合联用构建特殊结构聚合物[J]. 化学进展, 2011, 23(4): 760-771.