English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 416-429 DOI: 10.7536/PC230706 前一篇   后一篇

• 综述 •

聚合物修饰蛋白质的功能化及其应用

万江, 张景泽, 陈虹伶, 沈含梅, 王震, 张春*()   

  1. 华中科技大学生命科学与技术学院 武汉 430000
  • 收稿日期:2023-07-10 修回日期:2023-10-18 出版日期:2024-03-24 发布日期:2024-02-23
  • 作者简介:

    张春 华中科技大学生命科学与技术学院教授。主要从事有机孔材料及纳米药物等方向的研究。在国际期刊上发表SCI论文70余篇。先后主持多项国家自然科学基金及湖北省自然科学基金等项目。

  • 基金资助:
    国家自然科学基金项目(22275062); 国家自然科学基金项目(22005110); 大学生创新创业训练计划(S202310487273)

Functionalization and Application of Polymer-Modified Proteins

Jiang Wan, Jingze Zhang, Hongling Chen, Hanmei Shen, Zhen Wang, Chun Zhang()   

  1. College of life science and technology, Huazhong University of Science and Technology, Wuhan 430000, China
  • Received:2023-07-10 Revised:2023-10-18 Online:2024-03-24 Published:2024-02-23
  • Contact: * e-mail: chunzhang@hust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22275062); National Natural Science Foundation of China(22005110); Undergraduates Research Training Program(S202310487273)

蛋白质作为一类重要的生物大分子,由于其特殊的三维空间结构及高效的催化活性,在生物催化、药物递送以及分子成像等化工及医学领域有着广泛的应用。然而,由于其具有稳定性较低、免疫原性较强、有机溶剂中溶解性差等缺陷,应用受到限制。聚合物修饰是解决上述问题的重要方法之一,能够从多方面改善蛋白质的功能,扩展蛋白质的应用。从此角度出发,本综述聚焦于最新的研究,总结了利用聚合物修饰改善蛋白质稳定性和活性、免疫原性、溶解性、自组装的合成方法、原理、应用、现存问题及解决方法。在此基础上,分析了该策略在商业及临床转化过程中面临的挑战及发展趋势。

As a kind of important biological macromolecules, proteins have been widely used in chemical and medical fields, such as biocatalysis, drug delivery, and molecular imaging due to their special three-dimensional spatial structure and high catalytic activity. However, there are a series of problems in the practical application of proteins. For example, proteins are easily inactivated in extreme environments. Protein drugs have strong immunogenicity in vivo, which leads to short half-life of drugs and causes adverse reactions in patients easily. Their low solubility in organic solvents limits their use in organic solvents. In order to solve the above problems, researchers have developed methods such as protein engineering and co-immobilization, but there are corresponding shortcomings. Polymer modification is one of the important methods, which can improve the properties of proteins from many aspects and expand the application of proteins. From this point of view, this review focuses on the latest research and classical literature on polymer-modified proteins, and introduces their ingenious modification methods to synthesize materials with excellent properties. The principle, practical application, existing problems and solutions of improving protein stability and activity, immunogenicity, solubility and self-assembly by polymer modification are summarized. On this basis, the challenges and possible development trends in the commercial and clinical translation of this strategy are analyzed.

Contents

1 Introduction

2 Stability and activity

2.1 Stability to temperature and pH

2.2 Stability to protease hydrolysis

2.3 Stability of chemical denaturants

2.4 Enhanced enzyme activity

2.5 Regulation of enzyme activity

3 Immunogenicity

4 Solubility

5 Self-assembly

5.1 Drug delivery

5.2 Molecular imaging

6 Conclusion and outlook

()
图1 不同接枝方法的原理及其优缺点
Fig. 1 The principles and advantages and disadvantages of different grafting methods.
图2 聚合物修饰通过稳定蛋白质展开时中间体的结构而提升蛋白质的稳定性[1]
Fig. 2 Polymer modifications enhance protein stability by stabilizing the structure of the protein’s partially unfolded intermediate[1]
图3 PAA在过氧化氢酶周围形成交联的网络结构限制蛋白酶等大分子的接近,增加对蛋白酶水解的抵抗力[53]
Fig. 3 PAA forms a cross-linked network structure around catalase to restrict the proximity of macromolecules such as protease and increase the resistance to protease hydrolysis[53]
图4 GOX/HRP-PHPMA偶联物的合成原理及其实现复合酶级联反应,增加反应效率的过程[62]
Fig. 4 The synthesis principle of GOX/HRP-PHPMA conjugates and the process of realizing complex enzyme cascade reaction to increase reaction efficiency[62]
图5 温度响应性BSA-PNIPAAM偶联物的合成,偶联物吸附IS,并通过热沉淀回收IS[92]
Fig. 5 Synthesis of the thermally responsive polymer-protein conjugate system. Then the conjugate capture IS. Finally, the captured IS is recovered by thermal precipitation[92]
图6 表面修饰配体的负载阿霉素的BSA-PCL囊泡的合成及其增加对肿瘤组织的靶向性的过程[99]
Fig. 6 Synthesis of doxorubicin-loaded BSA-PCL vesicles with surface-modified ligands and its increased targeting to tumor tissue [99]
图7 HSA-PDPA/ICG(HDI)纳米探针的合成、pH响应性及肿瘤组织的特异性成像[30]
Fig. 7 Synthesis, pH response and tumor specific imaging of HSA-PDPA/ICG (HDI) nanoprobes[30]
图8 避免蛋白质-聚合物偶联物活性降低的措施:A可逆连接;B特定位点修饰;C 基因编辑
Fig. 8 Measures to avoid decreased activity of protein- polymer conjugates: A reversible linkage; B site-specific modifications; C gene editing
表1 目前正在使用和开发的PEG替代品的例子,PG,聚甘油; PAOx,聚(2-烷基-2- 唑啉)
Table 1 Examples of current alternatives to PEG in use and development. PG, poly (glycerol); PAOx, poly (2-oxazoline)s
[1]
Baker S L, Munasinghe A, Murata H, Lin P, Matyjaszewski K, Colina C M, Russell A J. Biomacromolecules, 2018, 19 (9): 3798.

doi: 10.1021/acs.biomac.8b00927     URL    
[2]
Liu S J, Jiang S Y. Nano Today, 2016, 11 (3): 285.

doi: 10.1016/j.nantod.2016.05.006     URL    
[3]
Ingenbosch K N, Vieyto-Nuñez J C, Ruiz-Blanco Y B, Mayer C, Hoffmann-Jacobsen K, Sanchez-Garcia E. J. Org. Chem., 2022, 87 (3): 1669.

doi: 10.1021/acs.joc.1c01136     URL    
[4]
Silva C, Martins M, Jing S, Fu J J, Cavaco-Paulo A. Crit. Rev. Biotechnol., 2018, 38 (3): 335.

doi: 10.1080/07388551.2017.1355294     URL    
[5]
Bosio V E, Islan G A, Martinez Y N, Duran N, Castro G R. Crit. Rev. Biotechnol., 2016, 36 (3): 447.
[6]
Kujawa J, Glodek M, Li G Q, Al-Gharabli S, Knozowska K, Kujawski W. Sci. Total Environ., 2021, 801: 149647.

doi: 10.1016/j.scitotenv.2021.149647     URL    
[7]
Russell A J, Baker S L, Colina C M, Figg C A, Kaar J L, Matyjaszewski K, Simakova A, Sumerlin B S. AIChE. J., 2018, 64 (9): 3230.

doi: 10.1002/aic.v64.9     URL    
[8]
Ge J, Lei J D, Zare R N. Nat. Nanotechnol., 2012, 7 (7): 428.

doi: 10.1038/nnano.2012.80    
[9]
Khan S, Babadaei M M N, Hasan A, Edis Z, Attar F, Siddique R, Bai Q, Sharifi M, Falahati M. J. Adv. Res., 2021, 33: 227.

doi: 10.1016/j.jare.2021.01.012     URL    
[10]
Pagar A D, Patil M D, Flood D T, Yoo T H, Dawson P E, Yun H. Chem. Rev., 2021, 121 (10): 6173.

doi: 10.1021/acs.chemrev.0c01201     URL    
[11]
Drienovská I, Roelfes G. Nat. Catal., 2020, 3 (3): 193.

doi: 10.1038/s41929-019-0410-8    
[12]
Pessatti T B, Terenzi H, Bertoldo J B. Catalysts, 2021, 11 (12): 1466.

doi: 10.3390/catal11121466     URL    
[13]
Shadish J A, DeForest C A. Matter, 2020, 2 (1): 50.

doi: 10.1016/j.matt.2019.11.011     URL    
[14]
Abuchowski A, van Es T, Palczuk N C, Davis F F. J. Biol. Chem., 1977, 252 (11): 3578.

doi: 10.1016/S0021-9258(17)40291-2     URL    
[15]
Cobo I, Li M, Sumerlin B S, Perrier S. Nat. Mater., 2015, 14 (2): 143.

doi: 10.1038/nmat4106    
[16]
Schulz J D, Patt M, Basler S, Kries H, Hilvert D, Gauthier M A, Leroux J C. Adv. Mater., 2016, 28 (7): 1455.

doi: 10.1002/adma.v28.7     URL    
[17]
Murata H, Carmali S, Baker S L, Matyjaszewski K, Russell A J. Nat. Commun., 2018, 9 (1): 845.

doi: 10.1038/s41467-018-03153-8    
[18]
Liu X Y, Gao W P. Angewandte Chemie, International Edition, 2021, 60 (20): 11024.

doi: 10.1002/anie.v60.20     URL    
[19]
Cao L M, Shi X J, Cui Y C, Yang W K, Chen G J, Yuan L, Chen H. Polym. Chem., 2016, 7 (32): 5139.

doi: 10.1039/C6PY00882H     URL    
[20]
Messina M S, Messina K M M, Bhattacharya A, Montgomery H R, Maynard H D. Prog. Polym. Sci., 2020, 100: 101186.

doi: 10.1016/j.progpolymsci.2019.101186     URL    
[21]
Wright T A, Page R C, Konkolewicz D. Polym. Chem., 2019, 10 (4): 434.

doi: 10.1039/C8PY01399C     URL    
[22]
Giri P, Pagar A D, Patil M D, Yun H. Biotechnol. Adv., 2021, 53: 107868.

doi: 10.1016/j.biotechadv.2021.107868     URL    
[23]
Duncan R. J. Drug Target., 2017, 25 (9-10): 759.
[24]
Ekladious I, Colson Y L, Grinstaff M W. Nat. Rev. Drug Discov., 2019, 18 (4): 273.

doi: 10.1038/s41573-018-0005-0    
[25]
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh S B, Mehra N K. Drug Discov. Today, 2020, 25 (9): 1718.

doi: 10.1016/j.drudis.2020.06.028     URL    
[26]
Mukherjee I, Sinha S K, Datta S, De P. Biomacromolecules, 2018, 19 (6): 2286.

doi: 10.1021/acs.biomac.8b00258     URL    
[27]
Huynh V, Ifraimov N, Wylie R G. Polymers, 2021, 13 (16): 2772.

doi: 10.3390/polym13162772     URL    
[28]
MacKenzie K J, Francis M B. J. Am. Chem. Soc., 2013, 135 (1): 293.

doi: 10.1021/ja309277v     URL    
[29]
Rahman M S, Brown J, Murphy R, Carnes S, Carey B, Averick S, Konkolewicz D, Page R C. Biomacromolecules, 2021, 22 (2): 309.

doi: 10.1021/acs.biomac.0c01159     URL    
[30]
Li P Y, Sun M M, Xu Z K, Liu X Y, Zhao W G, Gao W P. Biomacromolecules, 2018, 19 (11): 4472.

doi: 10.1021/acs.biomac.8b01368     URL    
[31]
Kim J S, Sirois A R, Vazquez Cegla A J, Jumai'an E, Murata N, Buck M E, Moore S J. Bioconjugate Chem., 2019, 30 (4): 1220.

doi: 10.1021/acs.bioconjchem.9b00155     URL    
[32]
Kaupbayeva B, Russell A J. Prog. Polym. Sci., 2020, 101: 101194.

doi: 10.1016/j.progpolymsci.2019.101194     URL    
[33]
Xiong Q Y, Zhang X Y, Wei W F, Wei G, Su Z Q. Polym. Chem., 2020, 11 (10): 1673.

doi: 10.1039/D0PY00136H     URL    
[34]
Pelegri-O'Day E M, Lin E W, Maynard H D. J. Am. Chem. Soc., 2014, 136 (41): 14323.

doi: 10.1021/ja504390x     URL    
[35]
Choi J M, Han S S, Kim H S. Biotechnol. Adv., 2015, 33 (7): 1443.

doi: 10.1016/j.biotechadv.2015.02.014     URL    
[36]
Averick S, Simakova A, Park S, Konkolewicz D, Magenau A J D, Mehl R A, Matyjaszewski K. ACS Macro Lett., 2012, 1 (1): 6.

doi: 10.1021/mz200020c     URL    
[37]
Tian K Y, Tai K E, Chua B J W, Li Z. Bioresour. Technol., 2017, 245 (Pt B): 1491.
[38]
Zaak H, Siar E H, Kornecki J F, Fernandez-Lopez L, Pedrero S G, Virgen-Ortíz J J, Fernandez-Lafuente R. Process. Biochem., 2017, 56: 117.

doi: 10.1016/j.procbio.2017.02.024     URL    
[39]
Kovaliov M, Allegrezza M L, Richter B, Konkolewicz D, Averick S. Polymer, 2018, 137: 338.

doi: 10.1016/j.polymer.2018.01.026     URL    
[40]
Milczek E M. Chem. Rev., 2018, 118 (1): 119.

doi: 10.1021/acs.chemrev.6b00832     URL    
[41]
Cummings C S, Campbell A S, Baker S L, Carmali S, Murata H, Russell A J. Biomacromolecules, 2017, 18 (2): 576.

doi: 10.1021/acs.biomac.6b01723     URL    
[42]
Cummings C, Murata H, Koepsel R, Russell A J. Biomacromolecules, 2014, 15 (3): 763.

doi: 10.1021/bm401575k     URL    
[43]
Campbell A S, Murata H, Carmali S, Matyjaszewski K, Islam M F, Russell A J. Biosens. Bioelectron., 2016, 86: 446.

doi: 10.1016/j.bios.2016.06.078     URL    
[44]
Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Williams C, Nix J C, Konkolewicz D, Page R C, Berberich J A. Biomacromolecules, 2016, 17 (3): 1123.

doi: 10.1021/acs.biomac.5b01743     URL    
[45]
Rodríguez-Martínez J A, Solá R J, Castillo B, Cintrón-Colón H R, Rivera-Rivera I, Barletta G, Griebenow K. Biotechnol. Bioeng., 2008, 101 (6): 1142.

doi: 10.1002/bit.v101:6     URL    
[46]
Yang C, Lu D N, Liu Z. Biochemistry, 2011, 50 (13): 2585.

doi: 10.1021/bi101926u     URL    
[47]
Farhadian S, Shareghi B, Saboury A A, Babaheydari A K, Raisi F, Heidari E. Int. J. Biol. Macromol., 2016, 92: 523.

doi: 10.1016/j.ijbiomac.2016.07.069     URL    
[48]
Munasinghe A, Baker S L, Lin P, Russell A J, Colina C M. Soft Matter, 2020, 16 (2): 456.

doi: 10.1039/C9SM01842E     URL    
[49]
Grigoletto A, Mero A, Zanusso I, Schiavon O, Pasut G. Macromol. Biosci., 2016, 16 (1): 50.

doi: 10.1002/mabi.v16.1     URL    
[50]
Sharma S, Kaur P, Jain A, Rajeswari M R, Gupta M N. Biomacromolecules, 2003, 4 (2): 330.

doi: 10.1021/bm0256799     URL    
[51]
Verduzco L E, García-Pérez A L, Guerrero-Santos R, Ledezma-Pérez A, Romero-García J, Torres-Lubián J R. Can. J. Chem., 2021, 99 (1): 10.

doi: 10.1139/cjc-2020-0181     URL    
[52]
Polizzi K M, Bommarius A S, Broering J M, Chaparro-Riggers J F. Curr. Opin. Chem. Biol., 2007, 11 (2): 220.

doi: 10.1016/j.cbpa.2007.01.685     URL    
[53]
Riccardi C M, Cole K S, Benson K R, Ward J R, Bassett K M, Zhang Y R, Zore O V, Stromer B, Kasi R M, Kumar C V. Bioconjugate Chem., 2014, 25 (8): 1501.

doi: 10.1021/bc500233u     URL    
[54]
Sen S, Martin J D, Argyropoulos D S. ACS Sustainable Chem. Eng., 2013, 1 (8): 858.

doi: 10.1021/sc400085a     URL    
[55]
Wright T A, Dougherty M L, Schmitz B, Burridge K M, Makaroff K, Stewart J M, Fischesser H D, Shepherd J T, Berberich J A, Konkolewicz D, Page R C. Bioconjugate Chem., 2017, 28 (10): 2638.

doi: 10.1021/acs.bioconjchem.7b00518     URL    
[56]
Cui Y C, Li Z H, Wang L, Liu F, Yuan Y Q, Wang H W, Xue L L, Pan J J, Chen G J, Chen H, Yuan L. J. Mater. Chem. B, 2016, 4 (32): 5437.

doi: 10.1039/C6TB01251E     URL    
[57]
Tucker B S, Coughlin M L, Figg C A, Sumerlin B S. ACS Macro Lett., 2017, 6 (4): 452.

doi: 10.1021/acsmacrolett.7b00140     URL    
[58]
Hwang E T, Lee S. ACS Catal., 2019, 9 (5): 4402.

doi: 10.1021/acscatal.8b04921     URL    
[59]
Benítez-Mateos A I, Roura Padrosa D, Paradisi F. Nat. Chem., 2022, 14 (5): 489.

doi: 10.1038/s41557-022-00931-2    
[60]
Vaidya B K, Ingavle G C, Ponrathnam S, Kulkarni B D, Nene S N. Bioresour. Technol., 2008, 99 (9): 3623.

doi: 10.1016/j.biortech.2007.07.035     URL    
[61]
Zhang Y, Wang B-C, Wang P, Ju X-J, Zhang M-J, Xie R, Liu Z, Wang W, Chu L-Y. React. Chem. Eng., 2022, 7 (2): 275.

doi: 10.1039/D1RE00257K     URL    
[62]
Chiang C W, Liu X, Sun J, Guo J, Tao L, Gao W. Nano Lett., 2020, 20 (2): 1383.

doi: 10.1021/acs.nanolett.9b04959     URL    
[63]
Wang L, Yuan L, Wang H W, Liu X L, Li X M, Chen H. Bioconjugate Chem., 2014, 25 (7): 1252.

doi: 10.1021/bc5000934     URL    
[64]
Li X, Wang L, Chen G J, Haddleton D M, Chen H. Chem. Commun., 2014, 50 (49): 6506.

doi: 10.1039/C4CC02277G     URL    
[65]
Yang W K, Zhu L J, Cui Y C, Wang H W, Wang Y W, Yuan L, Chen H. ACS Appl. Mater. Interfaces, 2016, 8 (25): 15967.

doi: 10.1021/acsami.6b05408     URL    
[66]
Sheremet'ev S V, Lonshakov D V, Belosludtseva E M, Borisova O V, Sidorova A V, Kalinskii A V. Pharm. Chem. J., 2021, 55 (7): 698.

doi: 10.1007/s11094-021-02480-3    
[67]
Zhang X W, Wang H, Ma Z G, Wu B J. Expert Opin. Drug Metab. Toxicol., 2014, 10 (12): 1691.

doi: 10.1517/17425255.2014.967679     URL    
[68]
Lee K L, Shukla S, Wu M Z, Ayat N R, El Sanadi C E, Wen A M, Edelbrock J F, Pokorski J K, Commandeur U, Dubyak G R, Steinmetz N F. Acta Biomater., 2015, 19: 166.

doi: 10.1016/j.actbio.2015.03.001     URL    
[69]
Harris J M, Chess R B. Nat. Rev. Drug Discov., 2003, 2 (3): 214.

doi: 10.1038/nrd1033     URL    
[70]
Steinmetz N F, Manchester M. Biomacromolecules, 2009, 10 (4): 784.

doi: 10.1021/bm8012742     URL    
[71]
Mok H, Palmer D J, Ng P, Barry M A. Mol. Ther., 2005, 11 (1): 66.

doi: 10.1016/j.ymthe.2004.09.015     URL    
[72]
Eto Y, Yoshioka Y, Ishida T, Yao X L, Morishige T, Narimatsu S, Mizuguchi H, Mukai Y, Okada N, Kiwada H, Nakagawa S. Biol. Pharm. Bull., 2010, 33 (9): 1540.

doi: 10.1248/bpb.33.1540     URL    
[73]
Church D C, Davis E, Caparco A A, Takiguchi L, Chung Y H, Steinmetz N F, Pokorski J K. Cell Rep. Phys. Sci., 2022, 3 (10): 101067.
[74]
Crooke S N, Zheng J K, Ganewatta M S, Guldberg S M, Reineke T M, Finn M G. ACS Appl. Bio Mater., 2019, 2 (1): 93.

doi: 10.1021/acsabm.8b00418     URL    
[75]
Wu J R, Lu S Z, Zheng Z Y, Zhu L, Zhan X B. Prep. Biochem. Biotechnol., 2016, 46 (8): 788.

doi: 10.1080/10826068.2015.1135463     URL    
[76]
Lee P W, Isarov S A, Wallat J D, Molugu S K, Shukla S, Sun J E P, Zhang J, Zheng Y, Lucius Dougherty M, Konkolewicz D, Stewart P L, Steinmetz N F, Hore M J A, Pokorski J K. J. Am. Chem. Soc., 2017, 139 (9): 3312.

doi: 10.1021/jacs.6b11643     URL    
[77]
Kinnear C, Moore T L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Chem. Rev., 2017, 117 (17): 11476.

doi: 10.1021/acs.chemrev.7b00194     URL    
[78]
Stevens C A, Kaur K, Klok H A. Adv. Drug Deliv. Rev., 2021, 174: 447.

doi: 10.1016/j.addr.2021.05.002     URL    
[79]
Hu L, Zhang Y Y, Gao C Y. Progress in Chemistry, 2009, 21: 1254.
(胡玲, 张裕英, 高长有. 化学进展, 2009, 21: 1254.)
[80]
Konieczny S, Krumm C, Doert D, Neufeld K, Tiller J C. J. Biotechnol., 2014, 181: 55.

doi: 10.1016/j.jbiotec.2014.03.035     URL    
[81]
Sheng S L, Farinas E T. Catalysts, 2021, 11 (5): 606.

doi: 10.3390/catal11050606     URL    
[82]
Zhao H. Biotechnol. Adv., 2020, 45: 107638.

doi: 10.1016/j.biotechadv.2020.107638     URL    
[83]
Li Y, Zhang R, Xu Y. Int. J. Biol. Macromol., 2021, 168: 412.

doi: 10.1016/j.ijbiomac.2020.12.068     URL    
[84]
Ismail A R, Kashtoh H, Baek K H. Int. J. Biol. Macromol., 2021, 187: 127.

doi: 10.1016/j.ijbiomac.2021.07.101     URL    
[85]
Chado G R, Holland E N, Tice A K, Stoykovich M P, Kaar J L. ACS Catal., 2018, 8 (12): 11579.

doi: 10.1021/acscatal.8b03779     URL    
[86]
Konieczny S, Leurs M, Tiller J C. ChemBioChem, 2015, 16 (1): 83.

doi: 10.1002/cbic.v16.1     URL    
[87]
Cummings C S, Murata H, Matyjaszewski K, Russell A J. ACS Macro Lett., 2016, 5 (4): 493.

doi: 10.1021/acsmacrolett.6b00137     URL    
[88]
Baker S L, Munasinghe A, Kaupbayeva B, Rebecca Kang N, Certiat M, Murata H, Matyjaszewski K, Lin P, Colina C M, Russell A J. Nat. Commun., 2019, 10 (1): 4718.

doi: 10.1038/s41467-019-12612-9    
[89]
Takahashi K, Nishimura H, Yoshimoto T, Saito Y, Inada Y. Biochem. Biophys. Res. Commun., 1984, 121 (1): 261.

doi: 10.1016/0006-291X(84)90716-2     URL    
[90]
Inada Y, Takahashi K, Yoshimoto T, Kodera Y, Matsushima A, Saito Y. Trends Biotechnol., 1988, 6 (6): 131.

doi: 10.1016/0167-7799(88)90103-5     URL    
[91]
Matsushima A, Kodera Y, Hiroto M, Nishimura H, Inada Y. J. Mol. Catal. B: Enzym., 1996, 2 (1): 1.

doi: 10.1016/1381-1177(96)00003-3     URL    
[92]
Yoshihara E, Sasaki M, Nabil A, Iijima M, Ebara M. Molecules, 2022, 27 (3): 1051.

doi: 10.3390/molecules27031051     URL    
[93]
Steiert E, Ewald J, Wagner A, Hellmich U A, Frey H, Wich P R. Polym. Chem., 2020, 11 (2): 551.

doi: 10.1039/C9PY01162E     URL    
[94]
Wang L, Gong C C, Yuan X Z, Wei G. Nanomaterials, 2019, 9 (2): 285.

doi: 10.3390/nano9020285     URL    
[95]
Varlas S, Maitland G L, Derry M J. Polymers, 2021, 13 (16): 2603.

doi: 10.3390/polym13162603     URL    
[96]
Shirinichi F, Ibrahim T, Rodriguez M, Sun H. J. Polym. Sci., 2023, 61 (8): 631.

doi: 10.1002/pola.v61.8     URL    
[97]
Ko J H, Maynard H D. Chem. Soc. Rev., 2018, 47 (24): 8998.

doi: 10.1039/C8CS00606G     URL    
[98]
Hannink J M, Cornelissen J J L M, Farrera J A, Foubert P, De Schryver F C, Sommerdijk N A J M, Nolte R J M. Angewandte Chemie, International Edition, 2001, 40 (24): 4732.

doi: 10.1002/1521-3773(20011217)40:24【-逻*辑*与-】amp;lt;【-逻*辑*与-】amp;gt;1.0.CO;2-C     URL    
[99]
Liu Z Y, Dong C H, Wang X M, Wang H J, Li W, Tan J, Chang J. ACS Appl. Mater. Interfaces, 2014, 6 (4): 2393.

doi: 10.1021/am404734c     URL    
[100]
Huang A, Paloni J M, Wang A, Obermeyer A C, Sureka H V, Yao H, Olsen B D. Biomacromolecules, 2019, 20 (10): 3713.

doi: 10.1021/acs.biomac.9b00768     URL    
[101]
Lam C N, Olsen B D. Soft Matter, 2013, 9 (8): 2393.

doi: 10.1039/c2sm27459k     URL    
[102]
Dutta K, Kanjilal P, Das R, Thayumanavan S. Angewandte Chemie, International Edition, 2021, 60 (4): 1821.

doi: 10.1002/anie.v60.4     URL    
[103]
Moatsou D, Li J, Ranji A, Pitto-Barry A, Ntai I, Jewett M C, O'Reilly R K. Bioconjugate Chem., 2015, 26 (9): 1890.

doi: 10.1021/acs.bioconjchem.5b00264     URL    
[104]
Bao C Y, Chen J, Li D, Zhang A T, Zhang Q. Polym. Chem., 2020, 11 (7): 1386.

doi: 10.1039/C9PY01462D     URL    
[105]
Dong X H, Obermeyer A C, Olsen B D. Angewandte Chemie, International Edition, 2017, 56 (5): 1273.

doi: 10.1002/anie.v56.5     URL    
[106]
Viana D B, Mathieu-Gaedke M, Leão N M, Böker A, Ferreira Soares D C, Glebe U, Tebaldi M L. J. Drug Deliv. Sci. Technol., 2023, 79: 103995.
[107]
Jiang Y Y, Wong S, Chen F, Chang T, Lu H X, Stenzel M H. Bioconjugate Chem., 2017, 28 (4): 979.

doi: 10.1021/acs.bioconjchem.6b00698     URL    
[108]
Bartnikowski M, Dargaville T R, Ivanovski S, Hutmacher D W. Prog. Polym. Sci., 2019, 96: 1.

doi: 10.1016/j.progpolymsci.2019.05.004     URL    
[109]
Cummings C S, Fein K, Murata H, Ball R L, Russell A J, Whitehead K A. J. Control. Release, 2017, 255: 270.

doi: 10.1016/j.jconrel.2017.04.035     URL    
[110]
Li Z C, Li G K, Hu Y L. Progress in Chemistry, 2017, 29: 1480.
(李子程, 李攻科, 胡玉玲. 化学进展, 2017, 29: 1480.)
[111]
Vanparijs N, De Coen R, Laplace D, Louage B, Maji S, Lybaert L, Hoogenboom R, De Geest B G. Chem. Commun., 2015, 51 (73): 13972.

doi: 10.1039/C5CC04809E     URL    
[112]
Edwardson T G W, Levasseur M D, Tetter S, Steinauer A, Hori M, Hilvert D. Chem. Rev., 2022, 122 (9): 9145.

doi: 10.1021/acs.chemrev.1c00877     URL    
[113]
Rother M, Nussbaumer M G, Renggli K, Bruns N. Chem. Soc. Rev., 2016, 45 (22): 6213.

doi: 10.1039/C6CS00177G     URL    
[114]
Nussbaumer M G, Duskey J T, Rother M, Renggli K, Chami M, Bruns N. Adv. Sci. (Weinheim, Ger.), 2016, 3 (10): 1600046.
[115]
Kim P H, Kim J, Kim T I, Nam H Y, Yockman J W, Kim M, Kim S W, Yun C O. Biomaterials, 2011, 32 (35): 9328.

doi: 10.1016/j.biomaterials.2011.08.066     URL    
[116]
Thambi T, Hong J, Yoon A R, Yun C O. Cancer Gene Ther., 2022, 29 (10): 1321.

doi: 10.1038/s41417-022-00469-y    
[117]
Kim P H, Kim T I, Yockman J W, Kim S W, Yun C O. Biomaterials, 2010, 31 (7): 1865.

doi: 10.1016/j.biomaterials.2009.11.043     URL    
[118]
Sun Y P, Lv X Q, Ding P T, Wang L, Sun Y J, Li S, Zhang H M, Gao Z B. Acta Biomater., 2019, 97: 93.

doi: 10.1016/j.actbio.2019.06.059     URL    
[119]
Luo Y N, Wang X N, Du D, Lin Y H. Biomater. Sci., 2015, 3 (10): 1386.

doi: 10.1039/C5BM00067J     URL    
[120]
Duret D, Haftek-Terreau Z, Carretier M, Berki T, Ladavière C, Monier K, Bouvet P, Marvel J, Leverrier Y, Charreyre M T, Favier A. Polym. Chem., 2018, 9 (14): 1857.

doi: 10.1039/C7PY02064C     URL    
[121]
Duret D, Haftek-Terreau Z, Carretier M, Ladavière C, Charreyre M T, Favier A. Polym. Chem., 2017, 8 (10): 1611.

doi: 10.1039/C6PY02222G     URL    
[122]
Berki T, Bakunts A, Duret D, Fabre L, Ladavière C, Orsi A, Charreyre M T, Raimondi A, van Anken E, Favier A. ACS Omega, 2019, 4 (7): 12841.

doi: 10.1021/acsomega.9b01643     URL    
[123]
Zhang Y C, Gambardella A, Üçüncü M, Geng J, Clavadetscher J, Bradley M, Lilienkampf A. Chem. Commun., 2020, 56 (89): 13856.

doi: 10.1039/D0CC04591H     URL    
[124]
Majonis D, Ornatsky O, Weinrich D, Winnik M A. Biomacromolecules, 2013, 14 (5): 1503.

doi: 10.1021/bm4001662     URL    
[125]
Zhang L B, Zhao W G, Liu X Y, Wang G L, Wang Y, Li D, Xie L Z, Gao Y, Deng H T, Gao W P. Biomaterials, 2015, 64: 2.

doi: 10.1016/j.biomaterials.2015.06.020     URL    
[126]
Chatelain P, Malievskiy O, Radziuk K, Senatorova G, Abdou M O, Vlachopapadopoulou E, Skorodok Y, Peterkova V, Leff J A, Beckert M, Group T T G W. J. Clin. Endocrinol. Metab., 2017, 102 (5): 1673.

doi: 10.1210/jc.2016-3776     URL    
[127]
Sprogøe K, Mortensen E, Karpf D B, Leff J A. Endocr. Connect., 2017, 6 (8): R171.

doi: 10.1530/EC-17-0203     URL    
[128]
Ebied A M, Patel K H, Cooper-DeHoff R M. Am. J. Med., 2020, 133 (6): 675.

doi: 10.1016/j.amjmed.2020.01.030     URL    
[129]
Chowdary P, Fosbury E, Riddell A, Mathias M. J. Blood Med., 2016, 7: 187.

doi: 10.2147/JBM     URL    
[130]
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra L A, Patel M, Thakkar H. Int. J. Pharm., 2022, 623: 121863.

doi: 10.1016/j.ijpharm.2022.121863     URL    
[131]
Chen C J, Ng D Y W, Weil T. Prog. Polym. Sci., 2020, 105: 101241.

doi: 10.1016/j.progpolymsci.2020.101241     URL    
[132]
Mukhopadhyay A, Das T, Datta A, Sharma K P. Biomacromolecules, 2018, 19 (3): 943.

doi: 10.1021/acs.biomac.7b01729     URL    
[133]
Brendel J C, Catrouillet S, Sanchis J, Jolliffe K A, Perrier S. Polym. Chem., 2019, 10 (20): 2616.

doi: 10.1039/C9PY00179D     URL    
[134]
Brendel J C, Sanchis J, Catrouillet S, Czuba E, Chen M Z, Long B M, Nowell C, Johnston A, Jolliffe K A, Perrier S. Angewandte Chemie, International Edition, 2018, 57 (51): 16678.

doi: 10.1002/anie.v57.51     URL    
[135]
Hu J, Wang G L, Zhao W G, Liu X Y, Zhang L B, Gao W P. Biomaterials, 2016, 96: 84.

doi: 10.1016/j.biomaterials.2016.04.035     URL    
[136]
Morgenstern J, Gil Alvaradejo G, Bluthardt N, Beloqui A, Delaittre G, Hubbuch J. Biomacromolecules, 2018, 19 (11): 4250.

doi: 10.1021/acs.biomac.8b01020     URL    
[137]
Tucker B S, Stewart J D, Aguirre J I, Holliday L S, Figg C A, Messer J G, Sumerlin B S. Biomacromolecules, 2015, 16 (8): 2374.

doi: 10.1021/acs.biomac.5b00623     URL    
[138]
Rose D A, Treacy J W, Yang Z J, Ko J H, Houk K N, Maynard H D. J. Am. Chem. Soc., 2022, 144 (13): 6050.

doi: 10.1021/jacs.2c01136     URL    
[139]
Diehl K L, Kolesnichenko I V, Robotham S A, Bachman J L, Zhong Y, Brodbelt J S, Anslyn E V. Nat. Chem., 2016, 8 (10): 968.

doi: 10.1038/nchem.2601    
[140]
Liu B, Ianosi-Irimie M, Thayumanavan S. ACS Nano, 2019, 13 (8): 9408.

doi: 10.1021/acsnano.9b04198     URL    
[141]
Zhao E L, Soltani M, Smith A K, Hunt J P, Knotts T A IV, Bundy B C. J. Biotechnol., 2022, 345: 55.

doi: 10.1016/j.jbiotec.2021.12.016     URL    
[142]
Li H, Yang Y Y, Li G P, Wang X, Hu J X, Rong M X, Rong J. Chinese Journal of Biologicals, 2021, 34: 941.
(李欢, 杨玉莹, 李国攀, 王席, 胡基雄, 荣明轩, 荣俊. 中国生物制品学杂志, 2021, 34: 941.).
[143]
Khalil A, Würthwein G, Golitsch J, Hempel G, Fobker M, Gerss J, Möricke A, Zimmermann M, Smisek P, Zucchetti M, Nath C, Attarbaschi A, Von Stackelberg A, Gökbuget N, Rizzari C, Conter V, Schrappe M, Boos J, Lanvers-Kaminsky C. Haematologica, 2022, 107 (1): 49.

doi: 10.3324/haematol.2020.258525     URL    
[144]
Risma K A, Edwards K M, Hummell D S, Little F F, Norton A E, Stallings A, Wood R A, Milner J D. J. Allergy Clin. Immunol., 2021, 147 (6): 2075.

doi: 10.1016/j.jaci.2021.04.002     URL    
[145]
Bigini P, Gobbi M, Bonati M, Clavenna A, Zucchetti M, Garattini S, Pasut G. Nat. Nanotechnol., 2021, 16 (11): 1169.

doi: 10.1038/s41565-021-01001-3    
[146]
Zhang R S, Jain S, Rowland M, Hussain N, Agarwal M, Gregoriadis G. J. Diabetes Sci. Technol., 2010, 4 (3): 532.

doi: 10.1177/193229681000400305     URL    
[147]
Duncan R, Vicent M J. Adv. Drug Deliv. Rev., 2010, 62 (2): 272.

doi: 10.1016/j.addr.2009.12.005     URL    
[148]
Smorodinsky N, Von Specht B U, Cesla R, Shaltiel S. Immunol. Lett., 1981, 2 (5/6): 305.

doi: 10.1016/0165-2478(81)90024-9     URL    
[149]
Viegas T X, Bentley M D, Harris J M, Fang Z H, Yoon K, Dizman B, Weimer R, Mero A, Pasut G, Veronese F M. Bioconjugate Chem., 2011, 22 (5): 976.

doi: 10.1021/bc200049d     URL    
[150]
Thomas A, Müller S S, Frey H. Biomacromolecules, 2014, 15 (6): 1935.

doi: 10.1021/bm5002608     URL    
[1] 罗文浩, 袁睿, 孙金元, 周连群, 罗小河, 罗阳. 金属有机框架纳米酶在临床检测中的应用[J]. 化学进展, 2023, 35(9): 1389-1398.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 陈蕾蕾, 陶永鑫, 胡欣, 冯宏博, 朱宁, 郭凯. 先进嵌段共聚物光刻胶设计[J]. 化学进展, 2023, 35(11): 1613-1624.
[4] 邓祥宇, 张宝昌, 曲倩. 蛋白化学合成中的片段增溶策略[J]. 化学进展, 2023, 35(11): 1579-1594.
[5] 王宇传. 金属组学和金属蛋白质组学技术于生物医药研究的应用[J]. 化学进展, 2023, 35(10): 1492-1504.
[6] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[7] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[8] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[9] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[10] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[11] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[12] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[13] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[14] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.