English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1727-1751 DOI: 10.7536/PC230702   后一篇

• 综述 •

高分子单晶:从结晶策略到功能化应用

吴天宇1,*(), 黄昊哲1, 汪骏豪1, 罗浩洋1, 徐军2, 叶海木1   

  1. 1 中国石油大学(北京)新能源与材料学院 北京 102249
    2 清华大学化学工程系 北京 100084
  • 收稿日期:2023-07-06 修回日期:2023-08-12 出版日期:2023-12-24 发布日期:2023-09-20
  • 基金资助:
    国家自然科学基金项目(52203030); 中国石油大学(北京)科研基金(2462022BJRC008)

Polymer Single Crystal: From Crystallization Strategy to Functionalized Application

Tianyu Wu1,*(), Haozhe Huang1, Junhao Wang1, Haoyang Luo1, Jun Xu2, Haimu Ye1   

  1. 1 College of New Energy and Materials, China University of Petroleum (Beijing),Beijing 102249, China
    2 Department of Chemical Engineering, Tsinghua University 100084, China
  • Received:2023-07-06 Revised:2023-08-12 Online:2023-12-24 Published:2023-09-20
  • Contact: *e-mail: wutianyu@cup.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52203030); China University of Petroleum(Beijing)Research Fund(2462022BJRC008)

现代高分子科学诞生一百年以来,高分子化学、高分子物理与高分子加工发展迅速,形成了较为完整的学科体系。作为高分子物理的重要构成部分,高分子结晶学聚焦于微观结晶过程,揭示高分子链独特的运动行为。高分子晶体依据其独立结构数目分为单晶和多晶,其中高分子单晶中分子链紧密排列,形貌表现出完美的几何对称性,具备优异的力学和光电性能。但由于分子链运动的复杂性,高分子单晶的培养仍然存在很大的困难。几十年来,大量科学家致力于高分子单晶的研究,获得了丰硕成果。在本文中,我们着眼于高分子单晶研究的历史与进展,细致论述了高分子单晶的结晶策略及其功能化应用,希望能对相关研究者提供有效的帮助。

In the 100 years since the birth of modern polymer science, polymer chemistry, polymer physics and polymer processing have developed rapidly and formed a more complete body of discipline. As an important part of polymer physics, polymer crystallography focuses on the microscopic crystallization process and reveals the unique behavior of polymer chains. Polymer crystals can be divided into single crystals and polycrystals according to the number of nuclei in an independence structure. Among them, polymer single crystals have closely arranged molecular chains and exhibit perfect geometrical symmetry in macroscopic morphology, with excellent mechanical and optoelectronic properties. However, due to the complexity of molecular chain movement, the formation of polymer single crystals is still very difficult. For decades, a large number of scientists have devoted themselves to the study of polymer single crystals and obtained abundant results. In this paper, we focus on the history and progress of polymer single crystal research, and carefully discuss the crystallization strategies of polymer single crystals and their functionalization applications, hoping to provide effective help to relevant researchers.

()
图1 聚乳酸片晶次级临界核尺寸的测定[13]
Fig. 1 Estimation of the size of critical secandary nucleus of melt-grown poly(L-lactide)lameller crystals[13]. Copyright 2020, American Chemical Society
图2 (a) iPB-1的Ⅲ型单层片晶及其对应的电子衍射图[25];(b) 0.5%二甲苯溶液中在100℃下生长的聚乙烯单晶,15 000倍[26]
Fig. 2 (a) Type-Ⅲ single lamella and corresponding electron diffraction pattern of single layer iPB-1[25]. (b) Single crystal of PE grown from 0.5% solution in xylene at 100℃. 15 000 x[26]. Copyright 1970 managed by AIP Publishing, Copyright 1970 John Wiley & Sons, Inc.
图3 (a) AFM高度图像和(b) TEM明场显微照片:P2VP199-b-PCL310单晶在20℃DMF/水混合物结晶。在(c) Tc = 60℃和(d)Tc = 0℃时分别结晶的iPB-1六角单晶和圆形单晶的TEM图像[31,32]
Fig. 3 (a) AFM height image and (b) TEM bright field micrograph of P2VP199-b-PCL310 single crystals formed inDMF/water mixture at 20℃. The inset shows the corresponding selected area electron diffraction pattern. TEM images of iPB-1 hexagonal and round single crystals crystallized at (c) Tc = 60℃ and (d)Tc = 0℃, respectively[31,32].Copyright 2013, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; Copyright 2014, American Chemical Society
图4 iPB-1薄膜在160℃下热处理15分钟后的基础上,(a) 在95℃下等温结晶30分钟,(b) 在110℃下等温结晶5天原子力显微图像[49]
Fig. 4 (a) BF electron micrograph and of an iPB-1 film that was heat-treated at 160℃ for 15 min and then isothermally crystallized at 95℃ for 30 min. (b) BF electron micrograph of an iPB-1 film that was heat-treated at 160℃ for 15 min and then isothermally crystallized at 110℃ for 5 days[49]. Topographic images of polyethylene single crystals of 32 K fraction grown from the melt.Copyright 2002 Wiley Periodicals, Inc
图5 (a)PE在NaCl表面结晶,显微镜下观察到PE的定向网状生长;(b)使用的结晶方法为在NaCl(001)表面结晶,后溶剂在晶体上蒸发,最终在显微镜下观察得到的图像[81]
Fig. 5 (a) Oriented network overgrowth of polyethylene grown on a surface of NaCl. Arrow indicates [110] NaCl direction. Immersion temperature 105℃; C-Pt replica; Shadow angle 45 °; 0.5-μ mark. (b)Incipient polyethylene “rose” structures grown by method B on (001) NaCl surfaces. Arrow indicates [110] direction of NaCl[81].Copyright 1966, John Wiley & Sons, Inc.
图6 (a)PE薄膜的电子显微照片,用高锰酸试剂蚀刻,分离复制,并用Pt-C遮蔽;(b)类似的聚乙烯薄膜经氯磺酸染色后的电子显微照片[84]
Fig. 6 (a) Electron micrograph of a film of polyethylene etched with permanganic reagent, detachment-replicated and shadowed with Pt-C; scale bar 1 μm. (b) Electron micrograph of a similar PE films stained with chlorosulfonic acid. Lamellae are properly oriented for visualization in only part of the field. A small fraction of the lamellae are oriented at right angles to the main orientation; scale bar 0.5 μm[84]. Copyright ? 1983 John Wiley & Sons, Inc.
图7 (a) 聚乙烯薄膜(Mw ≈ 20 000)温和冷却至室温结晶后用聚乙烯蒸气修饰后的表面形貌;(b) 聚氧乙烯单晶体(氯苯溶液,c ≈ 0.1%,Tc = 120℃)上修饰聚乙烯蒸气后的表面形貌, 标尺长度:1 μm[85]
Fig. 7 (a)Surface morphology of a thin film of polyethylene (Mw ≈ 20 000) crystallized by moderate cooling to room temperature and decorated with PE vapors. (b) Single crystal of polyoxymethylene (chlorobenzene solution, c ≈ 0.1%, Tc = 120℃) decorated with PE vapors. Scale bar: 1 μm[85].Copyright 1985, John Wiley & Sons, Inc.
图8 (a)POM显微照片,显示了玻片上的溶液结晶的PBA边界区域,该区域部分被高取向PE衬底覆盖。PE衬底位于图片右下角,箭头表示其分子链方向;(b)从(a)中相同区域拍摄的POM显微照片,但围绕光束逆时针旋转45°[89]
Fig. 8 (a) A POM micrograph shows a boundary region of PBA crystallized from solution on glass slide, which is partially covered with highly oriented PE substrate. The PE substrate is located in the lower right corner of the picture. The arrow indicates its molecular chain direction. (b) A POM micrograph taken from the same area as in (a) but rotated 45° anticlockwise about the light beam[89].Copyright 2006, American Chemical Society
图9 (a)定向聚乙烯(PE)薄膜的原子力显微镜高度图像;(b)生长在PE衬底上的聚(3-己基噻吩)的形态,白色箭头表示PE薄膜制备时的拉伸方向[78]
Fig. 9 AFM height images of (a) an oriented PE film and (b) the morphology of P3HT grown on the PE substrate. The white arrows indicate the drawing directions of PE films during preparation[78].Copyright 2011, American Chemical Society
图10 (a)实验装置示意图。该装置设计用于控制蒸发速率。盖上的小孔可使溶剂从稀溶液薄膜中缓慢蒸发。(b),(c)采用甲苯(1.8 μL/min)在室温下缓慢蒸发制备的iPpMS薄膜的光学显微照片(增强)。图像尺寸:(b)400 μm × 400 μm和(c)80 μm × 80 μm[96]
Fig. 10 (a)Schematic of the experimental setup. The setup is designed to control the evaporation rate. The small orifice on the cover allows for slow evaporation of the solvent from the dilute solution film. Optical micrographs (contrast enhanced) of the iPpMS film obtained by slow evaporation of toluene (1.8 μL/min) at room temperature. The size of the images: (b) 400 μm × 400 μm and (c) 80 μm × 80 μm[96].Copyright 2019, American Chemical Society
图11 PLLA-b-PEG嵌段共聚物晶体的制备。(a)BCP在甲苯中溶解。(b)95℃下进行乳化。(c)淬火至25℃结晶。该制备过程的驱动力是在甲苯/水界面上的约束导致PLLA结晶,并产生如(c)所示的九重链构造。该约束结晶过程形成了2.5 nm厚的PLLA晶体层,并覆盖着精确控制的均匀PEG刷层[99]
Fig. 11 Fabrication of PLLA-b-PEG block copolymer crystalsomes. (a)Dissolution of the BCP in toluene; (b) emulsification at 95℃; (c) quenching to 25℃ for crystallization. The driving force of this assembly process is confined PLLA crystallization at the toluene/water interface, leading to a ninefold PLLA chain conformation as shown in c. This confined crystallization process also leads to a 2.5 nm thick PLLA crystal layer, covered with a precisely controlled, uniform PEG brush layer[99]
图12 蛋白质结晶应用静滴蒸气扩散法示意图。待结晶溶液置于容器中设置的高台上,不良溶剂通过蒸气扩散的方式,最终使聚合物形成结晶[102]
Fig. 12 Schematic diagram of protein crystallization applying the static drop vapor diffusion method. The solution to be crystallized is placed on a raised platform set in a vessel, and the undesirable solvent is diffused by vapor, eventually causing the polymer to form crystals[102]. Copyright 2014, John Wiley & Sons, Inc
图13 (a)HS-PEO(2 K)单晶和(b,c)5 nm AuNP覆盖的HS-PEO(2 K)单晶的TEM显微照片。插图显示了FFT模式。(d)用5 nm AuNPs孵育后的HO-PEO(2 K)单晶。(e,f)金NP覆盖的HS-PEO(48.5K)单晶[152]
Fig. 13 TEM micrographs of (a) HS-PEO(2K) single crystals and (b, c) 5 nm AuNP-covered HS-PEO(2K) single crystals. The inset shows the FFT pattern. (d) HO-PEO(2K) single crystals after incubation with 5 nm AuNPs. (e, f) AuNP-covered HS-PEO(48.5K) single crystals[152]. Copyright 2008, American Chemical Society
图14 (i)HS-PEO片状单晶,在加入金胶体之前已经形成。PEO链与片状法线平行,硫醇基团在晶体表面。当金胶体被添加到HS-PEO溶液中时,AuNP-PEO共轭物通过位置交换反应形成。AuNP-PEO共轭物在已经形成的单晶周围结晶,产生AuNP框架(ii)。在这些共轭物用完后,PEO继续在AuNP框架周围结晶,形成空白边缘(iii)。1、2和3表示图案的三个不同区域[153]
Fig. 14 (i) A HS-PEO lamellar single crystal, which has already formed prior to the addition of gold colloid. The PEO chains are parallel to the lamellar normal and the thiol groups are on the crystal surface. As gold colloid is added to the HS-PEO solution, AuNP-PEO conjugates are formed via the place exchange reaction. The AuNP-PEO conjugates crystallize around the already formed single crystals, generating AuNP frames (ii). After these conjugates are exhausted, PEO continue to crystallize around the AuNP frames, forming a blank margin (iii). 1, 2, and 3 in part iii denote the three distinct regions of the pattern[153]. Copyright 2009, American Chemical Society
图15 梯田梯度PEO聚合物刷:(a)合成程序,(bi~fi)具有1~5个同心带的PEO单晶,(bii~fii)PEO 刷子有 1~5 个同心带,(biii~fiii)是bi~fi的放大图像,(g,h)具有5个条带的梯田梯度PEO刷的3D图像,(i)高度剖面和相应的σ,从虚线区域测量fiii[163]
Fig. 15 Terraced gradient PEO polymer brush. (a) Synthesis procedure. (bi~fi) PEO single crystal with 1~5 concentric bands; (bii~fii) PEO brushes with 1~5 concentric bands. (biii~fiii) are enlarged images of (bii~fii). (g,h) 3D images of the terraced gradient PEO brush with five bands. (i) height profile and the corresponding σ, measured from dash line area in fiii[163]. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图16 (a)偏光光学显微镜下溶剂辅助结晶的rr-P3BT单晶显微照片;(b)扫描电子显微镜下溶剂辅助结晶的典型P3BT单晶的显微照片,从右上角的放大插图中可以识别出在15.6 nm和104 nm之间变化的薄层厚度[213]
Fig. 16 Micrograph of a typical P3BT single crystal from solvent-assist crystallization under scanning electron microscopy. Lamellar thickness varying between 15.6 nm and 104 nm can be identified from enlarged inset picture in up-right corner. Schematic diagrams of molecular packing in the lamellar crystals, molecular chain direction c and growth direction b are also included as the inset[213]. Copyright 2006, Elsevier Ltd.
图17 (a)未退火的P3HT晶体形态,(b)退火12 h的P3HT晶体形态,(c)退火20 h的P3HT晶体形态,(d)退火42h的P3HT晶体形态[218]
Fig. 17 Time-dependent morphology of the P3HT crystals with different annealing times of 0 (a), 12 (b), 20 (c), and 42 h (d)[218]. Copyright 2010, American Chemical Society
图18 P3HT晶体的光学显微照片(放置时间=10 min,生长时间=4 h)。图像尺寸为25 μm×25 μm。(a)明场。(b)在交叉偏振器下,晶体的长轴与偏振器和分析仪成45°角。(c)在交叉偏振器下,晶体的长轴与偏振器成0°角。(d)显示红色发射颜色的光致发光图像。(e,d)中虚线所示横截面的R和G通道的强度分布。(f)P3HT熔体在280℃下的归一化吸收光谱(蓝色)、室温下的滴铸薄膜(绿色)和类似于(a~d)中所示的针状晶体(红色)。(g)长通滤波器后收集的针状晶体的光致发光光谱(在600~700 nm激发,在(f)中标记成阴影区域)[55]
Fig. 18 Optical micrographs of a P3HT crystal (theating = 10 min, tgrowth = 4 h). Image sizes are 25 μm × 25 μm. (a) Bright field. (b) Under crossed polarizers, the long axis of the crystal is at an angle of 45° to both the polarizer and the analyzer. (c) Under crossed polarizers, the long axis of the crystal is at an angle of 0° to the polarizer. (d) Photoluminescence image showing a red emission color (HBO lamp, excitation at 450~500 nm, emission >500 nm, recorded by a CCD color camera). (e) Intensity profiles of the R and G channels for the cross section indicated by the dashed line in (d). (f) Normalized absorption spectra of P3HT melt at 280℃ (blue), drop-casted thin film at room temperature (green), and a needle-like crystal (red) similar to the one shown in (a~d). (g) Photoluminescence spectrum of a needle-like crystal (excitation at 600~700 nm, marked as the shaded area in (f)) collected after a long pass filter (marked as a dashed line in (g))[55].Copyright 2020, American Chemical Society
[1]
Staudinger H. A Source Book in Chemistry, 1900-1950, Henry M(Ed.). England: Harvard University Press, 1968. 259-264.
[2]
Frey H, Johann T. Polym. Chem., 2020, 11(1): 8.

doi: 10.1039/C9PY90161B     URL    
[3]
Till P H Jr. J. Polym. Sci., 1957, 24(106): 301.
[4]
Keller A. Philos. Mag., 1957, 2(21): 1171.

doi: 10.1080/14786435708242746     URL    
[5]
Fischer E W. Z. Für Naturforschung A, 1957, 12(9): 753.

doi: 10.1515/zna-1957-0912     URL    
[6]
Flory P J. Principles of Polymer Chemistry. Ithaca: Cornell University Press, 1953.
[7]
Stack G M, Mandelkern L, Voigt-Martin I G. Polym. Bull., 1982, 8(9-10): 421.

doi: 10.1007/BF00293555     URL    
[8]
Tanabe Y, Strobl G R, Fischer E W. Polymer, 1986, 27(8): 1147.

doi: 10.1016/0032-3861(86)90001-7     URL    
[9]
Roe R, Gieniewski C, Vadimsky R G. J. Polym. Sci. B, 1973, 11: 1653.
[10]
(a) Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348;

doi: 10.1038/nmat2405    
(b) Ren J, Ma A, Li J, Jiang X, Ma Y, Toda A, Hu W. Eur. Phys. J. E, 2010, 33: 189.

doi: 10.1140/epje/i2010-10661-8     URL    
[11]
Flory P J. J. Chem. Phys., 2004, 17 (3):223.

doi: 10.1063/1.1747230     URL    
[12]
Zhang S J, Han J R, Gao Y, Guo B H, Reiter G, Xu J. Macromolecules, 2019, 52(19): 7439.

doi: 10.1021/acs.macromol.9b01270     URL    
[13]
Zhang S J, Guo B H, Reiter G, Xu J. Macromolecules, 2020, 53(9): 3482.

doi: 10.1021/acs.macromol.0c00113     URL    
[14]
Wang Z Q, Duan R L, Pang X A, Wu R L, Guo B H, Xu J. Macromolecules, 2023, 56(3): 999.

doi: 10.1021/acs.macromol.2c02494     URL    
[15]
Wunderlich B, Melillo L, Cormier C M, Davidson T, Snyder G. J. Macromol. Sci. B, 1967, 1(3): 485.

doi: 10.1080/00222346708212853     URL    
[16]
Bennett R. In Perrys Chemical Engineers Handbook, 6th ed. New York: McGraw-Hill, 1984. 25-40.
[17]
Myerson A. Handbook of Industrial Crystallization, Butterworth-Heinemann, 2002.
[18]
Rånby B G, Noe R W. J. Polym. Sci., 1961, 51(155): 337.
[19]
Storks K H. J. Am. Chem. Soc., 1938, 60(8): 1753.

doi: 10.1021/ja01275a013     URL    
[20]
Jaccodine R. Nature, 1955, 176(4476): 305.
[21]
Lauritzen Jr J I, Hoffman JD. Journal of Research of the National Bureau of Standards: Physics and chemistry. Section A, 1959, 63.
[22]
Hu W B, FrenkelD. Macromolecules, 2004, 37(12): 4336.

doi: 10.1021/ma049581t     URL    
[23]
Zhou Y J, Hu W B. J. Phys. Chem. B, 2013, 117(10): 3047.

doi: 10.1021/jp311889n     URL    
[24]
Keller A. Rep. Prog. Phys., 1968, 31(2): 623.

doi: 10.1088/0034-4885/31/2/304     URL    
[25]
Holland V F, Miller R L. J. Appl. Phys., 1964, 35(11): 3241.

doi: 10.1063/1.1713205     URL    
[26]
Patel G N, Patel RD. J. Polym. Sci. A-2 Polym. Phys., 1970, 8(1): 47.
[27]
Buleon A, Duprat F, Booy F, Chanzy H. Carbohydr. Polym., 1984, 4(3): 161.

doi: 10.1016/0144-8617(84)90009-2     URL    
[28]
Bu H H, Chen E Q, Xu S Y, Guo K X, Wunderlich B. Journal of Polymer Science Part B: Polymer Physics, 1994, 32 (8):1351.

doi: 10.1002/polb.09.v32:8     URL    
[29]
Liu L Z, Su F Y, Zhu H S, Li H, Zhou E L, Yan R F, Qian R Y. J. Macromol. Sci. B, 1997, 36(2): 195.

doi: 10.1080/00222349708220425     URL    
[30]
Sun L, Zhu L, Ge Q, Quirk R P, Xue C C, Cheng S ZD, Hsiao B S, Avila-Orta C A, Sics I, Cantino M E. Polymer, 2004, 45(9): 2931.

doi: 10.1016/j.polymer.2004.02.068     URL    
[31]
Su M, Huang H Y, Ma X J, Wang Q A, Su Z H. Macromol. Rapid Commun., 2013, 34(13): 1067.

doi: 10.1002/marc.v34.13     URL    
[32]
Hong Y L, Miyoshi T. ACS Macro Lett., 2014, 3(6): 556.

doi: 10.1021/mz500196s     URL    
[33]
Hong Y L, Yuan S C, Li Z, Ke Y T, Nozaki K, Miyoshi T. Phys. Rev. Lett., 2015, 115(16): 168301.

doi: 10.1103/PhysRevLett.115.168301     URL    
[34]
Wang S J, Yuan S C, Chen W, Zhou Y, Hong Y L, Miyoshi T. Macromolecules, 2018, 51(21): 8729.

doi: 10.1021/acs.macromol.8b01950     URL    
[35]
Lotz B, Lovinger A J, Cais R E. Macromolecules, 1988, 21(8): 2375.

doi: 10.1021/ma00186a013     URL    
[36]
Mehta R, Keawwattana W, Guenthner A L, Kyu T. Phys. Rev. E, 2004, 69(6): 061802.

doi: 10.1103/PhysRevE.69.061802     URL    
[37]
Calvert P. J. Macromol. Sci., 1980, 14(2): 201.

doi: 10.1080/00222338008066632     URL    
[38]
Bank M I, Krimm S. J. Polym. Sci. A-2 Polym. Phys., 1969, 7(10): 1785.
[39]
Geil P H. Polymer single crystals. Krieger Publishing Company, 1963. 5.
[40]
Hoffman J. Soc. Plastics Engrs. Trans., 1964, 4 (1).
[41]
Wunderlich B. Macromolecular Physics. New York: Academic Press, 1973.
[42]
Wang Z G, Hsiao B S, Sirota E B, Agarwal P, Srinivas S. Macromolecules, 2000, 33(3): 978.

doi: 10.1021/ma991468t     URL    
[43]
Manabe N, Yokota Y, Minami H, Uegomori Y, Komoto T. J. Electron Microsc., 2002, 51(1): 11.

pmid: 12003237
[44]
D’Ilario L, Martinelli A, Piozzi A. J. Macromol. Sci. B, 2002, 41(1): 47.

doi: 10.1081/MB-120002345     URL    
[45]
Symons N K J. J. Polym. Sci. A Gen. Pap., 1963, 1(9): 2843.

doi: 10.1002/pol.10.v1:9     URL    
[46]
Kovacs A J, Gonthier A. Kolloid-Z.u.Z.Polymere, 1972, 250(5): 530.
[47]
Toda A, Keller A. Colloid Polym. Sci., 1993, 271(4): 328.

doi: 10.1007/BF00657415     URL    
[48]
Liu J, Geil P H. J. Macromol. Sci. B, 1997, 36(1): 61.

doi: 10.1080/00222349708220415     URL    
[49]
Zhang B, YangD C, Yan S K. J. Polym. Sci. B, 2002, 40(23): 2641.

doi: 10.1002/polb.v40:23     URL    
[50]
Toda A, Okamura M, Hikosaka M, Nakagawa Y. Polymer, 2005, 46(20): 8708.

doi: 10.1016/j.polymer.2005.05.152     URL    
[51]
LippitsD R, Rastogi S, Höhne G W H, Mezari B, Magusin P C M M. Macromolecules, 2007, 40(4): 1004.

doi: 10.1021/ma0622837     URL    
[52]
Núñez E, Vancso G J, Gedde U W. J. Macromol. Sci. B, 2008, 47(3): 589.

doi: 10.1080/00222340801955636     URL    
[53]
Welch P, Muthukumar M. Phys. Rev. Lett., 2001, 87 (21):218302.

doi: 10.1103/PhysRevLett.87.218302     URL    
[54]
Lorenzo A T, Müller A J. J. Polym. Sci. B, 2008, 46(14): 1478.

doi: 10.1002/polb.v46:14     URL    
[55]
Wu T Y, Pfohl T, Chandran S, Sommer M, Reiter G. Macromolecules, 2020, 53 (19): 8303.

doi: 10.1021/acs.macromol.0c01529     URL    
[56]
Rubinstein M, Colby R H. Polymer Physics. New York: Oxford University Press, 2003. Vol. 23.
[57]
Thanh N T K, MacLean N, Mahiddine S. Chem. Rev., 2014, 114 (15):7610.

doi: 10.1021/cr400544s     URL    
[58]
Menczel J, Varga J. J. Therm. Anal., 1983, 28(1): 161.

doi: 10.1007/BF02105288     URL    
[59]
Xu J, Reiter G, Alamo R. Crystals, 2021, 11(3): 304.

doi: 10.3390/cryst11030304     URL    
[60]
Zhang B, Chen J B, Baier M C, Mecking S, Reiter R, Mülhaupt R, Reiter G. Macromol. Rapid Commun., 2015, 36(2): 180.

doi: 10.1002/marc.v36.2     URL    
[61]
Agbolaghi S, Abbaspoor S, Abbasi F. Prog. Polym. Sci., 2018, 81: 22.

doi: 10.1016/j.progpolymsci.2017.11.006     URL    
[62]
Wang G, Harrison I R. Thermochim. Acta, 1994, 231: 203.

doi: 10.1016/0040-6031(94)80023-5     URL    
[63]
Rastogi S, LippitsD R, Peters G W M, Graf R, Yao Y F, Spiess H W. Nat. Mater., 2005, 4(8): 635.

doi: 10.1038/nmat1437     pmid: 16041376
[64]
BlundellD J, Keller A. J. Macromol. Sci. B, 1968, 2(2): 301.

doi: 10.1080/00222346808212454     URL    
[65]
Waddon A J, Hill M J, Keller A, BlundellD J. J. Mater. Sci., 1987, 22(5): 1773.

doi: 10.1007/BF01132406     URL    
[66]
Chung J S, Cebe P. Polymer, 1992, 33(8): 1594.

doi: 10.1016/0032-3861(92)91055-7     URL    
[67]
Ivanov Y M. J. Cryst. Growth, 1998, 194(3-4): 309.

doi: 10.1016/S0022-0248(98)00620-4     URL    
[68]
Xu J J, Ma Y, Hu W B, Rehahn M, Reiter G. Nat. Mater., 2009, 8(4): 348.

doi: 10.1038/nmat2405    
[69]
Reiter G. Chem. Soc. Rev., 2014, 43(7): 2055.

doi: 10.1039/C3CS60306G     URL    
[70]
Wang B H, Tang S H, Wang Y, Shen C Y, Reiter R, Reiter G, Chen J B, Zhang B. Macromolecules, 2018, 51(5): 1626.

doi: 10.1021/acs.macromol.7b02445     URL    
[71]
Müller A J, Hernández Z H, Arnal M L, Sánchez J J. Polym. Bull., 1997, 39(4): 465.

doi: 10.1007/s002890050174     URL    
[72]
Michell R M, Mugica A, Zubitur M, Müller A J. Polymer Crystallization I. Cham: Springer International Publishing, 2015. 215.
[73]
Balzano L, Rastogi S, Peters G. Macromolecules, 2011, 44(8): 2926.

doi: 10.1021/ma102662p     URL    
[74]
Alfonso G C, Russell T P. Macromolecules, 1986, 19(4): 1143.

doi: 10.1021/ma00158a036     URL    
[75]
Mayes A M. Macromolecules, 1994, 27(11): 3114.

doi: 10.1021/ma00089a033     URL    
[76]
Cadek M, Coleman J N, Barron V, Hedicke K, Blau W J. Appl. Phys. Lett., 2002, 81(27): 5123.

doi: 10.1063/1.1533118     URL    
[77]
Butté R, Carlin J F, Feltin E, Gonschorek M, Nicolay S, Christmann G, SimeonovD, Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Baldassarri Höger von Hög G, Grundy A JD, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, Baumberg J J, Grandjean N. J. Phys.D: Appl. Phys., 2007, 40(20): 6328.
[78]
Zhou H X, Jiang SD, Yan S K. J. Phys. Chem. B, 2011, 115(46): 13449.

doi: 10.1021/jp205755r     URL    
[79]
Li Y P, Guo Z X, Xue M L, Yan S K. Macromolecules, 2019, 52(11): 4232.

doi: 10.1021/acs.macromol.9b00627     URL    
[80]
Wang Y, Yan L T, Dastafkan K, Zhao C A, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Adv. Mater., 2022, 34(7): 2006351.
[81]
Koutsky J A, Walton A G, Baer E. J. Polym. Sci. A-2 Polym. Phys., 1966, 4(4): 611.
[82]
Wellinghoff S, Rybnikar F, Baer E. J. Macromol. Sci. B, 2006, 10(1): 1.

doi: 10.1080/00222347408219394     URL    
[83]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1981, 19(12): 1837.

doi: 10.1002/pol.18.v19:12     URL    
[84]
Wittmann J C, Hodge A M, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1983, 21(12): 2495.

doi: 10.1002/pol.18.v21:12     URL    
[85]
Wittmann J C, Lotz B. J. Polym. Sci. Polym. Phys. Ed., 1985, 23(1): 205.

doi: 10.1002/pol.18.v23:1     URL    
[86]
Wittmann J C, Lotz B. Prog. Polym. Sci., 1990, 15(6): 909.

doi: 10.1016/0079-6700(90)90025-V     URL    
[87]
Stocker W, Schumacher M, Graff S, Thierry A, Wittmann J C, Lotz B. Macromolecules, 1998, 31(3): 807.

doi: 10.1021/ma971345d     URL    
[88]
Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Polymer, 2000, 41(25): 8909.

doi: 10.1016/S0032-3861(00)00234-2     URL    
[89]
Sun Y J, Li H H, Huang Y, Chen E Q, Zhao L F, Gan Z H, Yan S K. Macromolecules, 2005, 38(7): 2739.

doi: 10.1021/ma0474269     URL    
[90]
Liu J, Wang J J, Li H H, ShenD Y, Zhang J M, Ozaki Y, Yan S K. J. Phys. Chem. B, 2006, 110(2): 738.

doi: 10.1021/jp053369p     URL    
[91]
BowerD I, Solis F J. Am. J. Phys., 2003, 71(3): 285.

doi: 10.1119/1.1533063     URL    
[92]
Stamm M. Macromol. Chem. Phys., 2006, 207(8): 787.

doi: 10.1002/macp.v207:8     URL    
[93]
Mandelkern L. Crystallization of Polymers. 2nd ed. Cambridge, UK: Cambridge University Press, 2004.
[94]
Tadokoro H. Structure of Crystalline Polymers. Krieger Publishing Company, 1990..
[95]
Fried J. Polymer Science & Technology. Pearson Education, 2014.
[96]
Wu T Y, Valencia L, Pfohl T, Heck B, Reiter G, Lutz P J, Mülhaupt R. Macromolecules, 2019, 52(13): 4839.

doi: 10.1021/acs.macromol.9b00640     URL    
[97]
Somorjai G A, JepsenD W. J. Chem. Phys., 1964, 41(5): 1394.

doi: 10.1063/1.1726079     URL    
[98]
Byun M, Laskowski R L, He M, Qiu F, Jeffries-EL M, Lin Z Q. Soft Matter, 2009, 5(8): 1583.

doi: 10.1039/b822998h     URL    
[99]
Qi H, Zhou H, Tang Q Y, Lee J Y, Fan Z Y, Kim S, Staub M C, Zhou T A, Mei S, Han L, PochanD J, Cheng H, Hu W B, Li C Y. Nat. Commun., 2018, 9: 3005.

doi: 10.1038/s41467-018-05396-x    
[100]
Chen J T, Lee C W, Chi M H, Yao I C. Macromol. Rapid Commun., 2013, 34(4): 285.

doi: 10.1002/marc.v34.4     URL    
[101]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.

doi: 10.1021/ma400735a     URL    
[102]
McPherson A, Gavira J A. Acta Crystallogr. Sect. F Struct. Biol. Commun., 2014, 70(1): 2.

doi: 10.1107/S2053230X13033141     URL    
[103]
Mansky P, Haikin P, Thomas E L. J. Mater. Sci., 1995, 30(8): 1987.

doi: 10.1007/BF00353023     URL    
[104]
Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10): 1636.

doi: 10.1002/adfm.v17:10     URL    
[105]
McAfee S M, Payne A J, Hendsbee AD, Xu S T, Zou Y P, Welch G C. Sol. RRL, 2018, 2(9): 1800143.

doi: 10.1002/solr.v2.9     URL    
[106]
Wu T Y, Chandran S, Zhang Y, Zheng T Z, Pfohl T, Xu J, Reiter G. Macromolecules, 2022, 55(8): 3325.

doi: 10.1021/acs.macromol.1c02193     URL    
[107]
Diao Y, Shaw L, Bao Z N, Mannsfeld S C B. Energy Environ. Sci., 2014, 7(7): 2145.

doi: 10.1039/C4EE00688G     URL    
[108]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.

doi: 10.1038/s41467-018-02833-9    
[109]
Patel B B, Diao Y. Nanotechnology, 2018, 29(4): 044004.

doi: 10.1088/1361-6528/aa9d7c     URL    
[110]
Sele C W, Charlotte Kjellander B K, Niesen B, Thornton M J, van der Putten J B P H, Myny K, Wondergem H J, Moser A, Resel R, van Breemen A J J M, van Aerle N, Heremans P, Anthony J E, Gelinck G H. Adv. Mater., 2009, 21(48): 4926.

doi: 10.1002/adma.v21:48     URL    
[111]
Rogowski R Z, Darhuber A A. Langmuir, 2010, 26(13): 11485.

doi: 10.1021/la101002x     pmid: 20486716
[112]
Zhang K, Marszalek T, Wucher P, Wang Z Y, Veith L, Lu H, Räder H J, Beaujuge P M, Blom P W M, Pisula W. Adv. Funct. Mater., 2018, 28(50): 1805594.

doi: 10.1002/adfm.v28.50     URL    
[113]
Gans A, Dressaire E, Colnet B, Saingier G, Bazant M Z, Sauret A. Soft Matter, 2019, 15(2): 252.

doi: 10.1039/C8SM01785A     URL    
[114]
GrossoD. J. Mater. Chem., 2011, 21(43): 17033.

doi: 10.1039/c1jm12837j     URL    
[115]
Giri G, Verploegen E, Mannsfeld S C B, Atahan-Evrenk S, KimD H, Lee S Y, Becerril H A, Aspuru-Guzik A, Toney M F, Bao Z N. Nature, 2011, 480(7378): 504.

doi: 10.1038/nature10683    
[116]
Haase K, Zessin J, Zoumboulis K, Müller M, Hambsch M, Mannsfeld S C B. Adv. Electron. Mater., 2019, 5(6):1900067.

doi: 10.1002/aelm.v5.6     URL    
[117]
Lu Z J, Wang C Q, Deng W, Achille M T, Jie J S, Zhang X J. J. Mater. Chem. C, 2020, 8(27): 9133.

doi: 10.1039/D0TC01887B     URL    
[118]
Galindo S, Tamayo A, Leonardi F, Mas-Torrent M. Adv. Funct. Mater., 2017, 27(25): 1700526.

doi: 10.1002/adfm.v27.25     URL    
[119]
Tamayo A, Riera-Galindo S, Jones A O F, Resel R, Mas-Torrent M. Adv. Mater. Interfaces, 2019, 6(22): 1900950.

doi: 10.1002/admi.v6.22     URL    
[120]
Gao X A, Han Y C. Chin. J. Polym. Sci., 2013, 31(4): 610.

doi: 10.1007/s10118-013-1259-y     URL    
[121]
Zhang K, Wang Z Y, Marszalek T, Borkowski M, Fytas G, Blom P W M, Pisula W. Mater. Horiz., 2020, 7(6): 1631.

doi: 10.1039/D0MH00141D     URL    
[122]
Michels J J, Zhang K, Wucher P, Beaujuge P M, Pisula W, Marszalek T. Nat. Mater., 2021, 20(1): 68.

doi: 10.1038/s41563-020-0760-2    
[123]
Gu XD, Shaw L, Gu K, Toney M F, Bao Z N. Nat. Commun., 2018, 9: 534.

doi: 10.1038/s41467-018-02833-9    
[124]
BurkittD, Greenwood P, Hooper K, RichardsD, Stoichkov V, BeynonD, Jewell E, Watson T. MRS Adv., 2019, 4(24): 1399.

doi: 10.1557/adv.2019.79     URL    
[125]
Hema K, Ravi A, Raju C, Pathan J R, Rai R, Sureshan K M. Chem. Soc. Rev., 2021, 50(6): 4062.

doi: 10.1039/D0CS00840K     URL    
[126]
Hu F, Hao W B, MückeD, Pan Q Y, Li Z B, Qi H Y, Zhao Y J. J. Am. Chem. Soc., 2021, 143(15): 5636.

doi: 10.1021/jacs.1c00907     URL    
[127]
Sun C Y, Oppenheim J J, Skorupskii G, Yang L M, Dincă M. Chem, 2022, 8(12): 3215.

doi: 10.1016/j.chempr.2022.07.028     URL    
[128]
Hema K, Raju C, Bhandary S, Sureshan K M. Angew. Chem. Int. Ed., 2022, 61(40): e202210733.
[129]
Liu Y, Guan X R, WangD C, Stoddart J F, Guo Q H. J. Am. Chem. Soc., 2023, 145(24): 13223.

doi: 10.1021/jacs.3c02266     URL    
[130]
Price F P. J. Polym. Sci., 1959, 37(131): 71.
[131]
Olley R H, BassettD C. Polymer, 1989, 30(3): 399.

doi: 10.1016/0032-3861(89)90004-9     URL    
[132]
Li L, Chan C M, Yeung K L, Li J X, Ng K M, Lei Y G. Macromolecules, 2001, 34(2): 316.

doi: 10.1021/ma000273e     URL    
[133]
Tanaka H, Nishi T. Phys. Rev. A, 1989, 39(2): 783.

doi: 10.1103/PhysRevA.39.783     URL    
[134]
Kurz W, FisherD J. Acta Metall., 1981, 29(1): 11.

doi: 10.1016/0001-6160(81)90082-1     URL    
[135]
Seiler M. Chem. Eng. Technol., 2002, 25(3): 237.

doi: 10.1002/(ISSN)1521-4125     URL    
[136]
Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochim. Acta, 2006, 51(25): 5334.

doi: 10.1016/j.electacta.2006.02.004     URL    
[137]
Wunderlich B, Mielillo L. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1968, 118 (1): 250.

doi: 10.1002/macp.02.v118:1     URL    
[138]
Hikosaka M. Polymer, 1987, 28(8): 1257.

doi: 10.1016/0032-3861(87)90434-4     URL    
[139]
Hikosaka M. Polymer, 1990, 31(3): 458.

doi: 10.1016/0032-3861(90)90385-C     URL    
[140]
Yan L, Häußler M, Bauer J, Mecking S, Winey K I. Macromolecules, 2019, 52(13): 4949.

doi: 10.1021/acs.macromol.9b00962    
[141]
Hill M J, Keller A. J. Macromol. Sci. B, 1969, 3(1): 153.

doi: 10.1080/00222346908217096     URL    
[142]
Peterlin A. Int. J. Fract., 1975, 11(5): 761.

doi: 10.1007/BF00012895     URL    
[143]
Zhang J, Li J, Han Y. Macromol. Rapid Commun., 2004, 25 (11): 1105.

doi: 10.1002/marc.v25:11     URL    
[144]
Hobbs J K, Miles M J. Macromolecules, 2001, 34(3): 353.

doi: 10.1021/ma001697b     URL    
[145]
Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield J A. Science, 2007, 316(5827): 1014.

doi: 10.1126/science.1140132     URL    
[146]
Somani R H, Yang L, Zhu L, Hsiao B S. Polymer, 2005, 46(20): 8587.

doi: 10.1016/j.polymer.2005.06.034     URL    
[147]
Hsiao B S, Yang L, Somani R H, Avila-Orta C A, Zhu L. Phys. Rev. Lett., 2005, 94(11): 117802.

doi: 10.1103/PhysRevLett.94.117802     URL    
[148]
Goodwyn M. Ghost Worlds: A Guide to Poltergeists, Portals, Ecto-Mist, & Spirit Behavior. Llewellyn Worldwide, 2011.
[149]
Deng J A, Xu Y X, Liu L Q, Feng C F, Tang J A, Gao Y, Wang Y, Yang B, Lu P, Yang W S, Ma Y G. Chem. Commun., 2016, 52(11): 2370.

doi: 10.1039/C5CC09702A     URL    
[150]
Wang B B, Li B, Zhao B, Li C Y. J. Am. Chem. Soc., 2008, 130(35): 11594.

doi: 10.1021/ja804192e     URL    
[151]
Li B, Li C Y. Journal of the ACS, 2006, 129 (1):12.
[152]
Li B, Ni C Y, Li C Y. Macromolecules, 2008, 41(1): 149.

doi: 10.1021/ma702047k     URL    
[153]
Li B, Wang B B, Ferrier R C M Jr, Li C Y. Macromolecules, 2009, 42(24): 9394.

doi: 10.1021/ma902294k     URL    
[154]
Wang B B, Dong B, Li B, Zhao B, Li C Y. Polymer, 2010, 51(21): 4814.

doi: 10.1016/j.polymer.2010.08.016     URL    
[155]
Xu L A, Li H, Jiang X, Wang J X, Li L, Song Y L, Jiang L. Macromol. Rapid Commun., 2010, 31(16): 169.

doi: 10.1002/marc.v31:2     URL    
[156]
Zhang H, Dong B, Zhou T A, Li C Y. Nanoscale, 2012, 4(24): 7641.

doi: 10.1039/c2nr32866f     pmid: 23128900
[157]
Zhou T A, Wang B B, Dong B, Li C Y. Macromolecules, 2012, 45(21): 8780.

doi: 10.1021/ma3019987     URL    
[158]
Dong B, Zhou T A, Zhang H, Li C Y. ACS Nano, 2013, 7(6): 5192.

doi: 10.1021/nn400925q     pmid: 23647410
[159]
Liu M, Liu L M, Gao W L, Su MD, Ge Y, Shi L L, Zhang H, Dong B, Li C Y. Nanoscale, 2014, 6(15): 8601.

doi: 10.1039/C4NR02593H     URL    
[160]
Zhou T A, Dong B, Qi H, Lau H K, Li C Y. Nanoscale, 2014, 6(9): 4551.

doi: 10.1039/C4NR00501E     URL    
[161]
Zhang H, Liu M, Zhou T A, Dong B, Li C Y. Nanoscale, 2015, 7(25): 11033.

doi: 10.1039/c5nr01890k     pmid: 26053969
[162]
Mei S, Qi H, Zhou T A, Li C Y. Angew. Chem. Int. Ed., 2017, 56(44): 13645.

doi: 10.1002/anie.v56.44     URL    
[163]
Mei S, Li C Y. Angew. Chem. Int. Ed., 2018, 57(48): 15758.

doi: 10.1002/anie.v57.48     URL    
[164]
Dong B, Li B, Li C Y. J. Mater. Chem., 2011, 21(35): 13155.

doi: 10.1039/c1jm12866c     URL    
[165]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.

doi: 10.1038/ncomms11119    
[166]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): 2000228.

doi: 10.1002/marc.v41.15     URL    
[167]
AllaraD L. Biosens. Bioelectron., 1995, 10(9-10): 771.

doi: 10.1016/0956-5663(95)99215-7     URL    
[168]
Ji H F, Dabestani R, Brown G M, Britt P F. Chem. Commun., 2000,(6): 457.
[169]
Schreiber F. Prog. Surf. Sci., 2000, 65(5-8): 151.

doi: 10.1016/S0079-6816(00)00024-1     URL    
[170]
Schoenbaum C A, SchwartzD K, Medlin J W. Acc. Chem. Res., 2014, 47(4): 1438.

doi: 10.1021/ar500029y     URL    
[171]
Zhou T A, Qi H, Han L, BarbashD, Li C Y. Nat. Commun., 2016, 7: 11119.

doi: 10.1038/ncomms11119    
[172]
Mei S, Wilk J T, Chancellor A J, Zhao B, Li C Y. Macromol. Rapid Commun., 2020, 41(15): e2000228.
[173]
McGehee M D, Heeger A J. Adv.Mater., 2000, 12 (22): 1655.
[174]
Heeger A. Chem.Soc.Rev., 2010, 39 (7):2354.
[175]
Heeger A J, Kivelson S, Schrieffer J R, Su W P. Rev. Mod. Phys., 1988, 60(3): 781.

doi: 10.1103/RevModPhys.60.781     URL    
[176]
MacDiarmid A G, Chiang J C, Richter A F, Epstein A J. Synth. Met., 1987, 18(1-3): 285.

doi: 10.1016/0379-6779(87)90893-9     URL    
[177]
MacDiarmid A G, Chiang J C, Halpern M, Huang W S, Mu S L, Nanaxakkara LD, Wu S W, Yaniger S I. Mol. Cryst. Liq. Cryst., 1985, 121(1/4): 173.

doi: 10.1080/00268948508074857     URL    
[178]
MacDiarmid A G. Rev.Mod.Phys. 2001, 40 (14): 2581.
[179]
Shirakawa H, Louis E, MacDiarmid A, Chiang C K, Heeger A J. Chem.Commun., 1977, (16): 578.
[180]
Shirakawa H, McDiarmid A, Heeger A. Chem.Commun., 2003, 2003 (1): 1.
[181]
Shirakawa H, Ito T, Ikeda S. Makromol. Chem., 1978, 179 (6):1565.

doi: 10.1002/macp.02.v179:6     URL    
[182]
Dai C H, Liu B. Energy Environ. Sci., 2020, 13(1): 24.

doi: 10.1039/C9EE01935A     URL    
[183]
Feng L H, Zhu C L, Yuan H X, Liu L B, Lv F T, Wang S. Chem. Soc. Rev., 2013, 42(16): 6620.

doi: 10.1039/c3cs60036j     URL    
[184]
Guo X, Baumgarten M, Müllen K. Prog. Polym. Sci., 2013, 38(12): 1832.

doi: 10.1016/j.progpolymsci.2013.09.005     URL    
[185]
Inal S, Rivnay J, Suiu A O, Malliaras G G, McCulloch I. Acc. Chem. Res., 2018, 51(6): 1368.

doi: 10.1021/acs.accounts.7b00624     URL    
[186]
Melling D, Martinez J G, Jager E W H. Adv. Mater., 2019, 31(22): 1808210.

doi: 10.1002/adma.v31.22     URL    
[187]
Qiu Z J, Hammer B A G, Müllen K. Prog. Polym. Sci., 2020, 100: 101179.

doi: 10.1016/j.progpolymsci.2019.101179     URL    
[188]
Tuncel D, Demir H V. Nanoscale, 2010, 2(4): 484.

doi: 10.1039/b9nr00374f     pmid: 20644748
[189]
Vahdatiyekta P, Zniber M, Bobacka J, Huynh T P. Anal. Chim. Acta, 2022, 1221: 340114.

doi: 10.1016/j.aca.2022.340114     URL    
[190]
Wang S H, Zuo G Z, Kim J, Sirringhaus H. Prog. Polym. Sci., 2022, 129: 101548.

doi: 10.1016/j.progpolymsci.2022.101548     URL    
[191]
Xu Y, Cui Y, Yao H F, Zhang T, Zhang J Q, Ma L J, Wang J W, Wei Z X, Hou J H. Adv. Mater., 2021, 33(22): e2101090.
[192]
Bruner C, Novoa F, Dupont S, Dauskardt R. ACS Appl. Mater. Interfaces, 2014, 6(23): 21474.

doi: 10.1021/am506482q     URL    
[193]
Kim J S, Lee J H, Park J H, Shim C, Sim M, Cho K. Adv. Funct. Mater., 2011, 21(3): 480.

doi: 10.1002/adfm.v21.3     URL    
[194]
Kim M, Jo S B, Park J H, Cho K. Nano Energy, 2015, 18: 97.

doi: 10.1016/j.nanoen.2015.10.007     URL    
[195]
Liu F, ChenD A, Wang C, Luo K Y, Gu W Y, Briseno A L, Hsu J W P, Russell T P. ACS Appl. Mater. Interfaces, 2014, 6(22): 19876.

doi: 10.1021/am505283k     URL    
[196]
Lu L Y, Zheng T Y, Wu Q H, Schneider A M, ZhaoD L, Yu L P. Chem. Rev., 2015, 115(23): 12666.

doi: 10.1021/acs.chemrev.5b00098     URL    
[197]
Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L. Thin Solid Films, 2004, 451-452: 22.
[198]
Kim J H, Park J H, Lee J H, Kim J S, Sim M, Shim C, Cho K. J. Mater. Chem., 2010, 20(35): 7398.

doi: 10.1039/c0jm00666a     URL    
[199]
Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H, Lee T W. Nat. Photonics, 2012, 6(2): 105.

doi: 10.1038/nphoton.2011.318    
[200]
Admassie S, Zhang F L, Manoj A G, Svensson M, Andersson M R, Inganäs O. Sol. Energy Mater. Sol. Cells, 2006, 90(2): 133.

doi: 10.1016/j.solmat.2005.02.005     URL    
[201]
Yoon H, Chang M, Jang J. Adv. Funct. Mater., 2007, 17(3): 431.

doi: 10.1002/adfm.v17:3     URL    
[202]
Park YD, Lee H S, Choi Y J, KwakD, Cho J H, Lee S, Cho K. Adv. Funct. Mater., 2009, 19(8): 1200.

doi: 10.1002/adfm.v19:8     URL    
[203]
Qiu L Z, Lee W H, Wang X H, Kim J S, Lim J A, KwakD, Lee S, Cho K. Adv. Mater., 2009, 21(13): 1349.

doi: 10.1002/adma.v21:13     URL    
[204]
Wang C C, Rivnay J, Himmelberger S, Vakhshouri K, Toney M F, Gomez ED, Salleo A. ACS Appl. Mater. Interfaces, 2013, 5(7): 2342.

doi: 10.1021/am3027103     URL    
[205]
Yang H, Shin T J, Yang L, Cho K, Ryu C Y, Bao Z. Adv. Funct. Mater., 2005, 15(4): 671.

doi: 10.1002/(ISSN)1616-3028     URL    
[206]
Lee J Y, Lin C J, Lo C T, Tsai J C, Chen W C. Macromolecules, 2013, 46(8): 3005.

doi: 10.1021/ma400384a     URL    
[207]
Lim J A, Kim J H, Qiu L Z, Lee W H, Lee H S, KwakD, Cho K. Adv. Funct. Mater., 2010, 20(19): 3292.

doi: 10.1002/adfm.v20:19     URL    
[208]
Liu H Q, Reccius C H, Craighead H G. Appl. Phys. Lett., 2005, 87(25): 253106.

doi: 10.1063/1.2149980     URL    
[209]
Zenoozi S, Agbolaghi S, Poormahdi E, Hashemzadeh-Gargari M, Mahmoudi M. Macromol. Res., 2017, 25(8): 826.

doi: 10.1007/s13233-017-5082-0     URL    
[210]
Cho B, Park K S, Baek J, Oh H S, Koo Lee Y E, Sung M M. Nano Lett., 2014, 14(6): 3321.

doi: 10.1021/nl500748y     URL    
[211]
Jeon S S, Park J K, Yoon C S, Im S S. Langmuir, 2009, 25(19): 11420.

doi: 10.1021/la901563n     URL    
[212]
Kim D, Han J, Park Y, Jang Y, Cho J, Hwang M, Cho K. Adv. Mater., 2006, 18(6): 719.

doi: 10.1002/adma.v18:6     URL    
[213]
Ma Z Y, Geng Y H, YanD H. Polymer, 2007, 48(1): 31.

doi: 10.1016/j.polymer.2006.10.034     URL    
[214]
Nuraje N, Su K, Yang N, Matsui H. ACS Nano, 2008, 2 (3):502.

doi: 10.1021/nn7001536     URL    
[215]
Schoonveld W A, Vrijmoeth J, Klapwijk T M. Appl. Phys. Lett., 1998, 73(26): 3884.

doi: 10.1063/1.122924     URL    
[216]
Su K, Nuraje N, Zhang L, Chu I W, Peetz R, Matsui H, Yang N L. Adv. Mater., 2007, 19(5): 669.

doi: 10.1002/adma.v19:5     URL    
[217]
Xiao X L, Hu Z J, Wang Z B, He T. J. Phys. Chem. B, 2009, 113 (44):14604.

doi: 10.1021/jp9064505     URL    
[218]
Xiao X L, Wang Z B, Hu Z J, He T. J. Phys. Chem. B, 2010, 114 (22): 7452.

doi: 10.1021/jp911525d     URL    
[219]
Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch F P V, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G. Angew. Chem., 2012, 124(44): 11293.

doi: 10.1002/ange.v124.44     URL    
No related articles found!