English
新闻公告
More
化学进展 2024, Vol. 36 Issue (2): 234-243 DOI: 10.7536/PC230623 前一篇   后一篇

• 综述 •

氧化物气凝胶高温红外改性研究

黄睿名, 姜勇刚*(), 柳凤琦, 冯军宗, 李良军, 冯坚   

  1. 国防科技大学 空天科学学院 新型陶瓷纤维及其复合材料重点实验室 长沙 410073
  • 收稿日期:2023-06-25 修回日期:2023-09-15 出版日期:2024-02-24 发布日期:2024-01-08
  • 作者简介:

    姜勇刚 博士,副研究员,硕士生导师,主要从事纳米气凝胶隔热复合材料研究;发表学术论文30余篇,获国家授权发明专利20余项。

  • 基金资助:
    湖南省重点研发计划(2022GK2027); 湖南省自然科学基金项目(2023JJ30632); 国家重点研发计划(2022YFC2204403)

Research Advances on High-Temperature Infrared Modification of Oxide Aerogels

Ruiming Huang, Yonggang Jiang(), Fengqi Liu, Junzong Feng, Liangjun Li, Jian Feng   

  1. Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • Received:2023-06-25 Revised:2023-09-15 Online:2024-02-24 Published:2024-01-08
  • Contact: *e-mail: jygemail@nudt.edu.cn
  • Supported by:
    Hunan Province Key R&D Plan(2022GK2027); Natural Science Foundation of Hunan Province(2023JJ30632); National Key Research and Development Program of China(2022YFC2204403)

氧化物气凝胶是一类具有超低热导率的新型纳米多孔材料,在航空航天等高温隔热领域具有广阔的应用前景。然而目前常见的氧化硅、氧化铝等氧化物气凝胶受材料/结构单元固有性质的限制,其通常具有红外透明性,而高温下辐射传热占据主导地位,大量红外辐射会透过气凝胶,热导率急剧攀升,导致其高温隔热性能较差,因此需要对其进行高温红外改性,从而满足更高的隔热性能需求。本文综述了近年来添加遮光剂、纤维及调整气凝胶的结构/形貌在提高氧化物气凝胶高温隔热性能方面的研究进展,并对未来研究方向进行展望。

Oxide aerogel is a novel nano-porous material with ultra-low thermal conductivity. In particular, it can be used in spaceflight applications and other thermal management fields. Currently, with high infrared transmittance, most of the common pure oxide aerogels, such as silica and alumina, have no advantages in high-temperature insulation because of their intrinsic property. However, electromagnetic radiation in the near-infrared region is the main mode of heat conduction at high temperatures, accordingly, a large amount of electromagnetic radiation will pass through aerogel and lead to the rapid increase of thermal conductivity. Therefore, to meet the requirement of thermal insulation at higher temperature, it is necessary to reduce the radiative heat transfer. Based on the research status, this paper reviewed the main progress of improving high temperature insulation of oxide aerogel by adding opacifier, fiber and adjusting the structure and morphology. Moreover, the future research direction has prospected.

Contents

1 Introduction

2 Application of opacifiers in infrared modification of aerogels

2.1 TiO2 opacifier

2.2 SiC opacifier

2.3 Carbon materials opacifier

2.4 Other opacifier

3 Application of fiber in infrared modification of aerogels

3.1 Glass fiber

3.2 ZrO2 fiber

3.3 Mullite fiber

3.4 Modified fiber

4 Application of structure/morphology change in infrared modification of aerogels

4.1 Multiple-layer aerogel insulation materials

4.2 Lamellar aerogels

4.3 Nanofiber aerogels

5 Conclusion and outlook

()
图1 TiO2遮光机理示意图[16]
Fig. 1 Schematic diagram of shading mechanism of TiO2[16]
图2 (a) 3D打印SiO2气凝胶流程图; (b, c) 打印气凝胶实物图[35]
Fig. 2 (a) 3D printing of SiO2 aerogel flow chart; (b, c) physical diagram of printiong aerogel[35]
图3 石墨烯掺杂量对热导率的影响[38]
Fig. 3 Effect of doping amount on thermal conductivity of graphene[38]
图4 不同微玻璃纤维掺杂量(fc)下热导率随温度变化趋势[48]
Fig. 4 Variation trend of thermal conductivity with temperature under different doping amounts(fc) of microglass fibers[48]
图5 (a~c) ZrO2纤维增强ZrO2-SiO2气凝胶的SEM图片[49]
Fig. 5 (a~c)SEM image of ZrO2 fiber reinforced ZrO2-SiO2 aerogel[49]
图6 (a) 复合材料隔热机理图;(b~d) 材料隔热性能测试;(e) 测试前后样品形貌变化;(f) 与先前文献中其他气凝胶复合材料于1000 ℃高温热导率对比[56]
Fig. 6 (a) Mechanism schematic of thermal insulation of composite material; (b~d) insulation performance test of materials; (e) sample morphology changes before and after testing; (f) compared with the thermal conductivity of other aerogel composites in previous literature at 1000 ℃[56]
图7 SiC包覆莫来石纤维SEM图[58]
Fig. 7 SEM images of SiC-coated mullite fiber[58]
图8 改性莫来石纤维隔热机理图[59]
Fig. 8 Schematic diagram of thermal insulation mechanism of modified mullite fiber[59]
图9 多层隔热材料结构示意图
Fig. 9 Schematic diagram of multi-layer insulation material structure
图10 α-Al2O3纳米片制备过程示意图及其SEM图[68]
Fig. 10 Schematic illustration of the synthesis and the SEM image of α-Al2O3 nanosheets[68]
图11 Al2O3纳米棒的包覆过程示意图[22]
Fig. 11 Schematic diagram of coating process of Al2O3 nanorods[22]
[1]
Zhang S L, Li X, Zuo J Y, Qin J, Cheng K L, Feng Y, Bao W. Prog. Aerosp. Sci., 2020, 119: 100646.

doi: 10.1016/j.paerosci.2020.100646     URL    
[2]
Zhao S Y, Siqueira G, Drdova S, Norris D, Ubert C, Bonnin A, Galmarini S, Ganobjak M, Pan Z Y, Brunner S, Nyström G, Wang J, Koebel M M, Malfait W J. Nature, 2020, 584(7821): 387.

doi: 10.1038/s41586-020-2594-0    
[3]
Chen L W, Gan L H. Chemistry, 1997,(8): 21.
陈龙武, 甘礼华. 化学通报, 1997,(8): 21.)
[4]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Progress in Chemistry, 2022, 34(6): 1384.
(柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 化学进展, 2022, 34(6): 1384.)
[5]
Liu P F, Li X F, Min P, Chang X Y, Shu C, Ding Y, Yu Z Z. Nano Micro. Lett., 2021, 13(1): 22.

doi: 10.1007/s40820-020-00548-5    
[6]
Xue T T, Fan W, Zhang X, Zhao X Y, Yang F, Liu T X. Compos. Part B Eng., 2021, 219: 108963.

doi: 10.1016/j.compositesb.2021.108963     URL    
[7]
Tang G H, Bi C, Zhao Y, Tao W Q. Energy, 2015, 90: 701.

doi: 10.1016/j.energy.2015.07.109     URL    
[8]
Lu X, Arduini-Schuster M C, Kuhn J, Nilsson O, Fricke J, Pekala R W. Science, 1992, 255(5047): 971.

doi: 10.1126/science.255.5047.971     URL    
[9]
Lu X, Wang P, Arduini-Schuster M C, Kuhn J, Büttner D, Nilsson O, Heinemann U, Fricke J. J. Non Cryst. Solids, 1992, 145: 207.

doi: 10.1016/S0022-3093(05)80457-0     URL    
[10]
Xie T, He Y L, Hu Z J. Int. J. Heat Mass Transf., 2013, 58(1/2): 540.

doi: 10.1016/j.ijheatmasstransfer.2012.11.016     URL    
[11]
Wang S L, Jin Z, Li J N, Zhang B X, Wang Y B, Yang Y R, Wang X D, Lee D J. J. Taiwan Inst. Chem. Eng., 2021, 120: 150.

doi: 10.1016/j.jtice.2021.03.003     URL    
[12]
Kuhn J, Gleissner T, Arduini-Schuster M C, Korder S, Fricke J. J. Non Cryst. Solids, 1995, 186: 291.

doi: 10.1016/0022-3093(95)00067-4     URL    
[13]
Zhu Z X, Wang F, Yao H J, Dong J X, Long D H. J. Inorg. Mater., 2018, 33(9): 969.
(朱召贤, 王飞, 姚鸿俊, 董金鑫, 龙东辉. 无机材料学报, 2018, 33(9): 969.)
[14]
Wang W Q, Zhang Z H, Zu G Q, Shen J, Zou L P, Lian Y, Liu B, Zhang F. RSC Adv., 2014, 4(97): 54864.

doi: 10.1039/C4RA08832H     URL    
[15]
Zou W B, Wang X D, Wu Y, Zou L P, Zu G Q, Chen D, Shen J. Ceram. Int., 2019, 45(1): 644.

doi: 10.1016/j.ceramint.2018.09.223     URL    
[16]
Liu S J, Wu X D, Li Y H, Cui S, Shen X D, Tan G. Appl. Therm. Eng., 2021, 190: 116745.

doi: 10.1016/j.applthermaleng.2021.116745     URL    
[17]
Shi X, Zhang S C, Chen Y F, Li M Q, Ouyang S X, Peng X Y. Key Eng. Mater., 2010, 434/435: 689.

doi: 10.4028/www.scientific.net/KEM.434-435     URL    
[18]
Pan Y W, Jin X Y, Wang H B, Huang H, Wu C, Yan X J, Hong C Q, Zhang X H. J. Mater. Sci. Technol., 2023, 152: 181.

doi: 10.1016/j.jmst.2022.12.035     URL    
[19]
Zhang R B, Hou X B, Ye C S, Wang B L. J. Alloys Compd., 2017, 699: 511.

doi: 10.1016/j.jallcom.2017.01.007     URL    
[20]
Zhang H, Liu J L, Zhu S Z. J. Wuhan Univ. Technol. Mater Sci. Ed., 2022, 37(3): 324.

doi: 10.1007/s11595-022-2534-y    
[21]
Lei Y S, Xu H Y, Dong D P, Xie R J. Cryog. Supercond., 2018, 46(11): 15.
(雷营生, 徐红艳, 董德平, 谢荣建. 低温与超导, 2018, 46(11): 15.)
[22]
Liu F Q, He C B, Jiang Y G, Yang Y P, Peng F, Liu L F, Men J, Feng J Z, Li L J, Tang G H, Feng J. Chem. Eng. J., 2023, 455: 140502.

doi: 10.1016/j.cej.2022.140502     URL    
[23]
Liang X P, Shao Z J, Wu Z, Wang J Y. Ceram. Int., 2022, 48(15): 22213.
[24]
Feng J P, Chen D P, Ni W, Yang S Q, Hu Z J. J. Non Cryst. Solids, 2010, 356(9/10): 480.

doi: 10.1016/j.jnoncrysol.2009.12.015     URL    
[25]
Sun D K. Masteral Dissertation of Chang’an University, 2012.
(孙登科. 长安大学硕士论文, 2012.)
[26]
Xu H F, Huang Y D, Zhang H J, Chen Q Y, Yan G W, Liu L. J. Non Cryst. Solids, 2012, 358(21): 2922.

doi: 10.1016/j.jnoncrysol.2012.07.022     URL    
[27]
Cargnello M, Gordon T R, Murray C B. Chem. Rev., 2014, 114(19): 9319.

doi: 10.1021/cr500170p     URL    
[28]
Wang J, Kuhn J, Lu X. J. Non Cryst. Solids, 1995, 186: 296.

doi: 10.1016/0022-3093(95)00068-2     URL    
[29]
Liu G W, Liu Y G. Key Eng. Mater., 2016, 723: 492.

doi: 10.4028/www.scientific.net/KEM.723     URL    
[30]
Zhang R B, Gu H T, Hou X B, Zhou P. J. Porous Mater., 2021, 28(1): 57.

doi: 10.1007/s10934-020-00935-8    
[31]
Yang H X, Ye F. RSC Adv., 2022, 12(19): 12226.

doi: 10.1039/D2RA01336C     URL    
[32]
Ouyang D G, Hu T S, Luo A Z, Zhao X J. Res. Iron Steel, 2002, 30(1): 40.
(欧阳德刚, 胡铁山, 罗安智, 赵修建. 钢铁研究, 2002, 30(1): 40.)
[33]
Zhang H, Ma Y X, Wang X, Ji W T, Li Y M, Tao W Q. J. Eng. Thermophys., 2018, 39(5): 1039.
(张虎, 马奕新, 王娴, 冀文涛, 李跃明, 陶文铨. 工程热物理学报, 2018, 39(5): 1039.)
[34]
Pang H Q, Li Z Y. Int. J. Therm. Sci., 2021, 160: 106681.

doi: 10.1016/j.ijthermalsci.2020.106681     URL    
[35]
Wang Y T, Chu C Y, Duan C Q, Dong J J, Chen H, Ying S T, Guo J J, Xu G J, Hu F, Cheng Y C, Sun A H. J. Non Cryst. Solids, 2023, 608: 122251.

doi: 10.1016/j.jnoncrysol.2023.122251     URL    
[36]
Zeng S Q, Hunt A, Greif R. J. Non Cryst. Solids, 1995, 186: 271.

doi: 10.1016/0022-3093(95)00076-3     URL    
[37]
Zhao Y, Tang G H, Tao W Q. J. Eng. Thermophys., 2015, 36(3): 591.
赵越, 唐桂华, 陶文铨. 工程热物理学报, 2015, 36(3): 591.)
[38]
Zhu J Y, Ren H B, Bi Y T. J. Porous Mater., 2018, 25(6): 1697.

doi: 10.1007/s10934-018-0583-6    
[39]
Jiang D P, Qin J, Zhou X F, Li Q L, Yi D Q, Wang B. Ceram. Int., 2022, 48(11): 16290.

doi: 10.1016/j.ceramint.2022.02.178     URL    
[40]
Lamy-Mendes A, Girão A V, Silva R F, Durães L. Microporous Mesoporous Mater., 2019, 288: 109575.

doi: 10.1016/j.micromeso.2019.109575     URL    
[41]
Parale V G, Jung H N R, Han W, Lee K Y, Mahadik D B, Cho H H, Park H H. J. Alloys Compd., 2017, 727: 871.

doi: 10.1016/j.jallcom.2017.08.189     URL    
[42]
Soorbaghi F P, Kokabi M, Bahramian A R. Int. J. Heat Mass Transf., 2019, 136: 899.

doi: 10.1016/j.ijheatmasstransfer.2019.03.059     URL    
[43]
Qin Y Q, Jiang Y G, Feng J, Feng J Z, Yue C W. Mater. Rep., 2015(11): 129.
秦艳青, 姜勇刚, 冯坚, 冯军宗, 岳晨午. 材料导报, 2015(11): 129.
[44]
Gan X Z. Doctoral Dissertation of Shandong University, 2018.
(甘信柱. 山东大学博士论文, 2018.)
[45]
Guo J F, Tang G H, Feng J, Jiang Y G, Feng J Z. Int. J. Heat Mass Transf., 2020, 160: 120194.

doi: 10.1016/j.ijheatmasstransfer.2020.120194     URL    
[46]
Zhu Z X, Yao H J, Wang F, Dong J X, Wu K D, Cao J X, Long D H. Macromol. Mater. Eng., 2019, 304(5): 1800676.
[47]
Zhao J J, Duan Y Y, Wang X D, Wang B X. J. Non Cryst. Solids, 2012, 358(10): 1303.

doi: 10.1016/j.jnoncrysol.2012.02.037     URL    
[48]
Jiang Y G, Feng J Z, Feng J. J. Sol Gel Sci. Technol., 2017, 83(1): 64.

doi: 10.1007/s10971-017-4383-2     URL    
[49]
He J, Zhao H Y, Li X L, Su D, Ji H M, Yu H J, Hu Z P. Ceram. Int., 2018, 44(8): 8742.

doi: 10.1016/j.ceramint.2018.01.089     URL    
[50]
Zhang R B, Ye C S, Wang B L. J. Porous Mater., 2018, 25(1): 171.

doi: 10.1007/s10934-017-0430-1     URL    
[51]
Feng J, Gao Q F, Feng J Z, Jiang Y G. J. Natl. Univ. Def. Technol., 2010, 32(1): 40.
(冯坚, 高庆福, 冯军宗, 姜勇刚. 国防科技大学学报, 2010, 32(1): 40.)
[52]
He J, Li X L, Su D, Ji H M, Wang X J. J. Eur. Ceram. Soc., 2016, 36(6): 1487.

doi: 10.1016/j.jeurceramsoc.2015.11.021     URL    
[53]
Liu B X, Gao M, Liu X C, Zhao X F, Zhang J, Yi X B. ACS Appl. Nano Mater., 2019, 2(11): 7299.

doi: 10.1021/acsanm.9b01791     URL    
[54]
Peng F, Jiang Y G, Feng J, Cai H F, Feng J Z, Li L J. Chem. Eng. J., 2021, 411: 128402.

doi: 10.1016/j.cej.2021.128402     URL    
[55]
Peng F, Jiang Y G, Feng J, Liu F Q, Feng J Z, Li L J. J. Eur. Ceram. Soc., 2022, 42(14): 6684.

doi: 10.1016/j.jeurceramsoc.2022.07.001     URL    
[56]
Liu F Q, Jiang Y G, Peng F, Feng J Z, Li L J, Feng J. Chem. Eng. J., 2023, 461: 141721.

doi: 10.1016/j.cej.2023.141721     URL    
[57]
Yu H J, Tong Z W, Zhang B J, Chen Z W, Li X L, Su D, Ji H M. Chem. Eng. J., 2021, 418: 129342.

doi: 10.1016/j.cej.2021.129342     URL    
[58]
Xu L, Jiang Y G, Feng J Z, Feng J, Yue C W. Ceram. Int., 2015, 41(1): 437.

doi: 10.1016/j.ceramint.2014.08.088     URL    
[59]
Zhang B J, Liu Y, Wu Q X, Zhou M, Su D, Ji H M, Li X L. J. Eur. Ceram. Soc., 2022, 42(13): 5995.

doi: 10.1016/j.jeurceramsoc.2022.06.061     URL    
[60]
Ding W, Li H Y, Liu H L, Li Q, Wu Y W. J. Eur. Ceram. Soc., 2022, 42(13): 5438.

doi: 10.1016/j.jeurceramsoc.2022.06.068     URL    
[61]
Gan X Z, Xu D, Lv Y D. Mater. Chem. Phys., 2020, 251: 123111.

doi: 10.1016/j.matchemphys.2020.123111     URL    
[62]
Ma D H, Zhu L Y, Liu B X. Ceram. Int., 2020, 46(3): 3400.

doi: 10.1016/j.ceramint.2019.10.050     URL    
[63]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Mater. Rep., 2016(A2): 461.
(王苗, 冯军宗, 姜勇刚, 张忠明, 冯坚. 材料导报, 2016(A2): 461.)
[64]
Sheng C, Yu Y, Yu Y, Mi L, Tang G C, Song L X. J. Inorg. Mater., 2013, 28(7): 790-794.
[65]
Wang M, Feng J Z, Jiang Y G, Zhang Z M, Feng J. Heat Mass Transf., 2018, 54(9): 2793.

doi: 10.1007/s00231-018-2320-8    
[66]
Li J, Zhang F, Zhang L J, Li W J, Zhao Y M. Transactions of Beijing Institute of Technology, 2019, 39(10):1051.
(李健, 张凡, 张丽娟, 李文静, 赵英民. 北京理工大学学报, 2019, 39(10): 1051.)
[67]
Zhu Z. Masteral Dissertation of Harbin Institute of Technology, 2021.
(朱振. 哈尔滨工业大学硕士论文, 2021.)
[68]
Ji Q Y, Zhang L, Jiao X L, Chen D R. ACS Appl. Mater. Interfaces, 2023, 15(5): 6848.

doi: 10.1021/acsami.2c20272     URL    
[69]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.

doi: 10.1021/acsnano.0c06423     URL    
[70]
Zhang X X, Cheng X T, Si Y, Yu J Y, Ding B. Chem. Eng. J., 2022, 433: 133628.

doi: 10.1016/j.cej.2021.133628     URL    
[71]
Liu F Q, Jiang Y G, Feng J Z, Li L J, Feng J. Ceram. Int., 2023, 10.1016/j.ceramint.2023.03.174.
[1] 夏元佳, 陈国兵, 赵爽, 费志方, 张震, 杨自春. 碳化硅基材料在电磁波吸收领域的研究进展[J]. 化学进展, 2024, 36(1): 145-158.
[2] 张文博, 王佳宁, 卫林峰, 金花, 鲍艳, 马建中. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076.
[3] 范金玥, 孔祥鑫, 李伟, 刘守新. 水热炭化制备手性碳点及其应用[J]. 化学进展, 2023, 35(12): 1764-1782.
[4] 宋一龙, 赵爽, 李昆锋, 费志方, 陈国兵, 杨自春. 直接电纺纤维海绵的制备及应用[J]. 化学进展, 2023, 35(11): 1686-1700.
[5] 付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才. 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展, 2023, 35(10): 1415-1437.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[15] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
阅读次数
全文


摘要

氧化物气凝胶高温红外改性研究