English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 1-17 DOI: 10.7536/PC230618   后一篇

• 综述 •

基于碳电极的分子电子器件

薛俊红1, 纪璇1, 陈聪2, 丁小海1,2,*(), 于曦1,*(), 胡文平1   

  1. 1 天津大学理学院 天津市分子光电科学重点实验室 天津 300072
    2 青海民族大学 青海高原资源化学与生态环境保护国家民委重点实验室 西宁 810007
  • 收稿日期:2023-06-21 修回日期:2023-08-11 出版日期:2024-01-24 发布日期:2023-09-10
  • 作者简介:

    丁小海 入选首批西宁市“引才聚才555计划”、青海省中青年科技人才托举工程。主要研究分子电子学微观电子传输及磁响应机制,通过构筑稳定分子器件体系探索电荷输运与分子结构的构效关系,为功能分子器件以及有机自旋器件设计提供理论依据。

    于曦 教授,博导,获天津市青年千人资助。研究主要关注单分子尺度的电荷传递机理与动力学以及基于单分子的功能电子器件,在单分子器件中的非相干电荷输运、电子-振动相互作用和非稳态动力学,以及构筑具有非线性及动态特性的分子器件方面做出了独创性工作,发表学术论文40余篇,其中在PNASJACSAngew ChemAdv Mat等影响因子>10的顶级期刊上发表论文10余篇,文章引用>2000次,申请及授权中国发明专利3项,主持国家级科研项目2项,任卓越期刊Smart Materials责任编辑。

  • 基金资助:
    国家自然科学基金项目(21773169); 国家自然科学基金项目(21973069)

Molecular Electronic Devices Based on Carbon Electrodes

Junhong Xue1, Xuan Ji1, Cong Chen2, Xiaohai Ding1,2(), Xi Yu1(), Wenping Hu1   

  1. 1 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Tianjin University, Tianjin 300072, China
    2 Key Laboratory of Resource Chemistry and Eco-environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, China
  • Received:2023-06-21 Revised:2023-08-11 Online:2024-01-24 Published:2023-09-10
  • Contact: * e-mail: xi.yu@tju.edu.cn (Xi Yu); xiaohai_ding@asia-silicon.com (Xiaohai Ding)
  • Supported by:
    National Natural Science Foundation of China(21773169); National Natural Science Foundation of China(21973069)

基于分子的电子器件以分子的本征电子结构为器件单元,在分子水平上构筑电子器件,是跨越分子电荷传递机制研究的理想实验平台,也为在微纳尺度上实现新型功能电子器件提供了新颖的策略。实现微纳电极间隙及稳定的电极-分子的连接是开发重现性高的分子器件的关键。碳材料因其化学稳定性高、表面化学丰富而在分子器件的构筑中得到了越来越广泛的应用。本文总结回顾了以碳作为电极构筑分子器件的研究状况,讨论了碳材料在分子器件构筑中稳定性高、成本低和可量产等突出优势以及在大面积分子器件和单分子器件中的应用与研究进展。展示了以碳电极构筑的分子开关、分子整流等功能分子器件以及分子-电子传输构效关系等研究方面的丰富成果。最后分析了目前基于碳基分子器件研究面临的挑战,对碳电极-分子界面的化学连接、基于碳电极的分子器件的功能化以及未来分子器件的集成化做了展望。

Molecule-based electronic devices, using the intrinsic electronic structure of molecules as device units and constructing electronic devices at the molecular scale, serve as an ideal experimental platform for studying molecular charge transfer mechanisms. They also provide a novel strategy for achieving new functional electronic devices at the micro-nano scale. The realization of a micro-nano electrode gap and a reliable electrode-molecule connection are key factors in developing highly reproducible molecular devices. Carbon materials have been widely applied in the construction of molecular devices due to their remarkable chemical stability and abundant surface chemistry. This review summarizes the research status of using carbon as electrodes in molecular device construction, showcasing the prominent advantages of carbon materials, such as high stability, low cost, and scalability, as well as their applications and research progress in large-area molecular devices and single-molecule devices. The review presents a wealth of achievements in the construction of functional molecular devices, such as molecular switches and rectifiers, using carbon electrodes, as well as the study of the structure-performance relationship in molecular-electron transport. Lastly, this work analyzes the challenges currently faced in carbon-based molecular device research and provides prospects for the chemical connection of carbon electrode-molecular interface and functionalization of carbon-based molecular devices, as well as the integration of future molecular devices.

Contents

1 Introduction

2 Electrode materials in molecular junctions

2.1 Metal electrodes

2.2 Semiconductor electrodes

2.3 Carbon electrodes

3 Carbon electrodes in large-area molecular devices

4 Carbon electrodes in single molecular junctions

4.1 Preparation technology of carbon-based single molecular junctions

4.2 Function and regulation of carbon-based single molecular junctions

4.3 Analysis and detection of carbon-based single molecule devices

5 Conclusion and outlook

()
图1 (a) 单分子器件和 (b) 大面积分子器件的示意图
Fig. 1 Schematic diagram of a single molecule device (a) and a large area molecular device (b)
图2 (a) STM-BJ装置原理图;(b) STM-BJ测量过程示意图及相应的电导变化曲线[40];(c) 左:AgTS/SAM/Ga2O3/EGaIn分子结的光学显微镜图像;右:相应器件垂直结构示意图[41]
Fig. 2 (a) Schematic of STM-BJ set-up; (b) Schematic diagram of the STM-BJ measurement process and corresponding conductance change curves[40]. Copyright 2003, AAAS; (c) Left: optical microscope image of AgTS/SAM/Ga2O3/EGaIn molecular junctions (MJs); Right: vertical structure diagram of corresponding device[41]. Copyright 2013, Springer Nature
图3 (a) n-Si(111)/molecular/Hg分子整流器的示意图;(b) n-Si(111)/molecular/Hg分子结的J-V曲线(绿色:对溴代苯乙烯,蓝色:苯乙烯,黑色:对甲基苯乙烯)[44]
Fig. 3 (a) Schematic diagram of n-Si(111)/molecular/Hg molecular rectifier; (b) J-V curves for n-Si(111)/molecular/Hg molecular junctions (green: Br-styrene, blue: H-styrene, black: CH3-styrene) [44]. Copyright 2013, Wiley
表1 不同碳材料的相关物性比较
Table 1 Comparison of correlation properties of different carbon materials
图4 (a) 通过共价酰胺键连接的单分子结示意图;(b) 通过π-π相互作用结合的单分子结示意图;(c) 通过碳碳共价键连接的大面积分子结示意图;(d) 通过π-π相互作用结合的大面积分子结示意图
Fig. 4 (a) Schematic diagram of a single molecular junction connected by a covalent amide bond; (b) Schematic diagram of a single molecular junction bound by π-π interaction; (c) Schematic diagram of large molecular junctions connected by carbon-carbon covalent bonds; (d) Schematic diagram of large molecular junctions bound by π-π interaction
图5 (a) 上:芳香胺原位重氮化在碳电极表面接枝过程示意图[27],下:部分用于电接枝修饰碳表面的化学结构[65]; (b) 单晶石墨材料的态密度分布(下图为费米能级处态密度的放大图)[51]
Fig. 5 (a) Upper: Schematic diagram of the grafting process of the aromatic amine in situ diazotization on the surface of the carbon electrode[27]. Copyright 2020, MDPI, Basel, Switzerland; Lower: part representative chemical structure used for electrical grafting to modify carbon electrodes[65]. Copyright 2020, The Royal Society of Chemistry; (b) State density distribution of a single crystal graphite material (the figure on the right is an enlarged view of state density at the Fermi level) [51]. Copyright 2008, American Chemical Society
图6 基于电子束沉积碳和电接枝法制备大面积分子器件流程示意图[62]
Fig. 6 Schematic diagram of large area molecular devices prepared by electron beam deposited carbon and electrografting[62]. Copyright 2010, American Chemical Society
图7 (a) 在直径100 mm晶圆上基于eC和电接枝制备的碳基分子电子芯片光学图像以及其局部放大分子结的示意图;(b) 柔性衬底上碳基器件的弯曲光学图像及单个分子结弯曲状态下的结构示意图[59]
Fig.7 (a) Optical image of a carbon-based molecular electronic chip prepared by eC and electrical grafting on a 100 mm diameter wafer and schematic diagram of its locally amplified molecular junction; (b) Bending optical image of a carbon-based device on a flexible substrate and schematic diagram of a single molecular junction in bending state[59]. Copyright 2016, American Chemical Society
图8 (a) 开路电势(OCP)测量装置示意图;(b) BTB分子结示意图(底部:石英,顶部:碳);(c) 观察407 nm二极管激光上下照射BTB分子结三个开/关光周期的OCP[80];(d) Au/eC/Ru(bpy)3/eC/Au分子器件示意图及其施加电压前后分子结的光学图像;(e) Ru(bpy)3(12.8 nm)分子结的紫外吸收、光电流和发光光谱叠加图;(f) Ru(bpy)3(12.8 nm)分子结在乙腈蒸气下,3.2 V的偏置脉冲和静置几分钟的MJ重复脉冲的总光发射与时间的关系[9]
Fig. 8 (a) Schematic diagram of OCP measuring apparatus; (b) Schematic diagram of BTB MJ (Bottom: quartz, top: carbon); (c) Observed OCP for three on/off light cycles for BTB MJ with top and bottom illumination by a 407 nm diode laser[80]. Copyright 2018, American Chemical Society; (d) Schematic diagram of Au/eC/Ru(bpy)3/eC/Au molecular junction and optical image of molecular junction before and after voltage application; (e) Overlay of UV absorption, photocurrent and luminescence spectra of Ru(bpy)3(12.8 nm) MJs; (f) Total light emission versus time under acetonitrile vapor for bias pulses of 3.2 V and repeated pulses for Ru(bpy)3(12.8 nm) MJ at rest for several minutes after a bias pulse[9]. Copyright 2019, American Chemical Society
图9 (a)左:Au/a-C/Ru(tpy)2/a-C/Au分子结的示意图,右:分子结内双极化子电荷输运机理示意图(a-C:无定形碳膜);(b) Au/a-C/Ru(tpy)2/a-C/Au分子结的磁响应曲线[84]
Fig. 9 (a) Left: Schematic diagram of the Au/a-C/Ru(tpy)2/a-C/Au molecular junctions, Right: schematic diagram of charge transport mechanism of bipolaron in molecular junction(a-C: amorphous carbon film); (b) Magnetic response curve of Au/a-C/Ru(tpy)2/a-C/Au molecular junction[84]. Copyright 2022, Wiley
图10 制备碳纳米管纳米电极示意图[90]:(a) 电烧结法;(b) 氧等离子体氧化切割法;(c) 聚焦电子束切割法;(d) 电烧结法制备石墨烯纳米电极示意图[64];(e) 锯齿状石墨烯点接触阵列的制备,左:氧等离子体通过电子束光刻定义的锯齿状PMMA窗口精确切割石墨烯片的示意图,右:通过氧化切割形成的锯齿状石墨烯触点被羧酸端基功能化并且分离仅有几纳米的示意图[91];(f) 机械控制断结和石墨烯/单富勒烯/石墨烯结示意图以及C60、C70、C76和C90的化学结构[92]
Fig. 10 Schematic diagram of preparing carbon nanotube nanoelectrodes[90]. Copyright 2022, IOP Publishing. (a) Electrical breakdown method; (b) Oxygen plasma oxidation cutting method; (c) Focused electron beam cutting; (d) Schematic diagram of preparation of graphene nanoelectrodes by Electrical breakdown [64]. Copyright 2011, American Chemical Society; (e) Fabrication of indented graphene point contact arrays. Left: schematic illustration of an oxygen plasma precisely cutting a graphene sheets through an indented PMMA window defined by electron-beam lithography. Right: schematic illustration of indented graphene point contacts formed by oxidative cutting were functionalized by carboxylic acid end groups and separated by as little as a few nanometres. [91]. Copyright 2012, Wiley; (f) Schematic of mechanically controlled break junction and graphene/single-fullerene/graphene junction and chemical structure of C60, C70, C76, and C90[92]. Copyright 2019, Springer Nature
图 11 (a) 石墨烯-二芳基乙烯-石墨烯结的示意图;(b) 紫外可见光辐射下,二芳基乙烯分子在打开和关闭形式下可逆切换引起的实时测量电流,VD =100 mV,VG =0 V[89];(c) 左:CNTB-M/CNTT vdWI器件的三维图,右:依据电场开关CNTB-M/CNTT vdWI中基于反式和顺式异构体的分子极化变化的DFT模拟模型;(d) CNTB-M/CNTT vdWI器件的Ids-Vds曲线(分子在顺反状态间切换产生存储窗口)[99]
Fig.11 (a) Schematic diagram of a graphene-diarylethene-graphene junction; (b) Real-time measurement of the current through a diarylethene molecule that reversibly switches between the closed and open forms, upon exposure to UV and Vis radiation, respectively. VD =100 mV and VG =0 V[89]. Copyright 2016, AAAS; (c) Left: three-dimensional view of the CNTB-M/CNTT vdWI device, Right: DFT simulation model of the molecule polarization change based on trans and cis isomers in CNTB-M/CNTT vdWI according to electrical switching. (d) Ids-Vds curves of CNTB-M/CNTT vdWI device (the switching of molecules between trans and cis states leads to the generation of a memory window)[99]. Copyright 2022, Springer Nature
图 12 (a) 石墨烯-卟啉-石墨烯结示意图,突出离子液体门控和氢互变异构;(b) 通过卟啉分子的实时电流测量,在VD=950 mV时,四个态之间的转变;(c) 在VD= -0.02、-0.1、-0.2、-0.3和-0.4 V下器件的转移特性(插图展示了偏压依赖的开关比)[101];(d) 跨平面断裂结装置和外加电场作用下3个M-2D-vdWHs分子结内构象演变示意图;(e) 左:TPA M-2D-vdWHs分别在100、200和300 mV偏压下的1D电导直方图,插图给出了典型的电导-位移轨迹;右:TPA随电场的演变示意图,从具有高电导率的TWP构象(ON状态)到具有低电导率的TC构象(OFF状态);(f) 电场在100和300 mV之间切换时TPA M-2D-vdWHs的可逆开关[97]
Fig. 12 (a) Schematic of a graphene-porphyrin-graphene junction that highlights ionic liquid gating and hydrogen tautomerization; (b) Real-time measurement of the current through a porphyrin molecule that highlights the transitions between four states at 950 mV; (c) Transfer characteristics at VD= -0.02, -0.1, -0.2, -0.3, and -0.4 V (Inset shows VD-dependent on/off ratios)[101]. Copyright 2022, AAAS; (d) Schematic diagram of the XP-BJ setup and the conformational evolution of three M-2D-vdWHs under the applied electric field; (e) Left: The 1D conductance histograms for TPA M-2D-vdWHs under the bias of 100, 200, and 300 mV, respectively. The inserts give the typical conductance-displacement traces, Right: Schematic evolution of TPA along with the electric field, from a TWP conformation with a high conductivity (ON state) to a TC conformation with a low conductivity (OFF state); (f) Reversible switching of TPA M-2D-vdWHs as the electric field was switched between 100 and 300 mV[97]. Copyright 2023, AAAS
图 13 (a) 单分子器件在单分子水平上检测蛋白质的传感机制示意图;(b) 当凝血酶和盐酸胍交替处理时,同一器件的三个代表性开关周期,VSD = -50 mV[104]
Fig. 13 (a) Schematic representation of the sensing mechanism showing single-molecule devices detect proteins at the single-molecule level; (b) Three representative switching cycles for the same device when alternately treated with thrombin and guanidine HCl, VSD = -50 mV[104]. Copyright 2011, Wiley
图14 (a)监测单分子催化循环过程的策略及其器件结构的示意图,在电流中可以检测到催化功能中心的实时变化;(b) 通过催化功能中心的实时变化能够在电流中被检测,突出强调一个催化循环过程中四个导电态的转变[106]
Fig.14 (a) Schematic strategy of the monitoring process for a single-molecule catalytic cycle and device structure; (b) Real-time measurement of the current through catalyst functional unit that highlights the transitions between four conductance states of one catalytic cycle[106]. Copyright 2021, Springer Nature
图15 基于碳电极的分子尺度电子器件发展展望概念图
Fig. 15 Prospect concept map of molecular scale electronic devices based on carbon electrode.
[1]
Waldrop M M. Nature, 2016, 530(7589): 144.

doi: 10.1038/530144a    
[2]
Xiang D, Wang X, Jia C, Lee T, Guo X. Chem. Rev., 2016, 116(7): 4318.

doi: 10.1021/acs.chemrev.5b00680     pmid: 26979510
[3]
Klyamer D D, Sukhikh A S, Krasnov P O, Gromilov S A, Morozova N B, Basova T V. Appl. Surf. Sci., 2016, 372: 79.

doi: 10.1016/j.apsusc.2016.03.066     URL    
[4]
Kumari A, Dhawan S, Singh H, Haridas V, Sinha A. J. Mol. Liq., 2022, 359.
[5]
Guzel M, Torlak Y, Choi H, Ak M. Eur. Polym. J., 2023, 186.
[6]
Hnid I, Frath D, Lafolet F, Sun X N, Lacroix J C. J. Am. Chem. Soc., 2020, 142(17): 7732.

doi: 10.1021/jacs.0c01213     URL    
[7]
Xin N, Hu C, Al Sabea H, Zhang M, Zhou C, Meng L, Jia C, Gong Y, Li Y, Ke G, He X, Selvanathan P, Norel L, Ratner M A, Liu Z, Xiao S, Rigaut S, Guo H, Guo X. J. Am. Chem. Soc., 2021, 143(49): 20811.

doi: 10.1021/jacs.1c08997     pmid: 34846141
[8]
Li J, Hou S, Yao Y R, Zhang C, Wu Q, Wang H C, Zhang H, Liu X, Tang C, Wei M, Xu W, Wang Y, Zheng J, Pan Z, Kang L, Liu J, Shi J, Yang Y, Lambert C J, Xie S Y, Hong W. Nat. Mater., 2022, 21(8): 917.

doi: 10.1038/s41563-022-01309-y    
[9]
Tefashe U M, Van Dyck C, Saxena S K, Lacroix J C, McCreery R L. J. Phys. Chem. C, 2019, 123(48): 29162.

doi: 10.1021/acs.jpcc.9b10076    
[10]
Chen X P, Roemer M, Yuan L, Du W, Thompson D, del Barco E, Nijhuis C A. Nat. Nanotechnol., 2017, 12(8): 797.

doi: 10.1038/nnano.2017.110     URL    
[11]
Yang C, Yang C, Guo Y, Feng J, Guo X F. Nat. Protoc., 2023, 18(6): 1958.

doi: 10.1038/s41596-023-00822-x    
[12]
Gorenskaia E, Turner K L, Martin S, Cea P, Low P J. Nanoscale, 2021, 13(20): 9055.

doi: 10.1039/d1nr00917f     pmid: 34042128
[13]
Bergren A J, Zeer-Wanklyn L, Semple M, Pekas N, Szeto B, McCreery R L. J. Phys. Condens. Matter, 2016, 28(9): 094011.

doi: 10.1088/0953-8984/28/9/094011     URL    
[14]
Aviram A, Ratner M A. Chem. Phys. Lett., 1974, 29(2): 277.

doi: 10.1016/0009-2614(74)85031-1     URL    
[15]
Xin N, Guan J, Zhou C, Chen X, Gu C, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X. Nat. Rev. Phys., 2019, 1(3): 211.

doi: 10.1038/s42254-019-0022-x    
[16]
Li X, Ge W, Guo S, Bai J, Hong W. Angew. Chem. Int. Ed., 2023, 62(13): e202216819.

doi: 10.1002/anie.v62.13     URL    
[17]
McCreery R L. Acc. Chem. Res., 2022, 55(19): 2766.

doi: 10.1021/acs.accounts.2c00401     URL    
[18]
Park H, Lim A K L, Alivisatos A P, Park J, McEuen P L. Appl. Phys. Lett., 1999, 75(2): 301.

doi: 10.1063/1.124354     URL    
[19]
Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M. Science, 1997, 278(5336): 252.

doi: 10.1126/science.278.5336.252     URL    
[20]
Bai J, Daaoub A, Sangtarash S, Li X, Tang Y, Zou Q, Sadeghi H, Liu S, Huang X, Tan Z, Liu J, Yang Y, Shi J, Meszaros G, Chen W, Lambert C, Hong W. Nat. Mater., 2019, 18(4): 364.

doi: 10.1038/s41563-018-0265-4    
[21]
Huang X, Tang C, Li J, Chen L C, Zheng J, Zhang P, Le J, Li R, Li X, Liu J, Yang Y, Shi J, Chen Z, Bai M, Zhang H L, Xia H, Cheng J, Tian Z Q, Hong W. Sci. Adv., 2019, 5(6): eaaw3072.

doi: 10.1126/sciadv.aaw3072     URL    
[22]
Bumm L A, Arnold J J, Cygan M T, Dunbar T D, Burgin T P, Jones L, Allara D L, Tour J M, Weiss P S. Science, 1996, 271(5256): 1705.

doi: 10.1126/science.271.5256.1705     URL    
[23]
Yao X L, Sun X N, Lafolet F, Lacroix J C. Nano Lett., 2020, 20(9): 6899.

doi: 10.1021/acs.nanolett.0c03000     URL    
[24]
Luo L, Benameur A, Brignou P, Choi S H, Rigaut S, Frisbie C D. J. Phys. Chem. C, 2011, 115(40): 19955.

doi: 10.1021/jp207336v     URL    
[25]
Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix J C. Nano Lett., 2021, 21(15): 6540.

doi: 10.1021/acs.nanolett.1c01747     URL    
[26]
Jeong H, Kim D, Xiang D, Lee T. ACS Nano, 2017, 11(7): 6511.

doi: 10.1021/acsnano.7b02967     URL    
[27]
Herrer L, Martin S, Cea P. Appl. Sci. Basel, 2020, 10(17).
[28]
Bof Bufon C C, Vervacke C, Thurmer D J, Fronk M, Salvan G, Lindner S, Knupfer M, Zahn D R T, Schmidt O G. J. Phys. Chem. C, 2014, 118(14): 7272.

doi: 10.1021/jp409617r     URL    
[29]
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. J. Am. Chem. Soc., 2020, 142(21): 9708.
[30]
Loo Y L, Lang D V, Rogers J A, Hsu J W P. Nano Lett., 2003, 3(7): 913.

doi: 10.1021/nl034207c     URL    
[31]
Shimizu K T, Fabbri J D, Jelincic J J, Melosh N A. Adv. Mater., 2006, 18(12): 1499.

doi: 10.1002/adma.v18:12     URL    
[32]
Martín S, Ballesteros L M, González-Orive A, Oliva H, Marqués-González S, Lorenzoni M, Nichols R J, Pérez-Murano F, Low P J, Cea P. J. Mater. Chem. C, 2016, 4(38): 9036.

doi: 10.1039/C6TC03319A     URL    
[33]
Chabinyc M L, Chen X, Holmlin R E, Jacobs H, Skulason H, Frisbie C D, Mujica V, Ratner M A, Rampi M A, Whitesides G M. J. Am. Chem. Soc., 2002, 124(39): 11730.

pmid: 12296740
[34]
Chen J, Giroux T J, Nguyen Y, Kadoma A A, Chang B S, VanVeller B, Thuo M M. Phys. Chem. Chem. Phys., 2018, 20(7): 4864.

doi: 10.1039/C7CP07531F     URL    
[35]
Akkerman H B, Blom P W, de Leeuw D M, de Boer B. Nature, 2006, 441(7089): 69.

doi: 10.1038/nature04699    
[36]
Puebla-Hellmann G, Venkatesan K, Mayor M, Lortscher E. Nature, 2018, 559(7713): 232.

doi: 10.1038/s41586-018-0275-z    
[37]
Aragones A C, Darwish N, Ciampi S, Sanz F, Gooding J J, Diez-Perez I. Nat. Commun., 2017, 8: 15056.

doi: 10.1038/ncomms15056     URL    
[38]
De Sousa J A, Pfattner R, Gutierrez D, Jutglar K, Bromley S T, Veciana J, Rovira C, Mas-Torrent M, Fabre B, Crivillers N. ACS Appl. Mater. Interfaces, 2023, 15(3): 4635.

doi: 10.1021/acsami.2c15690     URL    
[39]
Vilan A, Cahen D. Chem. Rev., 2017, 117(5): 4624.

doi: 10.1021/acs.chemrev.6b00746     URL    
[40]
Xu B Q, Tao N J J. Science, 2003, 301(5637): 1221.

doi: 10.1126/science.1087481     URL    
[41]
Nerngchamnong N, Yuan L, Qi D C, Li J, Thompson D, Nijhuis C A. Nat. Nanotechnol., 2013, 8(2): 113.

doi: 10.1038/nnano.2012.238     pmid: 23292010
[42]
Vezzoli A, Brooke R J, Ferri N, Higgins S J, Schwarzacher W, Nichols R J. Nano Lett., 2017, 17(2): 1109.

doi: 10.1021/acs.nanolett.6b04663     pmid: 28079382
[43]
Vezzoli A, Brooke R J, Higgins S J, Schwarzacher W, Nichols R J. Nano Lett., 2017, 17(11): 6702.

doi: 10.1021/acs.nanolett.7b02762     pmid: 28985083
[44]
Haj-Yahia A E, Yaffe O, Bendikov T, Cohen H, Feldman Y, Vilan A, Cahen D. Adv. Mater., 2013, 25(5): 702.

doi: 10.1002/adma.v25.5     URL    
[45]
Yaffe O, Qi Y B, Scheres L, Puniredd S R, Segev L, Ely T, Haick H, Zuilhof H, Vilan A, Kronik L, Kahn A, Cahen D. Phys. Rev. B, 2012, 85(4): 045433.

doi: 10.1103/PhysRevB.85.045433     URL    
[46]
Neaton J B, Hybertsen M S, Louie S G. Phys. Rev. Lett., 2006, 97(21): 216405.

doi: 10.1103/PhysRevLett.97.216405     URL    
[47]
Fabre B, Li Y, Scheres L, Pujari S P, Zuilhof H. Angew. Chem. Int. Ed., 2013, 52(46): 12024.

doi: 10.1002/anie.v52.46     URL    
[48]
Fabre B. Chem. Rev., 2016, 116(8): 4808.

doi: 10.1021/acs.chemrev.5b00595     URL    
[49]
Yang Z, Liu W, Zhao L, Yin D, Feng J, Li L, Guo X. Nat. Commun., 2023, 14(1): 552.

doi: 10.1038/s41467-023-36278-6    
[50]
Henriksson A, Neubauer P, Birkholz M. Adv. Mater. Interfaces, 2021, 8(23).
[51]
McCreery R L. Chem. Rev., 2008, 108(7): 2646.

doi: 10.1021/cr068076m     pmid: 18557655
[52]
Renschler C L, Sylwester A P, Salgado L V. J. Mater. Res., 1989, 4(2): 452.

doi: 10.1557/JMR.1989.0452     URL    
[53]
Chowdhury S, Jana D, Mookerjee A. Phys. E, 2015, 74: 347.

doi: 10.1016/j.physe.2015.07.019     URL    
[54]
Chen P, McCreery R L. Anal. Chem., 1996, 68(22): 3958.

doi: 10.1021/ac960492r     URL    
[55]
Athanasopoulos N, Kostopoulos V. Compos. Pt. B-Eng, 2014, 67: 244.

doi: 10.1016/j.compositesb.2014.07.012     URL    
[56]
Morteza Najarian A, Szeto B, Tefashe U M, McCreery R L. ACS Nano, 2016, 10(9): 8918.

doi: 10.1021/acsnano.6b04900     pmid: 27529117
[57]
Tomidokoro M, Tunmee S, Rittihong U, Euaruksakul C, Supruangnet R, Nakajima H, Hirata Y, Ohtake N, Akasaka H. Materials, 2021, 14(9): 2355.

doi: 10.3390/ma14092355     URL    
[58]
Ranganathan S, McCreery R, Majji S M, Madou M. J. Electrochem. Soc., 2000, 147(1): 277.

doi: 10.1149/1.1393188     URL    
[59]
Compton R G, Foord J S, Marken F. Electroanal., 2003, 15(17): 1349.

doi: 10.1002/elan.v15:17     URL    
[60]
Feldman A K, Steigerwald M L, Guo X, Nuckolls C. Acc. Chem. Res., 2008, 41(12): 1731.

doi: 10.1021/ar8000266     URL    
[61]
Ranganathan S, Steidel I, Anariba F, McCreery R L. Nano Lett., 2001, 1(9): 491.

doi: 10.1021/nl015566f     URL    
[62]
Ru J, Szeto B, Bonifas A, McCreery R L. ACS Appl. Mater. Interfaces, 2010, 2(12): 3693.

doi: 10.1021/am100833e     URL    
[63]
Song P, Guerin S, Tan S J R, Annadata H V, Yu X, Scully M, Han Y M, Roemer M, Loh K P, Thompson D, Nijhuis C A. Adv. Mater., 2018, 30(10).
[64]
Prins F, Barreiro A, Ruitenberg J W, Seldenthuis J S, Aliaga-Alcalde N, Vandersypen L M K, van der Zant H S J. Nano Lett., 2011, 11(11): 4607.

doi: 10.1021/nl202065x     URL    
[65]
Sachan P, Mondal P C. Analyst, 2020, 145(5): 1563.

doi: 10.1039/C9AN01948K     URL    
[66]
Yan H J, Bergren A J, McCreery R L. J. Am. Chem. Soc., 2011, 133(47): 19168.

doi: 10.1021/ja206619a     URL    
[67]
Park S, Yoon H J. Nano Lett., 2018, 18(12): 7715.

doi: 10.1021/acs.nanolett.8b03404     URL    
[68]
Wan A, Jiang L, Sangeeth C S S, Nijhuis C A. Adv. Funct. Mater., 2014, 24(28): 4442.

doi: 10.1002/adfm.v24.28     URL    
[69]
Tsuji M, Saeki A, Koizumi Y, Matsuyama N, Vijayakumar C, Seki S. Adv. Funct. Mater., 2014, 24(1): 28.

doi: 10.1002/adfm.v24.1     URL    
[70]
Zhitenev N B, Jiang W R, Erbe A, Bao Z, Garfunkel E, Tennant D M, Cirelli R A. Nanotechnology, 2006, 17(5): 1272.

doi: 10.1088/0957-4484/17/5/019     URL    
[71]
Sayed S Y, Fereiro J A, Yan H, McCreery R L, Bergren A J. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(29): 11498.

doi: 10.1073/pnas.1201557109     URL    
[72]
Li T, Hauptmann J R, Wei Z, Petersen S, Bovet N, Vosch T, Nygard J, Hu W, Liu Y, Bjornholm T, Norgaard K, Laursen B W. Adv. Mater., 2012, 24(10): 1333.

doi: 10.1002/adma.v24.10     URL    
[73]
Kühnel M, Petersen S V, Hviid R, Overgaard M H, Laursen B W, Nørgaard K. J. Phys. Chem. C, 2018, 122(18): 9731.

doi: 10.1021/acs.jpcc.7b12606     URL    
[74]
Karuppannan S K, Neoh E H L, Vilan A, Nijhuis C A. J. Am. Chem. Soc., 2020, 142(7): 3513.

doi: 10.1021/jacs.9b12424     pmid: 31951129
[75]
Tefashe U M, Nguyen Q V, Najarian A M, Lafolet F, Lacroix J C, McCreery R L. J. Phys. Chem. C, 2018, 122(50): 29028.

doi: 10.1021/acs.jpcc.8b09978     URL    
[76]
Nguyen Q V, Tefashe U, Martin P, Della Rocca M L, Lafolet F, Lafarge P, McCreery R L, Lacroix J C. Adv. Electron. Mater., 2020, 6(7): 1901416.

doi: 10.1002/aelm.v6.7     URL    
[77]
Barraud C, Lemaitre M, Bonnet R, Rastikian J, Salhani C, Lau S, van Nguyen Q, Decorse P, Lacroix J C, Della Rocca M L, Lafarge P, Martin P. Nanoscale Adv., 2019, 1(1): 414.

doi: 10.1039/C8NA00106E     URL    
[78]
Yan H, Bergren A J, McCreery R, Della Rocca M L, Martin P, Lafarge P, Lacroix J C. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(14): 5326.

doi: 10.1073/pnas.1221643110     URL    
[79]
Bayat A, Lacroix J C, McCreery R L. J. Am. Chem. Soc., 2016, 138(37): 12287.

doi: 10.1021/jacs.6b07499     URL    
[80]
Najarian A M, Bayat A, McCreery R L. J. Am. Chem. Soc., 2018, 140(5): 1900.

doi: 10.1021/jacs.7b12577     pmid: 29319313
[81]
Saxena S K, Tefashe U M, McCreery R L. J. Am. Chem. Soc., 2020, 142(36): 15420.

doi: 10.1021/jacs.0c06764     URL    
[82]
Ivashenko O, Bergren A J, McCreery R L. J. Am. Chem. Soc., 2016, 138(3): 722.

doi: 10.1021/jacs.5b10018     pmid: 26745544
[83]
Tefashe U M, Van Nguyen Q, Lafolet F, Lacroix J C, McCreery R L. J. Am. Chem. Soc., 2017, 139(22): 7436.

doi: 10.1021/jacs.7b02563     pmid: 28528551
[84]
Ding X, Xue J, Ding S, Chen C, Wang X, Yu X, Hu W. Angew. Chem. Int. Ed., 2022, 61(44): e202208969.

doi: 10.1002/anie.v61.44     URL    
[85]
Qi P F, Javey A, Rolandi M, Wang Q, Yenilmez E, Dai H J. J. Am. Chem. Soc., 2004, 126(38): 11774.

doi: 10.1021/ja045900k     URL    
[86]
Whalley A C, Steigerwald M L, Guo X, Nuckolls C. J. Am. Chem. Soc., 2007, 129(42): 12590.

pmid: 17902658
[87]
Guo X, Gorodetsky A A, Hone J, Barton J K, Nuckolls C. Nat. Nanotechnol., 2008, 3(3): 163.

doi: 10.1038/nnano.2008.4    
[88]
Liu S, Clever G H, Takezawa Y, Kaneko M, Tanaka K, Guo X, Shionoya M. Angew. Chem. Int. Ed., 2011, 50(38): 8886.

doi: 10.1002/anie.v50.38     URL    
[89]
Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F. Science, 2016, 352(6292): 1443.

doi: 10.1126/science.aaf6298     URL    
[90]
Zhao Y, Liu W Q, Zhao J Y, Wang Y S, Zheng J T, Liu J Y, Hong W J, Tian Z Q. Int. J. Extreme Manuf., 2022, 4(2): 022003.
[91]
Cao Y, Dong S, Liu S, He L, Gan L, Yu X, Steigerwald M L, Wu X, Liu Z, Guo X. Angew. Chem. Int. Ed., 2012, 51(49): 12228.

doi: 10.1002/anie.v51.49     URL    
[92]
Tan Z, Zhang D, Tian H R, Wu Q, Hou S, Pi J, Sadeghi H, Tang Z, Yang Y, Liu J, Tan Y Z, Chen Z B, Shi J, Xiao Z, Lambert C, Xie S Y, Hong W J. Nat. Commun., 2019, 10(1): 1748.

doi: 10.1038/s41467-019-09793-8    
[93]
Marquardt C W, Grunder S, Blaszczyk A, Dehm S, Hennrich F, Lohneysen H V, Mayor M, Krupke R. Nat. Nanotechnol., 2010, 5(12): 863.

doi: 10.1038/nnano.2010.230    
[94]
Guo X, Small J P, Klare J E, Wang Y, Purewal M S, Tam I W, Hong B H, Caldwell R, Huang L, O'Brien S, Yan J, Breslow R, Wind S J, Hone J, Kim P, Nuckolls C. Science, 2006, 311(5759): 356.

doi: 10.1126/science.1120986     URL    
[95]
Thiele C, Vieker H, Beyer A, Flavel B S, Hennrich F, Torres D M, Eaton T R, Mayor M, Kappes M M, Golzhauser A, Lohneysen H V, Krupke R. Appl. Phys. Lett., 2014, 104(10): 103102.

doi: 10.1063/1.4868097     URL    
[96]
Caneva S, Gehring P, Garcia-Suarez V M, Garcia-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C, van der Zant H S J. Nat. Nanotechnol., 2018, 13(12): 1126.

doi: 10.1038/s41565-018-0258-0    
[97]
Zou Y L, Liang Q M, Lu T, Li Y G, Zhao S, Gao J, Yang Z X, Feng A, Shi J, Hong W, Tian Z Q, Yang Y. Sci. Adv., 2023, 9(6): eadf0425.

doi: 10.1126/sciadv.adf0425     URL    
[98]
Meng L, Xin N, Hu C, Wang J, Gui B, Shi J, Wang C, Shen C, Zhang G, Guo H, Meng S, Guo X. Nat. Commun., 2019, 10(1): 1450.

doi: 10.1038/s41467-019-09120-1    
[99]
Phan T L, Seo S, Cho Y, An Vu Q, Lee Y H, Duong D L, Lee H, Yu W J. Nat. Commun., 2022, 13(1): 4556.

doi: 10.1038/s41467-022-32173-8    
[100]
Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J, Guo X. Angew. Chem. Int. Ed., 2018, 57(43): 14026.

doi: 10.1002/anie.201807465     pmid: 30215882
[101]
Yan Z, Li X, Li Y, Jia C, Xin N, Li P, Meng L, Zhang M, Chen L, Yang J, Wang R, Guo X. Sci. Adv., 2022, 8(12): eabm3541.

doi: 10.1126/sciadv.abm3541     URL    
[102]
Li Y, Yang C, Guo X. Acc Chem. Res., 2020, 53(1): 159.

doi: 10.1021/acs.accounts.9b00347     URL    
[103]
Guo X, Whalley A, Klare J E, Huang L, O'Brien S, Steigerwald M, Nuckolls C. Nano Lett., 2007, 7(5): 1119.

doi: 10.1021/nl070245a     URL    
[104]
Liu S, Zhang X, Luo W, Wang Z, Guo X, Steigerwald M L, Fang X. Angew. Chem. Int. Ed., 2011, 50(11): 2496.

doi: 10.1002/anie.v50.11     URL    
[105]
Gehring P, Sadeghi H, Sangtarash S, Lau C S, Liu J, Ardavan A, Warner J H, Lambert C J, Briggs G A, Mol J A. Nano Lett., 2016, 16(7): 4210.

doi: 10.1021/acs.nanolett.6b01104     pmid: 27295198
[106]
Yang C, Zhang L, Lu C, Zhou S, Li X, Li Y, Yang Y, Li Y, Liu Z, Yang J, Houk K N, Mo F, Guo X. Nat. Nanotechnol., 2021, 16(11): 1214.

doi: 10.1038/s41565-021-00959-4    
[107]
Guan J, Jia C, Li Y, Liu Z, Wang J, Yang Z, Gu C, Su D, Houk K N, Zhang D, Guo X. Sci. Adv., 2018, 4(2): eaar2177.

doi: 10.1126/sciadv.aar2177     URL    
[108]
Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X. Nat. Commun., 2018, 9(1): 807.

doi: 10.1038/s41467-018-03203-1     pmid: 29476061
[109]
Zhang L, Yang C, Lu C, Li X, Guo Y, Zhang J, Lin J, Li Z, Jia C, Yang J, Houk K N, Mo F, Guo X. Nat. Commun., 2022, 13(1): 4552.

doi: 10.1038/s41467-022-32351-8     pmid: 35931699
[1] 江浪 黄桂芳 李洪祥 李小凡 胡文平 刘云圻 朱道本. 自组装分子电子器件[J]. 化学进展, 2005, 17(01): 172-179.
阅读次数
全文


摘要

基于碳电极的分子电子器件