English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 27-47 DOI: 10.7536/PC230604 前一篇   后一篇

• 综述 •

VOCs氧化催化剂设计与结构调控

杨雯皓1, 赵东越1, 宋海涛1,*(), 李俊华2,*()   

  1. 1 中石化石油化工科学研究院有限公司 北京100083
    2 清华大学环境学院 环境模拟与污染控制国家重点联合实验室 北京100084
  • 收稿日期:2023-06-08 修回日期:2023-08-30 出版日期:2024-01-24 发布日期:2024-01-05
  • 作者简介:

    宋海涛 中石化石油化工科学研究院研究员,催化裂化催化剂研究室主任。从事石油炼制及工业烟气污染物治理催化剂研发与应用,近5年主持国家重点研发计划课题1项,中国石化科技项目及课题6项,发表论文20余篇,授权中国发明专利30件,国际专利5件。获中央企业熠星创新创意大赛一等奖,中国环境保护产业协会技术进步一等奖等9项成果奖励(5项排名第一)。

    李俊华 清华大学教授,长江学者特聘教授,国家杰出青年基金获得者,大气污染物与温室气体协同控制国家工程研究中心主任。长期从事工业烟气脱硫脱硝、VOCs减排与CO2捕集利用催化剂研发与应用,发表SCI论文246篇,连续入选“全球高被引科学家”,授权国家发明专利36项。成果获国家科技进步一等奖1项和国家技术发明二等奖1项,省部级特/一等奖3项(均为排名第一)。

  • 基金资助:
    国家自然科学基金项目(22306210); 国家重点研发计划(2022YFB3504004); 中石化石油化工科学研究院院控课题(PR20230115)

Design and Structure Regulation of VOCs Catalytic Oxidation Catalysts

Wenhao Yang1, Dongyue Zhao1, Haitao Song1(), Junhua Li2()   

  1. 1 SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
    2 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • Received:2023-06-08 Revised:2023-08-30 Online:2024-01-24 Published:2024-01-05
  • Contact: * e-mail: songht.ripp@sinopec.com (Haitao Song); lijunhua@tsinghua.edu.cn (Junhua Li)
  • Supported by:
    National Natural Science Foundation Program of China(22306210); National Key Research & Development Program of China(2022YFB3504004); SINOPEC RIPP Project(PR20230115)

近年来我国环境空气质量显著改善,NOx与SO2等传统污染物得到有效控制,挥发性有机物(Volatile Organic Compounds, VOCs)排放控制逐渐成为进一步解决区域复合型大气污染问题的关键因素。催化氧化法因其处理效率高、能耗低及适用范围广等优势,已成为最具应用前景的VOCs减排技术之一。高性能催化剂的研发是该技术的核心,结合反应机理进行催化剂设计和结构调控是目前研究的热点和重点。本文首先对VOCs催化氧化机理进行概述;其次从单一过渡金属氧化物、混合金属氧化物、复合金属氧化物以及相界面结构调控角度综述了非贵金属催化剂结构调控的相关研究进展;聚焦贵金属分散状态,总结了贵金属催化剂中贵金属纳米颗粒/团簇催化剂尺寸效应与载体效应相关研究成果,并对目前新兴的单原子催化剂基于金属-载体相互作用的调控手段进行概括;最后对VOCs氧化催化剂的研究现状与趋势进行总结与展望。我们认为深入解析构效关系,研发简约和精细化的催化剂结构调控手段并适配实际工况和工业放大是未来研究的重点发展方向。

In recent years, with the improvement of the air quality in China, traditional pollutants such as NOx and SO2 have been effectively controlled. The emission control of volatile organic compounds (VOCs) has gradually become a key to further alleviating the regional composite air pollution so far. Catalytic oxidation is one of the most promising VOCs emission reduction technologies due to its high treatment efficiency, low energy consumption, and wide applicability. The development of high-performance catalysts is crucial for this technology. The design and structural regulation of catalysts associated with mechanism study is currently a research hotspot. This paper first outlines the catalytic oxidation mechanism of VOCs. Secondly, the research progress on the structural regulation of non-noble metal catalysts is reviewed from the perspectives of single transition metal oxides, mixed metal oxides, composite metal oxides, and interface structure regulation. Based on the dispersion state, the size effect and support effect of noble metal nanoparticles/clusters in noble metal catalysts are summarized. The regulation strategies based on the metal-support interaction for the emerging single-atom catalysts are also discussed. Finally, this paper provides a summary and prospects for future research trends. We believe that based on deeply clarifying the structure-activity relationship, developing simple and refined structure regulation methods of catalysts and adapting to actual operating conditions and industrial scale-up is the focus of future research.

Contents

1 Introduction

2 VOCs catalytic oxidation mechanisms

3 Structure regulation of non-noble metal catalysts

3.1 Single transition metal oxides

3.2 Mixed transition metal oxides

3.3 Composite transition metal oxides

3.4 Interface structure regulation

4 Regulation of metal dispersion state in noble metal catalysts

4.1 Noble metal nanoparticle/cluster catalysts

4.2 Noble metal single-atom catalysts

5 Conclusion and outlook

()
图1 (a)催化剂降低VOCs氧化反应活化能示意图;(b)VOCs催化氧化机理
Fig. 1 (a) Schematic diagram of catalyst reducing the activation energy of VOCs oxidation reaction; (b) VOCs catalytic oxidation mechanisms
图2 丙烷与丙烯在YMn2O5表面的活化和氧化过程[21]
Fig. 2 Activation and oxidation of propane and propene on YMn2O5[21], Copyright 2020, American Chemical Society
图3 (a)不同晶型MnO2的合成方法与晶体结构[29];(b)不同形貌Co3O4与其主要暴露晶面的关系
Fig. 3 (a) Synthesis methods and crystal structures of MnO2 with different crystal phases[29], Copyright 2021, John Wiley and Sons; (b) Relationship between Co3O4 with different morphologies and main exposed crystal facets
图4 (a)δ-MnO2不同层间离子掺杂对甲醛及其氧化中间物种吸附能的影响[43],(b)MOF-71衍生Co-Ce混合氧化物及其丙酮氧化活性[73]
Fig. 4 (a) The effect of different interlayer ions in δ-MnO2 on the adsorption energy of formaldehyde and oxidation intermediate species[43], Copyright 2020, American Chemical Society; (b) MOF-71-derived Co-Ce mixed oxides and their acetone oxidation activity[73], Copyright 2020, American Chemical Society
图5 尖晶石晶体结构示意图
Fig. 5 Schematic diagram of spinel crystal structure
图6 钙钛矿晶体结构示意图
Fig. 6 Schematic diagram of perovskite crystal structure
图7 Mn基莫来石晶体结构示意图
Fig. 7 Schematic diagram of Mn-based mullite crystal structure
图8 Mn2O3@δ-MnO2核壳异质结构催化剂构建应用于甲苯氧化[115]
Fig. 8 Construction of Mn2O3@δ-MnO2 core-shell heterostructure catalysts for toluene oxidation[115], Copyright 2020, Elsevier
图9 Pt NPs粒径与CeO2表面氧空位和活性氧物种含量的关系
Fig. 9 The relationship between the particle size of Pt NPs and the surface oxygen vacancies/active oxygen species content of CeO2
图10 (a)Pd负载于不同形貌CeO2表面时其CO与丙烷氧化反应速率[152],(b)MOF原位生长诱导Co3O4与Pt NPs间电子转移促进甲苯氧化机理示意图[153]
Fig. 10 (a) The reaction rate of CO and propane oxidation over Pd loaded on CeO2 with different morphologies[152], Copyright 2016, American Chemical Society; (b) Schematic diagram of electron transfer between Co3O4 and Pt NPs induced by MOF in situ growth promoting toluene oxidation[153], Copyright 2022, American Chemical Society
图11 单原子催化剂的制备方法[162]
Fig. 11 Synthesis strategies of single-atom catalysts[162], Copyright 2021, American Chemical Society
图12 (a)H2O2辅助MnO2表面Mn空位捕获Ag单原子促进氧活化[179];(b)Co3+位点稳定Ag单原子促进苯氧化[180]
Fig. 12 (a) H2O2-assisted Mn vacancy capture of Ag single atom on MnO2 surface promoting oxygen activation[179], Copyright 2022, Royal Society of Chemistry; (b) Co3+-site stabilized Ag single atom promoting benzene oxidation activity[180], Copyright 2022, American Chemical Society
[1]
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z P. Chem. Rev., 2019, 119(7): 4471.

doi: 10.1021/acs.chemrev.8b00408    
[2]
Wu P, Jin X J, Qiu Y C, Ye D Q. Environ. Sci. Technol., 2021, 55(8): 4268.

doi: 10.1021/acs.est.0c08179     URL    
[3]
Mozaffar A, Zhang Y L, Fan M Y, Cao F, Lin Y C. Atmos. Res., 2020, 240: 104923.

doi: 10.1016/j.atmosres.2020.104923     URL    
[4]
Ministry of Ecology and Environment of the People's Republic of China. 2021 China Ecological Environment Status Bulletin[EB/OL]. (2022-05-27)[2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.
(中华人民共和国生态环境部. 2021中国生态环境状况公报[EB/OL]. (2022-05-27) [2023-05-17]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P020220608338202870777.pdf.)
[5]
Jin X M, Holloway T. J. Geophys. Res. Atmos., 2015, 120(14): 7229.
[6]
Li J H, Yao Q, Zhu T Y. Deep Treatment Technology and Engineering Application of Multiple Pollutants in Industrial Flue Gas. Beijing: Science Press, 2019.
(李俊华, 姚群, 朱廷钰. 工业烟气多污染物深度治理技术及工程应用. 北京: 科学出版社, 2019. ).
[7]
Ye D Q. Emission and control of industrial volatile organic compounds. Beijing: Science Press, 2017.
(叶代启. 工业挥发性有机物的排放与控制. 北京: 科学出版社, 2017.).
[8]
Guo Y L, Wen M C, Li G Y, An T C. Appl. Catal. B Environ., 2021, 281: 119447.

doi: 10.1016/j.apcatb.2020.119447     URL    
[9]
Behar S, Gómez-Mendoza N A, Gómez-García M Á, Świerczyński D, Quignard F, Tanchoux N. Appl. Catal. A Gen., 2015, 504: 203.

doi: 10.1016/j.apcata.2014.12.021     URL    
[10]
Genuino H C, Dharmarathna S, Njagi E C, Mei M C, Suib S L. J. Phys. Chem. C, 2012, 116(22): 12066.

doi: 10.1021/jp301342f     URL    
[11]
Tseng T K, Chu H. Sci. Total Environ., 2001, 275(1-3): 83.

pmid: 11482406
[12]
Hosseini M, Barakat T, Cousin R, Aboukaïs A, Su B L, De Weireld G, Siffert S. Appl. Catal. B Environ., 2012, 111-112: 218.

doi: 10.1016/j.apcatb.2011.10.002     URL    
[13]
Banu I, Bercaru G, Bozga G, Danciu T D. Chem. Eng. Technol., 2016, 39(4): 758.

doi: 10.1002/ceat.v39.4     URL    
[14]
Zabihi M, Khorasheh F, Shayegan J. React. Kinet. Mech. Catal., 2015, 114(2): 611.

doi: 10.1007/s11144-014-0824-x     URL    
[15]
Banu I, Manta C M, Bercaru G, Bozga G. Chem. Eng. Res. Des., 2015, 102: 399.

doi: 10.1016/j.cherd.2015.07.012     URL    
[16]
Wang Q Y, Li Y X, Serrano-Lotina A, Han W, Portela R, Wang R X, Bañares M A, Yeung K L. J. Am. Chem. Soc., 2021, 143(1): 196.

doi: 10.1021/jacs.0c08640     URL    
[17]
Zhang Z X, Jiang Z, Shangguan W F. Catal. Today, 2016, 264: 270.

doi: 10.1016/j.cattod.2015.10.040     URL    
[18]
Yang C T, Miao G, Pi Y H, Xia Q B, Wu J L, Li Z, Xiao J. Chem. Eng. J., 2019, 370: 1128.

doi: 10.1016/j.cej.2019.03.232     URL    
[19]
Sun H, Liu Z G, Chen S, Quan X. Chem. Eng. J., 2015, 270: 58.

doi: 10.1016/j.cej.2015.02.017     URL    
[20]
Ding J Y, Yang Y J, Liu J, Wang Z. Chemosphere, 2020, 248: 125980.

doi: 10.1016/j.chemosphere.2020.125980     URL    
[21]
Zhang T, Lang X Y, Dong A Q, Wan X, Gao S, Wang L, Wang L X, Wang W C. ACS Catal., 2020, 10(13): 7269.

doi: 10.1021/acscatal.0c00703     URL    
[22]
Kim S C, Shim W G. Appl. Catal. B Environ., 2010, 98(3-4): 180.

doi: 10.1016/j.apcatb.2010.05.027     URL    
[23]
Feng Q, Kanoh H, Ooi K. J. Mater. Chem., 1999, 9(2): 319.
[24]
Yang R J, Fan Y Y, Ye R Q, Tang Y X, Cao X H, Yin Z Y, Zeng Z Y. Adv. Mater., 2021, 33(9): 2004862.

doi: 10.1002/adma.v33.9     URL    
[25]
Liang S H, Bulgan F T G, Zong R L, Zhu Y F. J. Phys. Chem. C, 2008, 112(14): 5307.

doi: 10.1021/jp0774995     URL    
[26]
Zhang J H, Li Y B, Wang L, Zhang C B, He H. Catal. Sci. Technol., 2015, 5(4): 2305.

doi: 10.1039/C4CY01461H     URL    
[27]
Chen B B, Wu B, Yu L M, Crocker M, Shi C. ACS Catal., 2020, 10(11): 6176.

doi: 10.1021/acscatal.0c00459     URL    
[28]
Yang W H, Su Z A, Xu Z H, Yang W N, Peng Y, Li J H. Appl. Catal. B Environ., 2020, 260: 118150.

doi: 10.1016/j.apcatb.2019.118150     URL    
[29]
Yang R J, Guo Z J, Cai L X, Zhu R S, Fan Y Y, Zhang Y F, Han P P, Zhang W J, Zhu X G, Zhao Q T, Zhu Z Y, Chan C K, Zeng Z Y. Small, 2021, 17(50): 2103052.

doi: 10.1002/smll.v17.50     URL    
[30]
Rong S P, Zhang P Y, Liu F, Yang Y J. ACS Catal., 2018, 8(4): 3435.

doi: 10.1021/acscatal.8b00456     URL    
[31]
Feng C, Xiong G Y, Li Y P, Gao Q Q, Pan Y, Fei Z Y, Li Y P, Lu Y K, Liu C G, Liu Y Q. Crystengcomm, 2021, 23(43): 7602.

doi: 10.1039/D1CE01044A     URL    
[32]
Jian Y F, Yu T T, Jiang Z Y, Yu Y K, Douthwaite M, Liu J Y, Albilali R, He C. ACS Appl. Mater. Interfaces, 2019, 11(12): 11369.

doi: 10.1021/acsami.8b21521     URL    
[33]
Yao J X, Shi H, Sun D K, Lu H Q, Hou B, Jia L T, Xiao Y, Li D B. Chemcatchem, 2019, 11(22): 5570.

doi: 10.1002/cctc.v11.22     URL    
[34]
Jian Y F, Tian M J, He C, Xiong J C, Jiang Z Y, Jin H, Zheng L R, Albilali R, Shi J W. Appl. Catal. B Environ., 2021, 283: 119657.

doi: 10.1016/j.apcatb.2020.119657     URL    
[35]
Wang X Y, Liu Y, Zhang T H, Luo Y J, Lan Z X, Zhang K, Zuo J C, Jiang L L, Wang R H. ACS Catal., 2017, 7(3): 1626.

doi: 10.1021/acscatal.6b03547     URL    
[36]
Nolan M, Parker S C, Watson G W. Surf. Sci., 2005, 595(1-3): 223.

doi: 10.1016/j.susc.2005.08.015     URL    
[37]
Peng R S, Sun X B, Li S J, Chen L M, Fu M L, Wu J L, Ye D Q. Chem. Eng. J., 2016, 306: 1234.

doi: 10.1016/j.cej.2016.08.056     URL    
[38]
Torrente-Murciano L, Gilbank A, Puertolas B, Garcia T, Solsona B, Chadwick D. Appl. Catal. B Environ., 2013, 132-133: 116.

doi: 10.1016/j.apcatb.2012.10.030     URL    
[39]
Thenuwara A C, Shumlas S L, Attanayake N H, Aulin Y V, McKendry I G, Qiao Q, Zhu Y M, Borguet E, Zdilla M J, Strongin D R. ACS Catal., 2016, 6(11): 7739.

doi: 10.1021/acscatal.6b01980     URL    
[40]
Liu J, Yu L, Hu E Y, Guiton B S, Yang X Q, Page K. Inorg. Chem., 2018, 57(12): 6873.

doi: 10.1021/acs.inorgchem.8b00461     URL    
[41]
McKendry I G, Mohamad L J, Thenuwara A C, Marshall T, Borguet E, Strongin D R, Zdilla M J. ACS Energy Lett., 2018, 3(9): 2280.

doi: 10.1021/acsenergylett.8b01217     URL    
[42]
Thenuwara A C, Cerkez E B, Shumlas S L, Attanayake N H, McKendry I G, Frazer L, Borguet E, Kang Q, Remsing R C, Klein M L, Zdilla M J, Strongin D R. Angew. Chem. Int. Ed., 2016, 55(35): 10381.

doi: 10.1002/anie.201601935     pmid: 27151204
[43]
Wang Y, Liu K S, Wu J, Hu Z M, Huang L, Zhou J, Ishihara T, Guo L M. ACS Catal., 2020, 10(17): 10021.

doi: 10.1021/acscatal.0c02310     URL    
[44]
Ni C L, Hou J T, Li L, Li Y Z, Wang M X, Yin H, Tan W F. Chemosphere, 2020, 250: 126211.

doi: 10.1016/j.chemosphere.2020.126211     URL    
[45]
Li D Y, Li W H, Deng Y Z, Wu X F, Han N, Chen Y F. J. Phys. Chem. C, 2016, 120(19): 10275.

doi: 10.1021/acs.jpcc.6b00931     URL    
[46]
Sun M, Yu L, Ye F, Diao G Q, Yu Q, Hao Z F, Zheng Y Y, Yuan L X. Chem. Eng. J., 2013, 220: 320.

doi: 10.1016/j.cej.2013.01.061     URL    
[47]
Wang Q Y, Yeung K L, Bañares M A. Catal. Today, 2020, 356: 141.

doi: 10.1016/j.cattod.2019.05.016     URL    
[48]
Carey J J, Nolan M. Appl. Catal. B Environ., 2016, 197: 324.

doi: 10.1016/j.apcatb.2016.04.004     URL    
[49]
Wang J, Gong X Q. Appl. Surf. Sci., 2018, 428: 377.

doi: 10.1016/j.apsusc.2017.09.120     URL    
[50]
He C, Xu B T, Shi J W, Qiao N L, Hao Z P, Zhao J L. Fuel Process. Technol., 2015, 130: 179.

doi: 10.1016/j.fuproc.2014.10.008     URL    
[51]
Zhang X J, Zhao J G, Song Z X, Zhao H, Liu W, Ma Z A, Zhao M, Du H X. Chemistryselect, 2019, 4(30): 8902.

doi: 10.1002/slct.v4.30     URL    
[52]
Solsona B, Sanchis R, Dejoz A, García T, Ruiz-Rodríguez L, López Nieto J, Cecilia J, Rodríguez-Castellón E. Catalysts, 2017, 7(12): 96.

doi: 10.3390/catal7040096     URL    
[53]
Zeng Y Q, Haw K G, Wang Z G, Wang Y N, Zhang S L, Hongmanorom P, Zhong Q, Kawi S. J. Hazard. Mater., 2021, 404: 124088.
[54]
Gevers L E, Enakonda L R, Shahid A, Ould-Chikh S, Silva C I Q, Paalanen P P, Aguilar-Tapia A, Hazemann J L, Hedhili M N, Wen F, Ruiz-Martinez J. Nat. Commun., 2022, 13(1).
[55]
Liao Y N, Fu M L, Chen L M, Wu J L, Huang B C, Ye D Q. Catal. Today, 2013, 216: 220.

doi: 10.1016/j.cattod.2013.06.017     URL    
[56]
Venkataswamy P, Rao K N, Jampaiah D, Reddy B M. Appl. Catal. B Environ., 2015, 162: 122.

doi: 10.1016/j.apcatb.2014.06.038     URL    
[57]
Wu H R, Ma S C, Song W Y, Hensen E J M. J. Phys. Chem. C, 2016, 120(24): 13071.

doi: 10.1021/acs.jpcc.6b03218     URL    
[58]
Chen J, Chen X, Chen X, Xu W J, Xu Z, Jia H P, Chen J,. Appl. Catal. B Environ., 2018, 224: 825.

doi: 10.1016/j.apcatb.2017.11.036     URL    
[59]
Liu J X, Zhao Z, Xu C M, Liu J. Chinese J. Catal., 2019, 40(10): 1438.

doi: 10.1016/S1872-2067(19)63400-5     URL    
[60]
Gutiérrez-Ortiz J I, de Rivas B, López-Fonseca R, González-Velasco J R. Appl. Catal. B Environ., 2006, 65(3-4): 191.

doi: 10.1016/j.apcatb.2006.02.001     URL    
[61]
Long G Y, Chen M X, Li Y J, Ding J F, Sun R Z, Zhou Y F, Huang X Y, Han G R, Zhao W R. Chem. Eng. J., 2019, 360: 964.

doi: 10.1016/j.cej.2018.07.091     URL    
[62]
Li S D, Wang D D, Wu X F, Chen Y F. Chinese J. Catal., 2020, 41(4): 550.

doi: 10.1016/S1872-2067(19)63446-7     URL    
[63]
Feng J T, He Y F, Liu Y N, Du Y Y, Li D Q. Chem. Soc. Rev., 2015, 44(15): 5291.

doi: 10.1039/C5CS00268K     URL    
[64]
Aguilera D A, Perez A, Molina R, Moreno S. Appl. Catal. B Environ., 2011, 104(1-2): 144.

doi: 10.1016/j.apcatb.2011.02.019     URL    
[65]
Mo S P, Li S D, Li J Q, Deng Y Z, Peng S P, Chen J Y, Chen Y F. Nanoscale, 2016, 8(34): 15763.

doi: 10.1039/C6NR04902H     URL    
[66]
Jirátová K, Kovanda F, Ludvíková J, Balabánová J, Klempa J. Catal. Today, 2016, 277: 61.

doi: 10.1016/j.cattod.2015.10.036     URL    
[67]
Qian Q H, Asinger P A, Lee M J, Han G, Rodriguez K M, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16): 8161.

doi: 10.1021/acs.chemrev.0c00119     URL    
[68]
Zhang X D, Lv X T, Bi F K, Lu G, Wang Y X. Mol. Catal., 2020, 482: 110701.
[69]
Zhao J H, Tang Z C, Dong F, Zhang J Y. Mol. Catal., 2019, 463: 77.
[70]
Ma Y, Wang L, Ma J Z, Wang H H, Zhang C B, Deng H, He H. ACS Catal., 2021, 11(11): 6614.

doi: 10.1021/acscatal.1c01116     URL    
[71]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Liang P. Chem. Eng. J., 2018, 344: 469.

doi: 10.1016/j.cej.2018.03.091     URL    
[72]
Sun H, Yu X L, Ma X Y, Yang X Q, Lin M Y, Ge M F. Catal. Today, 2020, 355: 580.

doi: 10.1016/j.cattod.2019.05.062     URL    
[73]
Zheng Y F, Zhao Q, Shan C P, Lu S C, Su Y, Han R, Song C F, Ji N, Ma D G, Liu Q L. ACS Appl. Mater. Interfaces, 2020, 12(25): 28139.

doi: 10.1021/acsami.0c04904     URL    
[74]
Li Y X, Han W, Wang R X, Weng L T, Serrano-Lotina A, Bañares M A, Wang Q Y, Yeung K L. Appl. Catal. B Environ., 2020, 275: 119121.

doi: 10.1016/j.apcatb.2020.119121     URL    
[75]
Dong F, Han W G, Guo Y, Han W L, Tang Z C. Chem. Eng. J., 2021, 405: 126948.

doi: 10.1016/j.cej.2020.126948     URL    
[76]
Zhang Y Z, Zeng Z Q, Li Y F, Hou Y Q, Hu J L, Huang Z G. Fuel, 2021, 288: 119700.

doi: 10.1016/j.fuel.2020.119700     URL    
[77]
Wang D, Yang Q L, Yang G P, Xiong S C, Li X S, Peng Y, Li J H, Crittenden J. Chem. Eng. J., 2020, 399: 125792.

doi: 10.1016/j.cej.2020.125792     URL    
[78]
Chen Y, Deng J, Yang B, Yan T T, Zhang J P, Shi L Y, Zhang D S. Chem. Commun., 2020, 56(48): 6539.

doi: 10.1039/D0CC01615B     URL    
[79]
Faure B, Alphonse P. Appl. Catal. B Environ., 2016, 180: 715.

doi: 10.1016/j.apcatb.2015.07.019     URL    
[80]
Liu L Z, Sun J T, Ding J D, Zhang Y, Sun T H, Jia J P. Inorg. Chem., 2019, 58(19): 13241.

doi: 10.1021/acs.inorgchem.9b02105     URL    
[81]
Liang X L, Liu P, He H P, Wei G L, Chen T H, Tan W, Tan F D, Zhu J X, Zhu R L. J. Hazard. Mater., 2016, 306: 305.

doi: 10.1016/j.jhazmat.2015.12.035     URL    
[82]
Peña M A, Fierro J L G. Chem. Rev., 2001, 101(7): 1981.

pmid: 11710238
[83]
Ding J Y, Liu J, Yang Y J, Zhao L M, Yu Y N. J. Hazard. Mater., 2022, 422: 126931.
[84]
Spinicci R, Tofanari A, Faticanti M, Pettiti I, Porta P. J. Mol. Catal. A Chem., 2001, 176(1-2): 247.

doi: 10.1016/S1381-1169(01)00264-3     URL    
[85]
Pan K L, Pan G T, Chong S, Chang M B. J. Environ. Sci., 2018, 69: 205.
[86]
Liu X Q, Mi J X, Shi L, Liu H Y, Liu J, Ding Y, Shi J Q, He M H, Wang Z S, Xiong S C, Zhang Q F, Liu Y F, Wu Z S, Chen J J, Li J H. Angew. Chem. Int. Ed., 2021, 60(51): 26747.

doi: 10.1002/anie.v60.51     URL    
[87]
Chen J H, Shen M Q, Wang X Q, Qi G, Wang J, Li W. Appl. Catal. B Environ., 2013, 134-135: 251.

doi: 10.1016/j.apcatb.2013.01.027     URL    
[88]
Wu Y, Ni X, Beaurain A, Dujardin C, Granger P. Appl. Catal. B Environ., 2012, 125: 149.

doi: 10.1016/j.apcatb.2012.05.033     URL    
[89]
Li J J, Zhang M, Elimian E A, Lv X L, Chen J, Jia H P. Chem. Eng. J., 2021, 412: 128560.

doi: 10.1016/j.cej.2021.128560     URL    
[90]
Forty A J. Nature, 1979, 282(5739): 597.

doi: 10.1038/282597a0    
[91]
Si W Z, Wang Y, Peng Y, Li X, Li K Z, Li J H. Chem. Commun., 2015, 51(81): 14977.

doi: 10.1039/C5CC04528B     URL    
[92]
Si W Z, Wang Y, Zhao S, Hu F Y, Li J H. Environ. Sci. Technol., 2016, 50(8): 4572.

doi: 10.1021/acs.est.5b06255     URL    
[93]
Yang Q L, Li J Y, Wang D, Peng Y, Ma Y L. Catal. Today, 2021, 376: 205.

doi: 10.1016/j.cattod.2020.05.056     URL    
[94]
Yang Q L, Wang D, Wang C Z, Li X F, Li K Z, Peng Y, Li J H. Catal. Sci. Technol., 2018, 8(12): 3166.

doi: 10.1039/C8CY00765A     URL    
[95]
Wang X Y, Pan Z Y, Chu X F, Huang K K, Cong Y G, Cao R, Sarangi R, Li L P, Li G S, Feng S H. Angew. Chem. Int. Ed., 2019, 58(34): 11720.

doi: 10.1002/anie.v58.34     URL    
[96]
Luo Y J, Wang K C, Zuo J C, Qian Q R, Xu Y X, Liu X P, Xue H, Chen Q H. Catal. Sci. Technol., 2017, 7(2): 496.

doi: 10.1039/C6CY02489K     URL    
[97]
Schneider H, Fischer R X, Schreuer J. J. Am. Ceram. Soc., 2015, 98(10): 2948.

doi: 10.1111/jace.2015.98.issue-10     URL    
[98]
Li C, Thampy S, Zheng Y, Kweun J M, Ren Y R, Chan J Y, Kim H, Cho M, Kim Y Y, Hsu J W P, Cho K. J. Phys. Condens. Mater., 2016, 28(12): 125602.

doi: 10.1088/0953-8984/28/12/125602     URL    
[99]
Li H B, Wang W H, Qian X Y, Cheng Y H, Xie X J, Liu J Y, Sun S H, Zhou J G, Hu Y F, Xu J P, Li L, Zhang Y, Du X W, Gao K H, Li Z Q, Zhang C, Wang S D, Chen H J, Zhao Y D, Lu F, Wang W C, Liu H. Catal. Sci. Technol., 2016, 6(11): 3971.

doi: 10.1039/C5CY01798J     URL    
[100]
Yang Q L, Wang X, Wang X Y, Li Q, Li L, Yang W N, Chu X F, Liu H, Men J S, Peng Y, Ma Y L, Li J H. ACS Catal., 2021, 11(23): 14507.

doi: 10.1021/acscatal.1c03955     URL    
[101]
Yang Q L, Li Q, Li L, Peng Y, Wang D, Ma Y L, Li J H. J. Hazard. Mater., 2021, 403: 123811.
[102]
Liu W, Xiang W J, Chen X, Song Z X, Gao C X, Tsubaki N, Zhang X J. Fuel, 2022, 312: 122975.

doi: 10.1016/j.fuel.2021.122975     URL    
[103]
Chen J, Chen X, Yan D X, Jiang M Z, Xu W J, Yu H, Jia H P. Appl. Catal. B Environ., 2019, 250: 396.

doi: 10.1016/j.apcatb.2019.03.042     URL    
[104]
Hu F Y, Peng Y, Chen J J, Liu S, Song H, Li J H. Appl. Catal. B Environ., 2019, 240: 329.

doi: 10.1016/j.apcatb.2018.06.024     URL    
[105]
Zagoruiko A N, Mokrinskii V V, Veniaminov S A, Noskov A S. J. Environ. Chem. Eng., 2017, 5(6): 5850.
[106]
Gao W, Tang X L, Yi H H, Jiang S X, Yu Q J, Xie X Z, Zhuang R J. J. Environ. Sci., 2023, 125: 112.

doi: 10.1016/j.jes.2021.11.014     URL    
[107]
Cheng D J, Meng X J. Chem. Res. Chin. Univ., 2022, 38(3): 716.

doi: 10.1007/s40242-022-2038-5    
[108]
He F, Luo J Q, Liu S T. Chem. Eng. J., 2016, 294: 362.

doi: 10.1016/j.cej.2016.02.068     URL    
[109]
Fan J W, Niu X F, Teng W, Zhang P, Zhang W X, Zhao D Y. J. Mater. Chem. A, 2020, 8(33): 17174.

doi: 10.1039/D0TA05473A     URL    
[110]
Wang H, Peng B, Zhang R D, Chen H X, Wei Y. Appl. Catal. B Environ., 2020, 276: 118922.

doi: 10.1016/j.apcatb.2020.118922     URL    
[111]
Huang Y, Liu Y, Wang W, Chen M J, Li H W, Lee S C, Ho W, Huang T T, Cao J J. Appl. Catal. B Environ., 2020, 278: 119294.

doi: 10.1016/j.apcatb.2020.119294     URL    
[112]
Peng S, Yang X X, Strong J, Sarkar B, Jiang Q, Peng F, Liu D F, Wang H L. J. Hazard. Mater., 2020, 396: 122750.
[113]
Kuang Q, Jiang Z Y, Xie Z X, Lin S C, Lin Z W, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2005, 127(33): 11777.

pmid: 16104756
[114]
Li B, Yang Q L, Peng Y, Chen J J, Deng L, Wang D, Hong X W, Li J H. Chem. Eng. J., 2019, 366: 92.

doi: 10.1016/j.cej.2019.01.139     URL    
[115]
Yang W H, Peng Y, Wang Y, Wang Y, Liu H, Su Z A, Yang W N, Chen J J, Si W Z, Li J H. Appl. Catal. B Environ., 2020, 278: 119279.

doi: 10.1016/j.apcatb.2020.119279     URL    
[116]
Yang W H, Wang Y, Yang W N, Liu H, Li Z G, Peng Y, Li J H. ACS Appl. Mater. Interfaces, 2021, 13(2): 2753.

doi: 10.1021/acsami.0c19972     URL    
[117]
Rong S P, Zhang P Y, Yang Y J, Zhu L, Wang J L, Liu F. ACS Catal., 2017, 7(2): 1057.

doi: 10.1021/acscatal.6b02833     URL    
[118]
Ren Q M, Mo S P, Fan J, Feng Z T, Zhang M Y, Chen P R, Gao J J, Fu M L, Chen L M, Wu J L, Ye D Q. Chinese J. Catal., 2020, 41(12): 1873.

doi: 10.1016/S1872-2067(20)63641-5     URL    
[119]
Tang W X, Yao M S, Deng Y Z, Li X F, Han N, Wu X F, Chen Y F. Chem. Eng. J., 2016, 306: 709.

doi: 10.1016/j.cej.2016.07.107     URL    
[120]
Zheng Y, Su Y, Pang C, Yang L, Song C, Ji N, Ma D, Lu X, Han R, Liu Q. Environ. Sci. Technol., 2022, 56(3): 1905.

doi: 10.1021/acs.est.1c05855     URL    
[121]
Dong F, Han W G, Han W L, Tang Z C. Appl. Catal. B Environ., 2022, 315: 121524.

doi: 10.1016/j.apcatb.2022.121524     URL    
[122]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776     URL    
[123]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Accounts Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m     URL    
[124]
Lee S, Molina L, López M, Alonso J, Hammer B, Lee B, Seifert S, Winans R, Elam J, Pellin M, Vajda S. Angew. Chem. Int. Ed., 2009, 48(8): 1467.

doi: 10.1002/anie.v48:8     URL    
[125]
Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans R E, Elam J W, Meyer R J, Redfern P C, Teschner D, Schlögl R, Pellin M J, Curtiss L A, Vajda S. Science, 2010, 328(5975): 224.

doi: 10.1126/science.1185200     pmid: 20378815
[126]
Xie S H, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catal., 2012, 2(7): 1519.

doi: 10.1021/cs300252g     URL    
[127]
Garetto T F, Apesteguı́a C R. Appl. Catal. B Environ., 2001, 32(1-2): 83.

doi: 10.1016/S0926-3373(01)00128-X     URL    
[128]
Huang H B, Hu P, Huang H L, Chen J D, Ye X G, Leung D Y C. Chem. Eng. J., 2014, 252: 320.

doi: 10.1016/j.cej.2014.04.108     URL    
[129]
Peng R S, Li S J, Sun X B, Ren Q M, Chen L M, Fu M L, Wu J L, Ye D Q. Appl. Catal. B Environ., 2018, 220: 462.

doi: 10.1016/j.apcatb.2017.07.048     URL    
[130]
Shi Y J, Wang J L, Zhou R X. Chemosphere, 2021, 265: 129127.

doi: 10.1016/j.chemosphere.2020.129127     URL    
[131]
Haruta M, Ueda A, Tsubota S, Torres Sanchez R M. Catal. Today, 1996, 29(1-4): 443.

doi: 10.1016/0920-5861(95)00318-5     URL    
[132]
Sun H, Yu X L, Yang X Q, Ma X Y, Lin M Y, Shao C F, Zhao Y, Wang F Y, Ge M F. Catal. Today, 2019, 332: 153.

doi: 10.1016/j.cattod.2018.07.017     URL    
[133]
Liu Y X, Dai H X, Deng J G, Xie S H, Yang H G, Tan W, Han W, Jiang Y, Guo G S. J. Catal., 2014, 309: 408.

doi: 10.1016/j.jcat.2013.10.019     URL    
[134]
Minicò S, Scirè S, Crisafulli C, Maggiore R, Galvagno S. Appl. Catal. B Environ., 2000, 28(3-4): 245.

doi: 10.1016/S0926-3373(00)00181-8     URL    
[135]
Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A. Appl. Catal. B Environ., 2003, 40(1): 43.

doi: 10.1016/S0926-3373(02)00127-3     URL    
[136]
Wang Y F, Zhang C B, He H. ChemCatChem, 2018, 10(5): 998.

doi: 10.1002/cctc.v10.5     URL    
[137]
Guo Y L, Gao Y J, Li X, Zhuang G L, Wang K C, Zheng Y, Sun D H, Huang J L, Li Q B. Chem. Eng. J., 2019, 362: 41.

doi: 10.1016/j.cej.2019.01.012     URL    
[138]
Bedia J, Rosas J M, Rodríguez-Mirasol J, Cordero T. Appl. Catal. B Environ., 2010, 94(1-2): 8.

doi: 10.1016/j.apcatb.2009.10.015     URL    
[139]
Qi H, Alexson D, Glembocki O, Prokes S M. Nanotechnology, 2010, 21(21): 215706.

doi: 10.1088/0957-4484/21/21/215706     URL    
[140]
Waterhouse G I N, Bowmaker G A, Metson J B. Phys. Chem. Chem. Phys., 2001, 3(17): 3838.

doi: 10.1039/b103226g     URL    
[141]
Ou C C, Chen C H, Chan T S, Chen C S, Cheng S. J. Catal., 2019, 380: 43.

doi: 10.1016/j.jcat.2019.09.028     URL    
[142]
Ye Q, Zhao J S, Huo F F, Wang J, Cheng S Y, Kang T F, Dai H X. Catal. Today, 2011, 175(1): 603.

doi: 10.1016/j.cattod.2011.04.008     URL    
[143]
Lu A L, Sun H L, Zhang N W, Che L M, Shan S Y, Luo J, Zheng J B, Yang L F, Peng D L, Zhong C J, Chen B H. ACS Catal., 2019, 9(8): 7431.

doi: 10.1021/acscatal.9b01776     URL    
[144]
Zhang J H, Li Y B, Zhang Y, Chen M, Wang L, Zhang C B, He H. Sci. Rep., 2015, 5: 12950.

doi: 10.1038/srep12950    
[145]
Ousmane M, Liotta L F, Pantaleo G, Venezia A M, Di Carlo G, Aouine M, Retailleau L, Giroir-Fendler A. Catal. Today, 2011, 176(1): 7.

doi: 10.1016/j.cattod.2011.07.009     URL    
[146]
Chen X Y, Wang H H, Chen M, Qin X X, He H, Zhang C B. Appl. Catal. B Environ., 2021, 282: 119543.

doi: 10.1016/j.apcatb.2020.119543     URL    
[147]
Wang C Y, Li Y B, Zhang C B, Chen X Y, Liu C L, Weng W Z, Shan W P, He H. Appl. Catal. B Environ., 2021, 282: 119540.

doi: 10.1016/j.apcatb.2020.119540     URL    
[148]
Wen X Y, Li W C, Yan J X, Wang X J, Ren E B, Shi Z F, Li J, Ding X G, Mo S P, Mo D Q. J. Phys. Chem. C, 2022, 126(3): 1450.

doi: 10.1021/acs.jpcc.1c10421     URL    
[149]
Li J M, Qu Z P, Qin Y, Wang H. Appl. Surf. Sci., 2016, 385: 234.

doi: 10.1016/j.apsusc.2016.05.114     URL    
[150]
Jiang W, Feng Y N, Zeng Y Q, Yao Y, Gu L L, Sun H C, Ji W J, Arandiyan H, Au C T. J. Catal., 2019, 375: 171.
[151]
Chang S, Jia Y, Zeng Y, Qian F, Guo L, Wu S, Lu J, Han Y. J. Rare Earth., 2021, 40(11): 1743.

doi: 10.1016/j.jre.2021.10.009     URL    
[152]
Hu Z, Liu X F, Meng D M, Guo Y, Guo Y L, Lu G Z. ACS Catal., 2016, 6(4): 2265.

doi: 10.1021/acscatal.5b02617     URL    
[153]
Xiao M L, Yu X L, Guo Y C, Ge M F. Environ. Sci. Technol., 2022, 56(2): 1376.

doi: 10.1021/acs.est.1c07016     URL    
[154]
Yu K, Deng J, Shen Y J, Wang A Y, Shi L Y, Zhang D S. Iscience, 2021, 24(6): 102689.

doi: 10.1016/j.isci.2021.102689     URL    
[155]
Li N, Huang B, Dong X, Luo J S, Wang Y, Wang H, Miao D Y, Pan Y, Jiao F, Xiao J P, Qu Z P. Nat. Commun., 2022, 13: 2209.

doi: 10.1038/s41467-022-29936-8     pmid: 35459866
[156]
Gan T, Yang J X, Morris D, Chu X F, Zhang P, Zhang W X, Zou Y C, Yan W F, Wei S H, Liu G. Nat. Commun., 2021, 12(1): 2741.

doi: 10.1038/s41467-021-22946-y    
[157]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095    
[158]
Zhang N Q, Ye C L, Yan H, Li L C, He H, Wang D S, Li Y D. Nano Res., 2020, 13(12): 3165.

doi: 10.1007/s12274-020-2994-3    
[159]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.

doi: 10.1021/acs.chemrev.0c00797     pmid: 33112599
[160]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.

doi: 10.1038/s41570-018-0010-1    
[161]
Cui T T, Li L X, Ye C L, Li X Y, Liu C X, Zhu S H, Chen W, Wang D S. Adv. Funct. Mater., 2022, 32(9): 2108381.

doi: 10.1002/adfm.v32.9     URL    
[162]
Weon S, Huang D H, Rigby K, Chu C H, Wu X H, Kim J H. ACS Environ. Sci. Technol. Eng., 2021, 1(2): 157.
[163]
Yan H, Su C L, He J, Chen W. J. Mater. Chem. A, 2018, 6(19): 8793.
[164]
Liu L C, Diaz U, Arenal R, Agostini G, Concepcion P, Corma A. Nat. Mater., 2017, 16(12): 1272.
[165]
Jiao L, Jiang H L. Chem-Us, 2019, 5(4): 786.
[166]
DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham G W, Pan X Q, Christopher P. J. Am. Chem. Soc., 2017, 139(40): 14150.

doi: 10.1021/jacs.7b07093     pmid: 28902501
[167]
Duan S B, Wang R M, Liu J Y. Nanotechnology, 2018, 29(20):
[168]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J Y. Nano Res., 2015, 8(9): 2913.

doi: 10.1007/s12274-015-0796-9     URL    
[169]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.

doi: 10.1002/adma.v30.11     URL    
[170]
Wu Z N, Hwang I, Cha G, Qin S S, Tomanec O, Badura Z, Kment S, Zboril R, Schmuki P. Small, 2022, 18(2): 2104892.

doi: 10.1002/smll.v18.2     URL    
[171]
Kunwar D, Zhou S L, DeLaRiva A, Peterson E J, Xiong H F, Pereira-Hernández X I, Purdy S C, ter Veen R, Brongersma H H, Miller J T, Hashiguchi H, Kovarik L, Lin S, Guo H, Wang Y, Datye A K. ACS Catal., 2019, 9(5): 3978.

doi: 10.1021/acscatal.8b04885     URL    
[172]
Chen Z, Zhang Q, Chen W X, Dong J C, Yao H R, Zhang X B, Tong X J, Wang D S, Peng Q, Chen C, He W, Li Y D. Adv. Mater., 2018, 30(5): 1704720.

doi: 10.1002/adma.v30.5     URL    
[173]
Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 2016, 352(6287): 797.

doi: 10.1126/science.aaf5251     URL    
[174]
Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Nat. Nanotechnol., 2018, 13(9): 856.

doi: 10.1038/s41565-018-0197-9    
[175]
Chen J, Jiang M Z, Xu W J, Chen J, Hong Z X, Jia H P. Appl. Catal. B Environ., 2019, 259: 118013.

doi: 10.1016/j.apcatb.2019.118013     URL    
[176]
Zhang C B, Liu F D, Zhai Y P, Ariga H, Yi N, Liu Y C, Asakura K, Flytzani-Stephanopoulos M, He H. Angew. Chem. Int. Ed., 2012, 51(38): 9628.

doi: 10.1002/anie.v51.38     URL    
[177]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem. Int. Ed., 2014, 53(13): 3418.

doi: 10.1002/anie.v53.13     URL    
[178]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(11): 6170.

doi: 10.1002/anie.v60.11     URL    
[179]
Yang W, Zhao X, Wang Y, Wang X, Liu H, Yang W, Zhou H, Wu Y A, Sun C, Peng Y, Li J. Catal. Sci. Technol., 2022, 12(19): 5932.

doi: 10.1039/D2CY01102F     URL    
[180]
Fang J X, Huang Z W, Wang L P, Guo S F, Li M X, Liu Y C, Chen J M, Wu X M, Shen H Z, Zhao H W, Jing G H. J. Phys. Chem. C, 2022, 126(13): 5873.

doi: 10.1021/acs.jpcc.1c10901     URL    
[181]
Jiang Z Y, Feng X B, Deng J L, He C, Douthwaite M, Yu Y K, Liu J, Hao Z P, Zhao Z. Adv. Funct. Mater., 2019, 29(31): 1902041.

doi: 10.1002/adfm.v29.31     URL    
[182]
Jiang Z Y, Jing M Z, Feng X B, Xiong J C, He C, Douthwaite M, Zheng L R, Song W Y, Liu J, Qu Z G. Appl. Catal. B Environ., 2020, 278: 119304.

doi: 10.1016/j.apcatb.2020.119304     URL    
[183]
Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez X I P, DeLaRiva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2019, 363(6425): 1419.
[184]
Kwak J H, Hu J Z, Mei D, Yi C W, Kim D H, Peden C H F, Allard L F, Szanyi J. Science, 2009, 325(5948): 1670.

doi: 10.1126/science.1176745     pmid: 19779194
[185]
Wang F, Ma J Z, Xin S H, Wang Q, Xu J, Zhang C B, He H, Zeng X C. Nat. Commun., 2020, 11(1): 529.

doi: 10.1038/s41467-019-13937-1     pmid: 31988282
[186]
Xie S H, Zhang X, Xu P, Hatcher B, Liu Y X, Ma L, Ehrlich S N, Hong S, Liu F D. Catal. Today, 2022, 402: 149.

doi: 10.1016/j.cattod.2022.03.028     URL    
[187]
Wang H, Dong J S, Allard L F, Lee S, Oh S, Wang J, Li W, Shen M Q, Yang M. Appl. Catal. B Environ., 2019, 244: 327.

doi: 10.1016/j.apcatb.2018.11.034     URL    
[188]
Zhao S Z, Wen Y F, Liu X J, Pen X Y, Lu F, Gao F Y, Xie X Z, Du C C, Yi H H, Kang D J, Tang X L. Nano Res., 2020, 13(6): 1544.

doi: 10.1007/s12274-020-2765-1    
[189]
Wang Z W, Yang H G, Liu R, Xie S H, Liu Y X, Dai H X, Huang H B, Deng J G. J. Hazard. Mater., 2020, 392: 122258.

doi: 10.1016/j.jhazmat.2020.122258     URL    
[190]
Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J, Lee H J. Nat. Catal., 2020, 3(4): 368.

doi: 10.1038/s41929-020-0427-z    
[191]
Su Y, Fu K X, Zheng Y F, Ji N, Song C F, Ma D G, Lu X B, Han R, Liu Q L. Appl. Catal. B Environ., 2021, 288: 119980.

doi: 10.1016/j.apcatb.2021.119980     URL    
[192]
Jeong H, Lee G, Kim B S, Bae J, Han J W, Lee H. J. Am. Chem. Soc., 2018, 140(30): 9558.

doi: 10.1021/jacs.8b04613     URL    
[1] 申小雨, 杜中田, 郭百睿, 郭忠旭, 梁长海. 1,6-己二醇选择氧化内酯化制备ε-己内酯[J]. 化学进展, 2023, 35(8): 1191-1198.
[2] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[3] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 孙寒雪, 王娟娟, 朱照琪, 李安. 燃料电池氧还原反应中的多孔有机聚合物衍生碳基电催化剂[J]. 化学进展, 2023, 35(11): 1638-1654.
[6] 付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才. 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展, 2023, 35(10): 1415-1437.
[7] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[11] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[12] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[13] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[14] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[15] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
阅读次数
全文


摘要

VOCs氧化催化剂设计与结构调控