English
新闻公告
More
化学进展 2024, Vol. 36 Issue (2): 244-255 DOI: 10.7536/PC230601 前一篇   后一篇

• 综述 •

电催化析氢反应中的氢溢流效应

刘研1, 刘雅琦1, 邢立文2,*(), 吴珂2, 纪建军3, 纪永军1,*()   

  1. 1 北京工商大学轻工科学技术学院 北京 100048
    2 北京工商大学化学与材料工程学院 北京100048
    3 广盛原中医药有限公司 大同 037000
  • 收稿日期:2023-06-08 修回日期:2023-09-20 出版日期:2024-02-24 发布日期:2024-01-09
  • 作者简介:

    邢立文 讲师,硕士生导师。从事超细金属催化剂的可控制备与催化反应机理工作,在Matter、J. Mater. Chem. A、J. Energy Chem.、Nano Res.、ChemCatChem、Chem. Eng. Sci.等发表论文28篇。

    纪永军 教授,博士生导师。从事介晶和单原子催化材料的制备及结构调控、有机硅单体选择性催化合成及氮氧化物的催化还原等方向工作,在Natl. Sci. Rev.、Matter、Nat. Commun.、Adv. Mater.、J. Catal.、ACS Catal.等发表论文80余篇;申请发明专利25项,授权16项。邢立文 讲师,硕士生导师。从事超细金属催化剂的可控制备与催化反应机理工作,在Matter、J. Mater. Chem. A、J. Energy Chem.、Nano Res.、ChemCatChem、Chem. Eng. Sci.等发表论文28篇。

  • 基金资助:
    北京工商大学2023年研究生科研能力提升计划(19008023027); 北京工商大学青年教师科研启动基金资助项目(QNJJ2022-22); 北京工商大学青年教师科研启动基金资助项目(QNJJ2022-23); 北京市教育委员会科学研究计划项目资助(KM202310011005); 国家自然科学基金面上项目(21978299); 北京工商大学人才引进启动项目(19008020159)

Hydrogen Spillover Effect in Electrocatalytic Hydrogen Evolution Reaction

Yan Liu1, Yaqi Liu1, Liwen Xing2(), Ke Wu2, Jianjun Ji3, Yongjun Ji1()   

  1. 1 School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
    2 College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
    3 Guangshengyuan Traditional Chinese Medicine Co. LTD, Datong 037000, China
  • Received:2023-06-08 Revised:2023-09-20 Online:2024-02-24 Published:2024-01-09
  • Contact: *e-mail: xingliwen@btbu.edu.cn(Liwen Xing);yjji@btbu.edu.cn(Yongjun Ji)
  • Supported by:
    Beijing Technology and Business University 2023 Graduate Student Research Ability Enhancement Program(19008023027); Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-22); Research Foundation for Youth Scholars of Beijing Technology and Business University(QNJJ2022-23); R&D Program of Beijing Municipal Education Commission(KM202310011005); National Natural Science Foundation of China(21978299); Research Foundation for Advanced Talents of Beijing Technology and Business University(19008020159)

电解水制氢技术碳排放量低、能量利用率高、所得氢气纯度高,在多数制氢技术中具有显著优势,业已成为学术界和工业界的研究热点。其中,电催化析氢反应(HER)处于核心地位,常涉及多步氢转移过程和多个活性位点共同参与的情况。然而,这些活性位点之间的催化关联和潜在的氢溢流效应常被忽视。本文回顾了过渡金属氧化物、磷化物和硫化物等的电催化体系的析氢性能和反应机制;结合传统热催化理论,将参与氢溢流的活性位点抽象总结为初级和次级活性位点,并明晰了它们的催化关联和功能差异;本文将不仅为高效廉价析氢电催化剂的创制提供一种设计理念,也为进一步研究涉氢电催化反应中的氢转移行为提供参考。

Water electrolysis for hydrogen harvesting has become a research hotspot in both academia and industry due to its low carbon emissions, high energy efficiency, and high purity, which offer significant advantages over the majority of hydrogen production technologies. Thereinto, the electrocatalytic hydrogen reaction (HER) is at the core, which aways involves a multi-step hydrogen transfer process and multiple active sites working together. However, catalytic correlations between those active sites and potential hydrogen spillover effects involved are often overlooked. In this paper, we first review the hydrogen evolving properties and reaction mechanisms in electrocatalytic systems such as transition metal oxides, phosphides, and sulfides. By combining traditional theories of thermal catalysis, active sites involved in hydrogen spillover are then conceptually summarized into both the primary and secondary active sites, elucidating their catalytic relevance and functional differences. This paper will not only provide a design concept for the creation of efficient and inexpensive electrocatalysts for hydrogen evolution, but also serve as a useful reference for further studies of hydrogen transfer behaviors in other hydrogen-involved electrocatalytic reactions.

Contents

1 Introduction

2 Electrocatalyst for hydrogen spillover

2.1 Metal oxide

2.2 Metal phosphide

2.3 Metal sulfides

3 Conclusion and outlook

()
图1 不同材料交换电流密度(j0)和H*吸附自由能变化[4]
Fig.1 Variation of exchange current density (j0) and active hydrogen adsorption free energy for different materials [4]. Copyright 2015, Angew. Chem. Int. Ed.
图2 碱性环境中HER氢溢流示意图
Fig.2 Schematic diagram of hydrogen Spillover during HER in alkaline environment
图3 Pt SA/m-WO3-x和Pt NP/m-WO3-x的氢溢流效应示意图[23]
Fig.3 Schematic diagram of hydrogen spillover effect for Pt SA/m-WO3-x and Pt NP/m-WO3-x[23]. Copyright 2019, Angew. Chem. Int. Ed.
图4 WSO表面的氢溢流途径示意图[37]
Fig.4 Schematic diagram of the hydrogen spillover pathway on the WSO surface[37]. Copyright 2022, ACS Appl. Mater. Interfaces.
图5 (a) 电流密度为10 mA·cm-2时的过电位(左)和Tafel斜率(右), 插图为HER机理的示意图;(b)H*+OH*、OH*和H*在不同活性位点处的吸附能, 插图为NiO/Ni和Mo-NiO/Ni电化学反应中氢转移的化学示意图[45]
Fig.5 (a) Overpotential )left) and Tafel slope (right) at a current density of 10 mA·cm-2, inset is a schematic representation of the HER mechanism; (b) Adsorption energy of H*+OH*, OH* and H* at different active sites, inset is a schematic representation of the chemistry of hydrogen transfer in NiO/Ni and Mo-NiO/Ni electrochemical reactions[45]. Copyright 2019, ACS Energy Lett.
图6 (a) HOM-NiO/Cu上氢溢流示意图; (b) 1.0 M KOH中各组分的氢溢流赝电容(Cφ)与过电位(η)关系曲线图[53]
Fig.6 (a) Schematic diagram of hydrogen spillover on HOM-NiO/Cu; (b) The derived curves of hydrogen adsorption capacitance (Cφ) vs overpotential (η) [53]. Copyright 2021, ACS Nano.
图7 (a) 光生电子通过RuO2与CeO2间异质界面转移并在RuO2上锚定Pt单原子示意图; (b) Pt/RuCeOx-PA上H*的转移路径[42]
Fig.7 (a) Schematic diagram showing the photogenerated charge separation by an internal electric field at the RuO2/CeO2 heterojunction and the incorporation of platinum atoms on RuCeOx; (b) Transfer path of H* on Pt/RuCeOx-PA. [42]. Copyright 2020, Angew. Chem. Int. Ed.
图8 (a) 二元组分催化剂体系的氢溢流示意图;(b) 具有原子级多催化位点单组分催化剂体系氢溢流示意图。红色、蓝色和灰色的球分别代表强H吸附、热中性H吸附和H2易脱附位点[63]
Fig.8 (a) The conventional hydrogen spillover based binary-component catalysts system; (b) Hydrogen spillover one-component catalyst system with atomic-level multiple catalytic sites. The red, blue, and gray spheres represent strong H adsorption, thermoneutral H adsorption, and easy H2 desorption sites, respectively[63]. Copyright 2022, Nat. Commun.
图9 EG-Pt/CoP的氢溢流示意图[5]
Fig.9 Schematic diagram of hydrogen spillover in EG-Pt/ CoP[5]. Copyright 2019, Energ Environ. Sci.
图10 (a) 界面电子结构及氢溢流示意图;(b) 可控筛选ΔΦ值的催化剂设计示意图[65]
Fig.10 (a) Schematic illustrations of the interfacial electronic configurations and hydrogen spillover phenomenon in catalysts.; (b) Catalyst Design. Design of PtM/CoP model catalysts with the controllable ΔΦ [65]. Copyright 2021, Nat. Commun.
图11 5.2 wt %Rh-MoS2的氢溢流示意图[43]
Fig.11 Schematic diagram of hydrogen spillover in 5.2 wt% Rh-MoS2[43]. Copyright 2017, Adv. Funct. Mater.
图12 Ni3S2/Cr2S3中氢溢流示意图[72]
Fig.12 Schematic diagram of hydrogen spillover in Ni3S2/ Cr2S3 [72]. Copyright 2022, J. Am. Chem. Soc.
表1 有无氢溢流效应的电催化剂析氢性能比较
Table 1 The hydrogen-evolving performance comparison of electrocatalysts with and without hydrogen spillover effect
表2 电催化中常用的氢溢流表征技术
Table 2 The frequently used characterization techniques of hydrogen spillover during the electrocatalysis
[1]
Xing L W, Liu Y, Liu Y Q, Wu K, Ji Y J. Chem. Cat. Chem., 2023, 15(4): 15.
[2]
Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X L, Cai J, Gregory B Z, Voznyy O, Zhang B, Liu M, Sinton D, Crumlin E J, Sargent E H. Nat. Energy, 2019, 4(2): 107.
[3]
Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang Y Y, Niu S W, Bian Z N, Liu B, Huang T, Pan H G, Wang G M. Appl. Catal. B Environ., 2022, 315: 121534.

doi: 10.1016/j.apcatb.2022.121534     URL    
[4]
Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Ed., 2015, 54(1): 52.

doi: 10.1002/anie.v54.1     URL    
[5]
Li J Y, Liu H X, Gou W Y, Zhang M K, Xia Z M, Zhang S, Chang C R, Ma Y Y, Qu Y Q. Energy Environ. Sci., 2019, 12(7): 2298.

doi: 10.1039/C9EE00752K     URL    
[6]
Cao S F, Yang M, Elnabawy A O, Trimpalis A, Li S, Wang C Y, Göltl F, Chen Z, Liu J L, Shan J J, Li M W, Haas T, Chapman K W, Lee S, Allard L F, Mavrikakis M, Flytzani-Stephanopoulos M. Nat. Chem., 2019, 11(12): 1098.

doi: 10.1038/s41557-019-0345-3    
[7]
Xie Y, Zhang L Y, Ying P J, Wang J C, Sun K, Li M. Progress in Chemistry, 2021, 33: 1571.
谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 化学进展, 2021, 33: 1571.)
[8]
Zhao D H, Lv D W, Zang Y R. Progress in Chemistry, 1997, (02): 15.
(赵德华, 吕德伟, 臧雅茹. 化学进展, 1997, (02): 15.)
[9]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998.
[10]
Shen H F, Li H, Yang Z S, Li C L. Green Energy Environ., 2022, 7(6): 1161.

doi: 10.1016/j.gee.2022.01.013     URL    
[11]
Xu H, Li J R, Chu X X. Chem. Rec., 2023, 23(3): e202200244.
[12]
Chen Y B, Zheng W Y, Chen M T, Guan X J. Transition Metal-Based Electrocatalysts: Applications in Green Hydrogen Production and Storage. Washington, DC: American Chemical Society, 2023, 1435: 147.
[13]
Khoobiar S. J. Phys. Chem., 1964, 68(2): 411.

doi: 10.1021/j100784a503     URL    
[14]
Wu X W, Li W Y, Sheng S Z, Zhu L, Yuan L F, Liu J W, Jin S Y, Zhang Z. Electrochem. Commun., 2021, 129: 107085.

doi: 10.1016/j.elecom.2021.107085     URL    
[15]
Messou D, Bernardin V, Meunier F, Ordoño M B, Urakawa A, Machado B F, Collière V, Philippe R, Serp P, Le Berre C. J. Catal., 2021, 398: 14.

doi: 10.1016/j.jcat.2021.04.004     URL    
[16]
Gao Y B, Hu E J, Yin G Y, Huang Z H. Fuel, 2021, 302: 121142.

doi: 10.1016/j.fuel.2021.121142     URL    
[17]
Prins R, Palfi V K, Reiher M. J. Phys. Chem. C, 2012, 116(27): 14274.

doi: 10.1021/jp212274y     URL    
[18]
Sihag A, Xie Z L, Thang H V, Kuo C L, Tseng F G, Dyer M S, Chen H Y T. J. Phys. Chem. C, 2019, 123(42): 25618.

doi: 10.1021/acs.jpcc.9b04419     URL    
[19]
Tan M W, Yang Y L, Yang Y, Chen J L, Zhang Z X, Fu G, Lin J D, Wan S L, Wang S, Wang Y. Nat. Commun., 2022, 13: 1457.

doi: 10.1038/s41467-022-29045-6    
[20]
Zheng T T, Sang W, He Z H, Wei Q S, Chen B W, Li H L, Cao C, Huang R J, Yan X P, Pan B C, Zhou S M, Zeng J. Nano Lett., 2017, 17(12): 7968.

doi: 10.1021/acs.nanolett.7b04430     URL    
[21]
Li Y H, Liu P F, Pan L F, Wang H F, Yang Z Z, Zheng L R, Hu P, Zhao H J, Gu L, Yang H G. Nat. Commun., 2015, 6: 8064.

doi: 10.1038/ncomms9064    
[22]
Ou H H, Wang D S, Li Y D. Nano Sel., 2021, 2(3): 492.
[23]
Park J, Lee S, Kim H E, Cho A, Kim S, Ye Y, Han J W, Lee H, Jang J H, Lee J. Angew. Chem. Int. Ed., 2019, 58(45): 16038.

doi: 10.1002/anie.v58.45     URL    
[24]
Dubale A A, Zheng Y Y, Wang H L, Hübner R, Li Y, Yang J, Zhang J W, Sethi N K, He L Q, Zheng Z K, Liu W. Angew. Chem. Int. Ed., 2020, 59(33): 13891.

doi: 10.1002/anie.v59.33     URL    
[25]
Zheng Y Y, Yang J, Lu X B, Wang H L, Dubale A A, Li Y, Jin Z, Lou D Y, Sethi N K, Ye Y H, Zhou J, Sun Y J, Zheng Z K, Liu W. Adv. Energy Mater., 2021, 11(5): 2002276.
[26]
Yang J, Hübner R, Zhang J W, Wan H, Zheng Y Y, Wang H L, Qi H Y, He L Q, Li Y, Dubale A A, Sun Y J, Liu Y T, Peng D L, Meng Y Z, Zheng Z K, Rossmeisl J, Liu W. Angew. Chem. Int. Ed., 2021, 60(17): 9590.

doi: 10.1002/anie.v60.17     URL    
[27]
Fu X G, Choi J Y, Zamani P, Jiang G P, Hoque M A, Hassan F M, Chen Z W. ACS Appl. Mater. Interfaces, 2016, 8(10): 6488.

doi: 10.1021/acsami.5b12746     URL    
[28]
Li Y, Jiang K Y, Yang J, Zheng Y Y, Hübner R, Ou Z W, Dong X, He L Q, Wang H L, Li J, Sun Y J, Lu X B, Zhuang X D, Zheng Z K, Liu W. Small, 2021, 17(37): e2102159.
[29]
Liu L C, Corma A. Chem. Rev., 2023, 123(8): 4855.

doi: 10.1021/acs.chemrev.2c00733     URL    
[30]
Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven J A. Nature, 2017, 541(7635): 68.

doi: 10.1038/nature20782    
[31]
Zhu L L, Lin H P, Li Y Y, Liao F, Lifshitz Y, Sheng M Q, Lee S T, Shao M W. Nat. Commun., 2016, 7: 12272.

doi: 10.1038/ncomms12272    
[32]
Hao R, Fan Y S, Howard M D, Vaughan J C, Zhang B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(23): 5878.

doi: 10.1073/pnas.1800945115     URL    
[33]
Liu L, Wang Y, Zhao Y Z, Wang Y, Zhang Z L, Wu T, Qin W J, Liu S J, Jia B R, Wu H Y, Zhang D Y, Qu X H, Chhowalla M, Qin M L. Adv. Funct. Mater., 2022, 32(20): 2112207.
[34]
Xue T, Geng G N, Han Y Q, Wang H Y, Li J, Li H T, Zhou Y B, Zhu T. Nat. Commun., 2021, 12: 3205.

doi: 10.1038/s41467-021-23529-7    
[35]
Chen J D, Chen C H, Qin M K, Li B, Lin B B, Mao Q, Yang H B, Liu B, Wang Y. Nat. Commun., 2022, 13: 5382.

doi: 10.1038/s41467-022-33007-3    
[36]
Wu R, Zhang J F, Shi Y M, Liu D L, Zhang B. J. Am. Chem. Soc., 2015, 137(22): 6983.

doi: 10.1021/jacs.5b01330     URL    
[37]
Cho J, Kim M, Seok H, Choi G H, Yoo S S, Sagaya Selvam N C, Yoo P J, Kim T. ACS Appl. Mater. Interfaces, 2022, 14(20): 24008.

doi: 10.1021/acsami.2c03584     URL    
[38]
Yang L, Zhu X B, Xiong S J, Wu X L, Shan Y, Chu P K. ACS Appl. Mater. Interfaces, 2016, 8(22): 13966.

doi: 10.1021/acsami.6b04045     URL    
[39]
Mao C L, Wang J X, Zou Y J, Qi G D, Yang Loh J Y, Zhang T H, Xia M K, Xu J, Deng F, Ghoussoub M, Kherani N P, Wang L, Shang H, Li M Q, Li J, Liu X, Ai Z H, Ozin G A, Zhao J C, Zhang L Z. J. Am. Chem. Soc., 2020, 142(41): 17403.

doi: 10.1021/jacs.0c06118     URL    
[40]
Yan Q Q, Wu D X, Chu S Q, Chen Z Q, Lin Y, Chen M X, Zhang J, Wu X J, Liang H W. Nat. Commun., 2019, 10: 4977.

doi: 10.1038/s41467-019-12851-w    
[41]
Wei Z W, Wang H J, Zhang C, Xu K, Lu X L, Lu T B. Angew. Chem. Int. Ed., 2021, 60(30): 16622.

doi: 10.1002/anie.v60.30     URL    
[42]
Liu T T, Gao W B, Wang Q Q, Dou M L, Zhang Z P, Wang F. Angew. Chem. Int. Ed., 2020, 59(46): 20423.

doi: 10.1002/anie.v59.46     URL    
[43]
Cheng Y F, Lu S K, Liao F, Liu L B, Li Y Q, Shao M W. Adv. Funct. Mater., 2017, 27(23): 1700359.

doi: 10.1002/adfm.v27.23     URL    
[44]
Hall D S, Bock C, MacDougall B R. J. Electrochem. Soc., 2013, 160(3): F235.

doi: 10.1149/2.026303jes     URL    
[45]
Huang J Z, Han J C, Wu T, Feng K, Yao T, Wang X J, Liu S W, Zhong J, Zhang Z H, Zhang Y M, Song B. ACS Energy Lett., 2019, 4(12): 3002.

doi: 10.1021/acsenergylett.9b02359     URL    
[46]
Wang J, Mao S J, Liu Z Y, Wei Z Z, Wang H Y, Chen Y Q, Wang Y. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139.

doi: 10.1021/acsami.6b15377     URL    
[47]
Hu C Y, Ma Q Y, Hung S F, Chen Z N, Ou D H, Ren B, Chen H M, Fu G, Zheng N F. Chem, 2017, 3(1): 122.

doi: 10.1016/j.chempr.2017.05.011     URL    
[48]
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, Wang Y, Jiang Z, Xu Y, Lu R, Si G, Papangelakis P, Shakouri M, Xiao Q, Ou P, Wang X, Chen Z, Zhang W, Yu K, Song J, Jiang X, Qiu P, Lou Y, Wu D, Mao Y, Ozden A, Wang C, Xia B Y, Hu X, Dravid V P, Yiu Y M, Sham T K, Wang Z, Sinton D, Mai L, Sargent E H, Pang Y. Nature, 2023, 617: 724.

doi: 10.1038/s41586-023-05918-8    
[49]
Zeng Z H, Chang K C, Kubal J, Markovic N M, Greeley J. Nat. Energy, 2017, 2(6): 17070.

doi: 10.1038/nenergy.2017.70     URL    
[50]
Xiao M L, Gao L Q, Wang Y, Wang X, Zhu J B, Jin Z, Liu C P, Chen H Q, Li G R, Ge J J, He Q G, Wu Z J, Chen Z W, Xing W. J. Am. Chem. Soc., 2019, 141(50): 19800.

doi: 10.1021/jacs.9b09234     URL    
[51]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2018, 2(2): 134.

doi: 10.1038/s41929-018-0203-5    
[52]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z    
[53]
Liu Y, Liu X H, Wang X S, Ning H, Yang T, Yu J M, Kumar A, Luo Y G, Wang H D, Wang L L, Lee J S, Jadhav A R, Hu H, Wu M B, Kim M G, Lee H. ACS Nano, 2021, 15(9): 15017.

doi: 10.1021/acsnano.1c05324     URL    
[54]
Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. J. Phys. Chem. C, 2007, 111(1): 404.

doi: 10.1021/jp065181r     URL    
[55]
Yan H, Jiang Z, Deng B, Wang Y, Jiang Z J. Adv. Energy Mater., 2023, 2300152.
[56]
Wang Q, Cheng Y, Tao H B, Liu Y, Ma X, Li D S, Yang H B, Liu B. Angew. Chem. Int. Ed., 2023, 62: e202216645.
[57]
Liu K, Huang X, Wang H, Li F, Tang Y, Li J, Shao M. ACS Appl. Mater. Interfaces, 2016, 8: 34422.

doi: 10.1021/acsami.6b12294     URL    
[58]
Lee J M, Mok E K, Lee S, Lee N S, Debbichi L, Kim H, Hwang S J. Angew. Chem. Int. Ed., 2016, 55(30): 8546.

doi: 10.1002/anie.v55.30     URL    
[59]
Yang J, Xiong S, Song J, Wu H, Zeng Y, Lu L, Shen K, Hao T, Ma Z, Liu F, Duan C, Fahlman M, Bao Q. Adv. Energy Mater., 2020, 10: 2000687.
[60]
Liang R X, Shu C Z, Hu A J, Xu C X, Zheng R X, Li M L, Guo Y W, He M, Yan Y, Long J P. J. Mater. Chem. A, 2020, 8(22): 11337.

doi: 10.1039/D0TA02970J     URL    
[61]
Lei Z W, Wang T Y, Zhao B T, Cai W B, Liu Y, Jiao S H, Li Q, Cao R G, Liu M L. Adv. Energy Mater., 2020, 10(23): 2000478.
[62]
Dai J, Zhu Y L, Tahini H A, Lin Q, Chen Y, Guan D Q, Zhou C, Hu Z W, Lin H J, Chan T S, Chen C T, Smith S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2020, 11: 5657.

doi: 10.1038/s41467-020-19433-1    
[63]
Dai J, Zhu Y L, Chen Y, Wen X, Long M C, Wu X H, Hu Z W, Guan D Q, Wang X X, Zhou C, Lin Q, Sun Y F, Weng S C, Wang H T, Zhou W, Shao Z P. Nat. Commun., 2022, 13: 1189.

doi: 10.1038/s41467-022-28843-2    
[64]
Yu W L, Gao Y X, Chen Z, Zhao Y, Wu Z X, Wang L. Chin. J. Catal., 2021, 42(11): 1876.

doi: 10.1016/S1872-2067(21)63855-X     URL    
[65]
Li J Y, Hu J, Zhang M K, Gou W Y, Zhang S, Chen Z, Qu Y Q, Ma Y Y. Nat. Commun., 2021, 12: 3502.

doi: 10.1038/s41467-021-23750-4    
[66]
Li J Y, Tan Y, Zhang M K, Gou W Y, Zhang S, Ma Y Y, Hu J, Qu Y Q. ACS Energy Lett., 2022, 7(4): 1330.

doi: 10.1021/acsenergylett.1c02769     URL    
[67]
Gao W, Yan M, Cheung H Y, Xia Z M, Zhou X M, Qin Y B, Wong C Y, Ho J C, Chang C R, Qu Y Q. Nano Energy, 2017, 38: 290.

doi: 10.1016/j.nanoen.2017.06.002     URL    
[68]
Niu S W, Cai J Y, Wang G M. Nano Res., 2021, 14(6): 1985.

doi: 10.1007/s12274-020-3249-z    
[69]
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. In Modern Aspects of Electrochemistry. Eds.: Conway B. E., Bockris J. O. M., White R. E. Springer US: Boston, MA, 2002, 143.
[70]
Liu Y, Chen Y, Tian Y, Sakthivel T, Liu H, Guo S, Zeng H, Dai Z. Adv. Mater., 2022, 2203615.
[71]
Nishihara H, Ittisanronnachai S, Itoi H, Li L X, Suzuki K, Nagashima U, Ogawa H, Kyotani T, Ito M. J. Phys. Chem. C, 2014, 118(18): 9551.

doi: 10.1021/jp5016802     URL    
[72]
Fu H Q, Zhou M, Liu P F, Liu P R, Yin H J, Sun K Z, Yang H G, Al-Mamun M, Hu P J, Wang H F, Zhao H J. J. Am. Chem. Soc., 2022, 144(13): 6028.

doi: 10.1021/jacs.2c01094     URL    
[1] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
阅读次数
全文


摘要

电催化析氢反应中的氢溢流效应