English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 48-66 DOI: 10.7536/PC230529 前一篇   后一篇

• 综述 •

共价有机框架材料在质子交换膜中的应用

张炜煜, 李杰, 李红, 姬佳奇, 宫琛亮*(), 丁三元   

  1. 兰州大学化学化工学院 功能有机分子化学国家重点实验室 兰州730000
  • 收稿日期:2023-05-30 修回日期:2023-07-14 出版日期:2024-01-24 发布日期:2023-08-06
  • 作者简介:

    宫琛亮 教授,2011年获得兰州大学理学博士学位,2011年7月至今,任职于兰州大学化学化工学院,从事功能高分子材料的教学与科研工作。研究方向主要为燃料电池质子交换膜、功能性聚酰亚胺材料。

  • 基金资助:
    国家自然科学基金项目(21975112)

Covalent Organic Frameworks for Proton Exchange Membranes

Weiyu Zhang, Jie Li, Hong Li, Jiaqi Ji, Chenliang Gong(), Sanyuan Ding   

  1. College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
  • Received:2023-05-30 Revised:2023-07-14 Online:2024-01-24 Published:2023-08-06
  • Contact: * e-mail: gongchl@lzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21975112)

共价有机框架(COFs)作为一种新型有机多孔材料,具有高度结晶性、有序的多孔排列、功能可修饰性、结构可调性以及较高稳定性。COFs规整的孔道可以容纳多种质子载流子和质子供体,构建连续稳定的质子传输通道,在含水质子传导与无水质子传导中均发挥巨大的作用,将COFs应用到质子交换膜领域具有重要的研究意义和价值。本文分别从COFs作为低温燃料电池质子交换膜和高温燃料电池质子交换膜两方面,总结了COFs固态电解质膜、COFs与高分子基质复合膜、COFs自支撑膜等不同种类质子交换膜的特点以及提高COFs质子交换膜性能的改性方法,综述了近年来COFs在燃料电池质子交换膜领域的相关代表性研究。最后,对COFs质子交换膜的应用前景进行了讨论与展望。

Covalent organic frameworks (COFs), as a new type of organic porous materials, are highly crystalline and orderly porous, exhibiting functional modifiability, structural tunability and high stability. The regular pore channels of COFs can accommodate a variety of proton carriers and proton donors to build continuous and stable proton transport channels, playing a great role in both aqueous and anhydrous proton conduction. The application of COFs to the field of proton exchange membranes is of great research significance and value. In this paper, the characteristics of different types of proton exchange membranes, such as COFs solid electrolyte membranes, polymer matrix-COFs composite membranes, COFs self-supporting membranes and the modification methods to improve the performance of COFs proton exchange membranes are summarized from the aspects of COFs as proton exchange membranes for low temperature fuel cells and high temperature fuel cells, respectively. The relevant representative research of COFs in the field of fuel cell proton exchange membranes in recent years is reviewed. Finally, the application prospects of COFs proton exchange membranes are discussed and prospected.

Contents

1 Introduction

2 Covalent organic frameworks

2.1 Structure of COFs

2.2 Synthesis of COFs and COFs membrane

2.3 Application of COFs

3 COFs fuel cell proton exchange membrane

3.1 COFs low-temperature fuel cell proton exchange membranes

3.2 COFs high-temperature fuel cell proton exchange membranes

4 Conclusion and outlook

()
图1 COFs的拓扑结构[31]
Fig. 1 Topology diagrams for designing COFs[31]. Copyright 2019, Springer Nature
图2 COFs的合成方法
Fig. 2 Synthesis methods of COFs
图3 自上而下策略制备COFs纳米片
Fig. 3 Top-down strategies for preparing COFs nanosheets
图4 自下而上策略制备COFs膜 (a)溶剂热合成法[38] (b)层状自组装聚合法[44] (c)液-液界面聚合法[41]
Fig. 4 Bottom-up strategies for preparing COFs membranes (a) Solvothermal synthesis[38] (b) Laminar assembly polymerization[44] (c) Interfacial polymerization[41]. Ref 38, Copyright 2011, American Association for the Advancement of Science; Ref 44, Copyright 2019, American Association for the Advancement of Science; Ref 41, Copyright 2023, American Chemical Society
图5 COFs的应用[54,55,60]
Fig. 5 Applications of COFs[54,55,60]. ref 54, Copyright 2018, Royal Society of Chemistry; ref 55, Copyright 2011, American Chemical Society; ref 60, Copyright 2023, American Chemical Society
图6 (a)NKCOFs的合成路线;(b)NKCOFs的六方结构;(c~f)NKCOFs的AA堆叠俯视图[66]
Fig. 6 (a)Synthetic route of NKCOFs; (b)The hexagonal structural of NKCOFs; (c~f)The side views of NKCOFs, resulting from the eclipsed AA stacking[66]. Copyright 2019, Wiley-VCH
图7 (a)EB-COF:Br的合成;(b)EB-COF:Br的偏移AA堆叠;(c)PW12O403?掺杂原理[67]
Fig. 7 (a) The synthesis of EB-COF:Br; (b) Top views and side views of the offset AA stacking structure of the EB-COF:Br;(c) Schematic of PW12O403? doping in COF[67]. Copyright 2016, American Chemical Society
图8 (a)复合膜的质子传导机理;(b)Nafion膜与Nafion/H3PO4@S1-15复合膜的截面SEM图[71]
Fig. 8 (a)Schematic of proton transfer in composite membranes; (b)SEM images of the cross sections of Nafion membrane and Nafion/H3PO4@S1-15 composite membrane[71]. Copyright 2016, Elsevier
图9 SNW-1及Z-COF的合成路线[72]
Fig. 9 Synthetic route of SNW-1 and Z-COF[72]
图10 SCONs与Nafion分子结构图[73]
Fig. 10 Structural illustration of SCONs and Nafion molecule[73]. Copyright 2019, Elsevier
图11 SPEEK/HPW@COF复合膜质子传导示意图[74]
Fig. 11 Schematic of proton transfer in SPEEK/HPW@COF composite membranes[74]. Copyright 2020, Elsevier
图12 (a)IPC-COF膜组装和孔隙结构示意图;(b)IPC-COF的SEM图像;(c)IPC-COF的XRD图像;(d)IPC-COF膜和文献中报道的PEMs的溶胀率与IEC之间的关系[76]
Fig. 12 (a)Schematic illustration of IPC-COF membrane assembly and pore structures; (b)SEM image of IPC-COF; (c)XRD pattern of IPC-COF; (d)Swelling ratio versus IEC value from IPC-COF membrane and existing PEMs as reported in the literature[76]. Copyright 2020, Wiley-VCH
图13 单相溶液法合成DABA-TFP-COF-NS纳米片[77]
Fig. 13 Illustration of DABA-TFP-COF-NS synthesis process in single solution-phase[77]. Copyright 2022, Wiley-VCH
图14 (a~d)COFMs的合成示意图;(e)原始和水洗后的PTSA@COFMs的PXRD谱图[78]
Fig. 14 (a~d)Schematic representation of the synthesis of COFMs; (e)PXRD patterns of as-obtained PTSA@COFMs and those obtained after washing with water[78]. Copyright 2018, Wiley-VCH
表1 不同COFs质子交换膜的性能
Table 1 Properties of different COFs proton exchange membranes
图15 (a)TPB-DMeTP-COF的合成路线;(b)TPB-DMeTP- COF的单个六边形大环结构;(c)TPB-DMeTP-COF单个六边形通道结构(灰色:C原子;绿色:N原子;省略了CH3和H单元);(d)77 K下TPB-DMeTP-COF的氮气吸附等温线(圆圈:吸附;三角形:解吸)[83]
Fig. 15 (a)The synthesis of TPB-DMeTP-COF; (b)The structure of one hexagonal macrocycle; (c)The structure of a 1D channel (grey, C;green, N;CH3 units and H are omitted for clarity); (d)Nitrogen sorption isotherms of TPB-DMeTP-COF measured at 77 K (circle, adsorption; triangle, desorption)[83]. Copyright 2020, Spring Nature
图16 (a)TPT-COF的合成;(b)反平行堆积模型下TPT-COF相应细化晶体结构的俯视图和侧视图(灰色、蓝色和白色球体分别代表C、N和H原子);(c)TPT-COF的PXRD谱图[84]
Fig. 16 (a)The synthesis of TPT-COF; (b)Top and side views of the corresponding refined crystal structures of TPT-COF with the antiparallel stacking model (gray, blue, and white spheres represent C, N, and H atoms, respectively); (c)The PXRD patterns of TPT-COF[84]. Copyright 2022, Wiley-VCH
图17 (a)PIL-TB-COF的合成路线 ;(b)质子传输机理[87]
Fig. 17 (a)Structure of and synthetic route to TB-COF and PIL-TB-COF (b)Schematic illustration of the proton transfer in PIL-TB-COF[87]. Copyright 2022, Royal Society of Chemistry
图18 (a)OPBI溶液中COFs的原位生长反应;(b)原始OPBI膜的SEM图;(c)40%-COF-OPBI复合膜的SEM图[93]
Fig. 18 (a)Reaction for the in situ growth of COFs in OPBI solution; (b)SEM image of pristine OPBI membrane; (c)SEM image of 40%-COF-OPBI composite membrane[93]. Copyright 2022, Elsevier
表2 不同高温COFs质子交换膜的主要性能
Table 2 Properties of different COFs HTPEMs
[1]
Qu E L, Hao X F, Xiao M, Han D M, Huang S, Huang Z H, Wang S J, Meng Y Z. J. Power Sources, 2022, 533: 231386.
[2]
Steele B C H, Heinzel A. Nature, 2001, 414(6861): 345.

doi: 10.1038/35104620     URL    
[3]
Kusoglu A, Weber A Z. Chem. Rev., 2017, 117(3): 987.

doi: 10.1021/acs.chemrev.6b00159     pmid: 28112903
[4]
Prykhodko Y, Fatyeyeva K, Hespel L, Marais S. Chem. Eng. J., 2021, 409: 127329.

doi: 10.1016/j.cej.2020.127329     URL    
[5]
Wainright J S, Wang J T, Weng D, Savinell R F, Litt M. J. Electrochem. Soc., 1995, 142(7): L121.
[6]
Heo Y, Im H, Kim J. J. Membr. Sci., 2013, 425/426: 11.
[7]
He G H, Yan X M, Wu X M, Hu Z W, Du L G. Membr. Sci. Technol., 2011, 31(3): 140.
(贺高红, 焉晓明, 吴雪梅, 胡正文, 杜立广. 膜科学与技术, 2011, 31(3): 140.).
[8]
Vilčiauskas L, Tuckerman M E, Bester G, Paddison S J, Kreuer K D. Nat. Chem., 2012, 4(6): 461.

doi: 10.1038/nchem.1329     pmid: 22614380
[9]
Osamu N, Teruo K, Isao O, Yoshizo M. Chem. Lett., 1979, 8(1): 17.

doi: 10.1246/cl.1979.17     URL    
[10]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6): 424.

doi: 10.1038/nmat3001    
[11]
Duan C C, Tong J H, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, O’Hayre R. Science, 2015, 349(6254): 1321.

doi: 10.1126/science.aab3987     URL    
[12]
Wang F, Zuo Z C, Li L, Li K, He F, Jiang Z Q, Li Y L. Angew. Chem. Int. Ed., 2019, 58(42): 15010.

doi: 10.1002/anie.201910588     pmid: 31478303
[13]
Yang F, Xu G, Dou Y B, Wang B, Zhang H, Wu H, Zhou W, Li J R, Chen B L. Nat. Energy, 2017, 2(11): 877.

doi: 10.1038/s41560-017-0018-7    
[14]
Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y, Kunjir S M, Banerjee R. J. Am. Chem. Soc., 2014, 136(18): 6570.

doi: 10.1021/ja502212v     pmid: 24758195
[15]
Guo Z C, Shi Z Q, Wang X Y, Li Z F, Li G. Coord. Chem. Rev., 2020, 422: 213465.

doi: 10.1016/j.ccr.2020.213465     URL    
[16]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[17]
Wu X W, Hong you-lee, Xu B Q, Nishiyama Y, Jiang W, Zhu J W, Zhang G, Kitagawa S, Horike S. J. Am. Chem. Soc., 2020, 142(33): 14357.

doi: 10.1021/jacs.0c06474     URL    
[18]
Han R Y, Wu P Y. ACS Appl. Mater. Interfaces, 2018, 10(21): 18351.

doi: 10.1021/acsami.8b04311     URL    
[19]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334     pmid: 30485740
[20]
Zhuang Z, Shi H, Kang J, Liu D. Mater. Today Chem., 2021, 22: 100573.
[21]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131(13): 4570.

doi: 10.1021/ja8096256     pmid: 19281246
[22]
Uribe-Romo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011, 133(30): 11478.

doi: 10.1021/ja204728y     pmid: 21721558
[23]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.

doi: 10.1002/anie.v47:18     URL    
[24]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57(28): 8438.

doi: 10.1002/anie.v57.28     URL    
[25]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012, 134(48): 19524.

doi: 10.1021/ja308278w     pmid: 23153356
[26]
Zhuang X D, Zhao W X, Zhang F, Cao Y, Liu F, Bi S, Feng X L. Polym. Chem., 2016, 7(25): 4176.

doi: 10.1039/C6PY00561F     URL    
[27]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352): 673.

doi: 10.1126/science.aan0202     URL    
[28]
Alahakoon S B, Diwakara S D, Thompson C M, Smaldone R A. Chem. Soc. Rev., 2020, 49(5): 1344.

doi: 10.1039/c9cs00884e     pmid: 32073066
[29]
Guan X Y, Chen F Q, Fang Q R, Qiu S L. Chem. Soc. Rev., 2020, 49(5): 1357.

doi: 10.1039/C9CS00911F     URL    
[30]
Guan X Y, Chen F Q, Qiu S L, Fang Q R. Angew. Chem. Int. Ed., 2023, 62(3): e202213203.

doi: 10.1002/anie.v62.3     URL    
[31]
Banerjee T, Haase F, Trenker S, Biswal B P, Savasci G, Duppel V, Moudrakovski I, Ochsenfeld C, Lotsch B V. Nat. Commun., 2019, 10: 2689.

doi: 10.1038/s41467-019-10574-6     pmid: 31217421
[32]
Campbell N L, Clowes R, Ritchie L K, Cooper A I. Chem. Mater., 2009, 21(2): 204.

doi: 10.1021/cm802981m     URL    
[33]
Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(14): 5328.

doi: 10.1021/ja4017842     URL    
[34]
Wang H, Zeng Z T, Xu P, Li L S, Zeng G M, Xiao R, Tang Z Y, Huang D L, Tang L, Lai C, Jiang D N, Liu Y, Yi H, Qin L, Ye S J, Ren X Y, Tang W W. Chem. Soc. Rev., 2019, 48(2): 488.

doi: 10.1039/c8cs00376a     pmid: 30565610
[35]
Berlanga I, Ruiz-González M L, González-Calbet J M, Fierro J L G, Mas-Ballesté R, Zamora F. Small, 2011, 7(9): 1207.

doi: 10.1002/smll.201002264     pmid: 21491587
[36]
Chandra S, Kandambeth S, Biswal B P, Lukose B, Kunjir S M, Chaudhary M, Babarao R, Heine T, Banerjee R. J. Am. Chem. Soc., 2013, 135(47): 17853.

doi: 10.1021/ja408121p     pmid: 24168521
[37]
Khayum M A, Kandambeth S, Mitra S, Nair S B, Das A, Nagane S S, Mukherjee R, Banerjee R. Angew. Chem. Int. Ed., 2016, 55(50): 15604.

doi: 10.1002/anie.201607812     pmid: 27862737
[38]
Colson J W, Woll A R, Mukherjee A, Levendorf M P, Spitler E L, Shields V B, Spencer M G, Park J, Dichtel W R. Science, 2011, 332(6026): 228.

doi: 10.1126/science.1202747     pmid: 21474758
[39]
Li Y S, Chen W B, Xing G L, Jiang D L, Chen L. Chem. Soc. Rev., 2020, 49(10): 2852.

doi: 10.1039/D0CS00199F     URL    
[40]
Feldblyum J I, McCreery C H, Andrews S C, Kurosawa T, Santos E J G, Duong V, Fang L, Ayzner A L, Bao Z N. Chem. Commun., 2015, 51(73): 13894.

doi: 10.1039/C5CC04679C     URL    
[41]
Dey K, Pal M, Rout K C, Kunjattu H S, Das A, Mukherjee R, Kharul U K, Banerjee R. J. Am. Chem. Soc., 2017, 139(37): 13083.

doi: 10.1021/jacs.7b06640     URL    
[42]
Ali Khan N, Zhang R N, Wu H, Shen J L, Yuan J Q, Fan C Y, Cao L, Olson M A, Jiang Z Y. J. Am. Chem. Soc., 2020, 142(31): 13450.

doi: 10.1021/jacs.0c04589     URL    
[43]
Liu K J, Qi H Y, Dong R H, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z K, Feng X L. Nat. Chem., 2019, 11(11): 994.

doi: 10.1038/s41557-019-0327-5    
[44]
Zhong Y, Cheng B R, Park C, Ray A, Brown S, Mujid F, Lee J U, Zhou H, Suh J, Lee K H, Mannix A J, Kang K, Sibener S J, Muller D A, Park J. Science, 2019, 366(6471): 1379.

doi: 10.1126/science.aax9385     pmid: 31699884
[45]
Shinde D B, Sheng G, Li X, Ostwal M, Emwas A H, Huang K W, Lai Z P. J. Am. Chem. Soc., 2018, 140(43): 14342.

doi: 10.1021/jacs.8b08788     URL    
[46]
Li Y, Zhang M C, Guo X H, Wen R, Li X, Li X F, Li S J, Ma L J. Nanoscale Horiz., 2018, 3(2): 205.

doi: 10.1039/C7NH00172J     URL    
[47]
Zwaneveld N A A, Pawlak R, Abel M, Catalin D, Gigmes D, Bertin D, Porte L. J. Am. Chem. Soc., 2008, 130(21): 6678.

doi: 10.1021/ja800906f     pmid: 18444643
[48]
Russell J C, Blunt M O, Garfitt J M, Scurr D J, Alexander M, Champness N R, Beton P H. J. Am. Chem. Soc., 2011, 133(12): 4220.

doi: 10.1021/ja110837s     pmid: 21370872
[49]
Dienstmaier J F, Medina D D, Dogru M, Knochel P, Bein T, Heckl W M, Lackinger M. ACS Nano, 2012, 6(8): 7234.

doi: 10.1021/nn302363d     pmid: 22775491
[50]
Wang R, Zhou Y S, Zhang Y, Xue J, Caro J, Wang H H. Adv. Mater., 2022, 34(44): 2204894.

doi: 10.1002/adma.v34.44     URL    
[51]
Liu M H, Liu Y X, Dong J C, Bai Y C, Gao W Q, Shang S C, Wang X Y, Kuang J H, Du C S, Zou Y, Chen J Y, Liu Y Q. Nat. Commun., 2022, 13: 1411.

doi: 10.1038/s41467-022-29050-9    
[52]
He Y S, Lin X G, Chen J H, Guo Z Y, Zhan H B. ACS Appl. Mater. Interfaces, 2020, 12(37): 41942.

doi: 10.1021/acsami.0c11022     URL    
[53]
Zhai S X, Lu Z R, Ai Y N, Jia X Y, Yang Y M, Liu X, Tian M, Bian X M, Lin J, He S J. J. Power Sources, 2023, 554: 232332.
[54]
Fan H W, Mundstock A, Gu J H, Meng H, Caro J. J. Mater. Chem. A, 2018, 6(35): 16849.
[55]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011, 133(49): 19816.

doi: 10.1021/ja206846p     URL    
[56]
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. J. Am. Chem. Soc., 2018, 140(4): 1423.

doi: 10.1021/jacs.7b11255     pmid: 29287143
[57]
Shinde D B, Aiyappa H B, Bhadra M, Biswal B P, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J. Mater. Chem. A, 2016, 4(7): 2682.
[58]
Zhang Q N, Dong S D, Shao P P, Zhu Y H, Mu Z J, Sheng D F, Zhang T, Jiang X, Shao R W, Ren Z X, Xie J, Feng X, Wang B. Science, 2022, 378(6616): 181.

doi: 10.1126/science.abm6304     URL    
[59]
Xu H, Tao S S, Jiang D L. Nat. Mater., 2016, 15(7): 722.

doi: 10.1038/nmat4611    
[60]
Bag S, Sasmal H S, Chaudhary S P, Dey K, Blätte D, Guntermann R, Zhang Y Y, Položij M, Kuc A, Shelke A, Vijayaraghavan R K, Ajithkumar T G, Bhattacharyya S, Heine T, Bein T, Banerjee R. J. Am. Chem. Soc., 2023, 145(3): 1649.

doi: 10.1021/jacs.2c09838     URL    
[61]
Kreuer K D, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104(10): 4637.

doi: 10.1021/cr020715f     URL    
[62]
Yang Y, Zhang P H, Hao L Q, Cheng P, Chen Y, Zhang Z J. Angewandte Chemie Int. Ed., 2021, 60(40): 21838.

doi: 10.1002/anie.v60.40     URL    
[63]
Yin Z Y, Geng H B, Yang P F, Shi B B, Fan C Y, Peng Q, Wu H, Jiang Z Y. Int. J. Hydrog. Energy, 2021, 46(52): 26550.
[64]
Meng Z, Aykanat A, Mirica K A. Chem. Mater., 2019, 31(3): 819.

doi: 10.1021/acs.chemmater.8b03897     URL    
[65]
Peng Y W, Xu G D, Hu Z G, Cheng Y D, Chi C L, Yuan D Q, Cheng H S, Zhao D. ACS Appl. Mater. Interfaces, 2016, 8(28): 18505.

doi: 10.1021/acsami.6b06189     URL    
[66]
Yang Y, He X Y, Zhang P H, Andaloussi Y H, Zhang H L, Jiang Z Y, Chen Y, Ma S Q, Cheng P, Zhang Z J. Angew. Chem. Int. Ed., 2020, 59(9): 3678.

doi: 10.1002/anie.201913802     pmid: 31833630
[67]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18): 5897.

doi: 10.1021/jacs.5b13490     URL    
[68]
Guo Z C, You M L, Wang Z J, Li Z F, Li G. ACS Appl. Mater. Interfaces, 2022, 14(13): 15687.

doi: 10.1021/acsami.2c02298     URL    
[69]
Montoro C, Rodríguez-San-Miguel D, Polo E, Escudero-Cid R, Ruiz-González M L, Navarro J A R, Ocón P, Zamora F. J. Am. Chem. Soc., 2017, 139(29): 10079.

doi: 10.1021/jacs.7b05182     pmid: 28669183
[70]
Sun X, Song J H, Ren H Q, Liu X Y, Qu X W, Feng Y, Jiang Z Q, Ding H L. Electrochimica Acta, 2020, 331: 135235.

doi: 10.1016/j.electacta.2019.135235     URL    
[71]
Yin Y H, Li Z, Yang X, Cao L, Wang C B, Zhang B, Wu H, Jiang Z Y. J. Power Sources, 2016, 332: 265.
[72]
Li Y, Wu H, Yin Y H, Cao L, He X Y, Shi B B, Li J Z, Xu M Z, Jiang Z Y. J. Membr. Sci., 2018, 568: 1.
[73]
Yao J, Xu G X, Zhao Z M, Guo J, Li S H, Cai W W, Zhang S B. Int. J. Hydrog. Energy, 2019, 44(45): 24985.
[74]
Fan C Y, Wu H, Li Y, Shi B B, He X Y, Qiu M, Mao X L, Jiang Z Y. Solid State Ion., 2020, 349: 115316.

doi: 10.1016/j.ssi.2020.115316     URL    
[75]
Liu L, Yin L Y, Cheng D M, Zhao S, Zang H Y, Zhang N, Zhu G S. Angew. Chem. Int. Ed., 2021, 60(27): 14875.

doi: 10.1002/anie.v60.27     URL    
[76]
Cao L, Wu H, Cao Y, Fan C Y, Zhao R, He X Y, Yang P F, Shi B B, You X D, Jiang Z Y. Adv. Mater., 2020, 32(52): 2005565.

doi: 10.1002/adma.v32.52     URL    
[77]
Huang T, Jiang H F, Douglin J C, Chen Y, Yin S Y, Zhang J F, Deng X J, Wu H, Yin Y, Dekel D R, Guiver M D, Jiang Z Y. Angewandte Chemie Int. Ed., 2023, 62(4): e202209306.

doi: 10.1002/anie.v62.4     URL    
[78]
Sasmal H S, Aiyappa H B, Bhange S N, Karak S, Halder A, Kurungot S, Banerjee R. Angew. Chem. Int. Ed., 2018, 57(34): 10894.

doi: 10.1002/anie.v57.34     URL    
[79]
Sun P, Li Z F, Wang C G, Wang Y, Cui W H, Pei H C, Yin X Y. J Mater Eng, 2021, 49(1): 23.
(孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 材料工程, 2021, 49(1): 23.).

doi: 10.11868/j.issn.1001-4381.2019.001097    
[80]
Li W, Liu W, Zhang J, Wang H N, Lu S F, Xiang Y. Adv. Funct. Mater., 2023, 33(6): 2210036.

doi: 10.1002/adfm.v33.6     URL    
[81]
Hao L Q, Jia S P, Qiao X L, Lin E, Yang Y, Chen Y, Cheng P, Zhang Z J. Angewandte Chemie Int. Ed., 2023, 62(6): e202217240.

doi: 10.1002/anie.v62.6     URL    
[82]
Chandra S, Kundu T, Dey K, Addicoat M, Heine T, Banerjee R. Chem. Mater., 2016, 28(5): 1489.

doi: 10.1021/acs.chemmater.5b04947     URL    
[83]
Tao S S, Zhai L P, Dinga Wonanke A D, Addicoat M A, Jiang Q H, Jiang D L. Nat. Commun., 2020, 11: 1981.

doi: 10.1038/s41467-020-15918-1    
[84]
Jiang G X, Zou W W, Ou Z Y, Zhang L H, Zhang W F, Wang X J, Song H Y, Cui Z M, Liang Z X, Du L. Angewandte Chemie Int. Ed., 2022, 61(35): e202208086.

doi: 10.1002/anie.v61.35     URL    
[85]
Li J, Wang J, Wu Z Z, Tao S S, Jiang D L. Angew. Chem. Int. Ed., 2021, 60(23): 12918.

doi: 10.1002/anie.v60.23     URL    
[86]
Chen S H, Wu Y, Zhang Y, Zhang W X, Fu Y, Huang W B, Yan T, Ma H P. J. Mater. Chem. A, 2020, 8(27): 13702.
[87]
Guo Y, Zou X Y, Li W Z, Hu Y, Jin Z Y, Sun Z, Gong S C, Guo S Y, Feng Y. J. Mater. Chem. A, 2022, 10(12): 6499.
[88]
Wu X W, Liu Z Y, Guo H, Hong you-lee, Xu B Q, Zhang K, Nishiyama Y, Jiang W, Horike S, Kitagawa S, Zhang G. ACS Appl. Mater. Interfaces, 2021, 13(31): 37172.

doi: 10.1021/acsami.1c09157     URL    
[89]
Wang S L, Wei X, Li Z Y, Liu Y Q, Wang H T, Zou L, Lu D W, Hassan Akhtar F, Wang X B, Wu C J, Luo S J. Sep. Purif. Technol., 2022, 301: 122004.

doi: 10.1016/j.seppur.2022.122004     URL    
[90]
Seng L K, Masdar M S, Shyuan L K. Membranes, 2021, 11(10): 728.

doi: 10.3390/membranes11100728     URL    
[91]
Nambi Krishnan N, Konovalova A, Aili D, Li Q F, Park H S, Jang J H, Kim H J, Henkensmeier D. J. Membr. Sci., 2019, 588: 117218.
[92]
Peng J W, Wang P, Yin B B, Fu X Z, Wang L, Luo J L, Peng X J. J. Membr. Sci., 2021, 640: 119775.
[93]
Peng J W, Fu X Z, Liu D, Luo J L, Wang L, Peng X J. J. Membr. Sci., 2022, 655: 120603.
[1] 王子情, 杜金峰, 陆福泰, 邓启良. 四苯乙烯基共价有机框架的设计、合成及应用[J]. 化学进展, 2024, 36(1): 67-80.
[2] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 李婷婷, 李海宾, 刘炳辉, 赵成吉, 李昊龙. 主链全碳型芳基聚合物质子交换膜[J]. 化学进展, 2023, 35(11): 1559-1578.
[6] 杨皓凌, 徐昆誉, 张琪, 陶凉, 杨子浩, 董朝霞. 钒液流电池中的改性Nafion膜[J]. 化学进展, 2023, 35(11): 1595-1612.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[9] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[10] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[11] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[12] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[13] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[14] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[15] 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581.