English
新闻公告
More
化学进展 2024, Vol. 36 Issue (2): 187-203 DOI: 10.7536/PC230526 前一篇   后一篇

• 综述 •

钙钛矿基近红外光电探测器

高雯欢1, 丁济可1, 马全兴1, 苏郁清1, 宋宏伟2, 陈聪1,*()   

  1. 1 河北工业大学 材料科学与工程学院,省部共建电工装备可靠性与智能化国家重点实验室 天津 300130
    2 吉林大学 电子科学与工程学院,集成光电子国家重点实验室 长春 130012
  • 收稿日期:2023-05-25 修回日期:2023-08-09 出版日期:2024-02-24 发布日期:2023-09-10
  • 作者简介:

    陈聪 男,九三学社社员,博士学位,教授,博士生导师,河北工业大学“元光学者”特聘岗,于2019年7月份毕业于吉林大学(导师:宋宏伟 教授)。研究方向为光伏与光电子集成器件,主要包括新型半导体光伏材料与器件(新型太阳能电池、NIR光电探测器及成像技术等)和第三代半导体功率器件以及钝化技术等。

  • 基金资助:
    国家自然科学基金(62004058); 河北省自然科学基金(F20202022)

Perovskite-Based Near-Infrared Photodetectors

Wenhuan Gao1, Jike Ding1, Quanxing Ma1, Yuqing Su1, Hongwei Song2, Cong Chen1()   

  1. 1 School of Materials Science and Engineering, State Key Lab of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
    2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
  • Received:2023-05-25 Revised:2023-08-09 Online:2024-02-24 Published:2023-09-10
  • Contact: *e-mail: chencong@hebut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62004058); Natural Science Foundation of Hebei Province(F20202022)

近年来,具有ABX3晶体结构的金属卤化物钙钛矿材料因其可调带隙、高吸收系数、长载流子传输距离等光电学特性而在光电探测领域表现出良好应用前景,尤其是基于纯Sn或者Sn/Pb混合阳离子制备的杂化钙钛矿在760~1050 nm范围的近红外光电响应性能非常优异,展现出高灵敏度、低暗电流和高探测率等多方面优势。为进一步拓宽钙钛矿的近红外以及红外响应波长范围,研究人员探索了将有机材料、晶体硅/锗、Ⅲ-Ⅴ族化合物、Ⅳ-Ⅵ族化合物、上转换荧光材料等作为互补光吸收层与钙钛矿结合制备异质结来构筑出宽谱响应的近红外光电探测器。基于以上研究,本文总结了当前拓宽钙钛矿光电探测器的光谱范围的有效途径。同时,对钙钛矿材料的近红外光电探测器的未来发展前景作出了展望。

In recent years, organo-metal halide perovskites materials with ABX3 crystal structure have shown promising application prospects in the field of photoelectric detection due to their optical and electrical properties such as adjustable bandgap engineering, high absorption coefficient and long carrier transmission distance. Especially, the hybrid perovskite prepared by pure Sn or Sn/Pb mixed cations have excellent near-infrared photoelectroresponse in the range of 760~1050 nm, showing many advantages such as high sensitivity, low dark current and high detection rate. To further broaden the near-infrared and infrared response wavelength range of perovskite, the researchers explored combining organic materials, crystalline silicon/germanium, Ⅲ-Ⅴ compounds, Ⅳ-Ⅵ compounds, upconversion fluorescent materials as complementary light absorption layers with perovskite to prepare heterostructures to construct wide-spectrum response near-infrared photodetectors. Based on the above research, this paper summarizes the current effective ways to broaden the spectrum range of perovskite photodetectors. At the same time, the future development prospect of perovskite material near infrared photodetector is prospected.

Contents

1 Introduction

2 Basic indicators of photodetectors

2.1 Device structure and working principle of photodetectors

2.2 Performance parameters of photodetectors

2.3 Strategy of broadening the spectrum response range of perovskites

3 Pb perovskite for near-infrared photodetectors

3.1 Polycrystalline perovskite materials

3.2 Single crystal perovskite materials

4 Narrow band gap Sn and Sn/Pb Mixed Perovskite- Based near-infrared photodetectors

4.1 Sn-based perovskite near-infrared photodetectors

4.2 Sn/Pb mixed perovskite near-infrared photodetectors

5 Perovskite/inorganic heterojunction near-infrared photodetectors

5.1 Silicon and other classic semiconductors

5.2 Graphene

5.3 Transition metal dichalcogenides

5.4 Ⅲ-Ⅴ compounds semiconductors

5.5 Ⅳ-Ⅳ compounds semiconductors

6 Perovskite/organic heterojunction near-infrared photodetectors

7 Perovskite/upconversion material near-infrared photodetectors

8 Application of near-infrared photodetectors

9 Conclusion and outlook

()
图1 具有(a)立方和(b)四方晶体结构的MAPbI3钙钛矿型晶体结构[12]
Fig.1 Atomic models of perovskite MAPbI3 nanocrystals with (a) cubic and (b) tetragonal crystal structures.[12] Copyright 2014, IOP Publishing Ltd.
图2 三种不同类型的钙钛矿PDs示意图 (a)光电二极管;(b)光电导型;(c)光电晶体管
Fig.2 Three different types of perovskite PDs schematic (a) photodiode; (b) photoconductive type; (c) phototransistor.
图3 (a) ZnO纳米棒/ MAPbI3 PDs能级匹配图[17];(b) MAPbI3-xClx用于柔性器件示意图[18];(c) MAPbI3纳米晶体 PDs的光电流和响应度[19];(d) MAPbI3单晶照片[21];(e) MAPbI3单晶响应速度曲线[22];(f) MAPbI3单晶空间电荷限制电流测试(SCLC)[23]
Fig.3 (a) Energy level matching diagram of ZnO nanorods/ MAPbI3 PDs[17];(b) Schematic diagram of MAPbI3-xClx for flexible devices[18];(c) Photocurrent and responsivity of MAPbI3 nanocrystalline PDs[19];(d) Photographs of MAPbI3 single crystals[21];(e) Response velocity curves of MAPbI3 single crystals [22];(f) MAPbI3 single crystal space charge limiting current test (SCLC)[23] Copyright 2017, American Chemical Society. Copyright 2017, Nature. Copyright 2020, Wiley-VCH. Copyright 2016, Wiley-VCH. Copyright 2018, Elsevier. Copyright 2022, Royal Society of Chemistry.
表1 常见Sn基和 Sn/Pb基钙钛矿NIR-PDs
Table 1 Common Sn and Sn?Pb Perovskite NIR-PDs
Perovskite Wavelength range (nm) Responsivity (mA·W−1) Detection rate (Jones) EQE
(%)
LDR (dB) Response time [trise/tdecay] Ref.
MASnI3 300~1000 470 8.8×1010 1.5 s/0.4 s 30
CsSnI3 475~940 54 @940 nm 3.85×105 83.8 ms/243 ms 31
CsSnI3 400~900 257 1.5×1011 0.35 ms/1.6 ms 32
FASnI3 300~1000 33
FASnI3 300~1000 1.1×108 1.9×1012 180 s/360 s 34
FASnI3 300~1000 2×108 @850 nm 3.2×1012 117 s/206 s 35
PEA0.15FA0.85SnI3 450~850 0.39 8.29 × 1011 0.78 μs 50
MA0.975Rb0.025Sn0.65Pb0.35I3 300~1100 400 @910 nm >1012 110 40 ns/468 ns 38
MASnxPb1-xI3 300~1100 200 @940 nm >1011 >20% @780-970
nm
100 0.09 μs /2.27 μs 39
FA0.85Cs0.15Sn0.5Pb0.5I3
600~1000 530 @940 nm 6 ×1012 ≈80% @
760-900 nm
103 58.3 ns/0.86 μs 40
(FASnI3)0.6(MAPbI3)0.4 300~1000 400 @950 nm 1.1 × 1012 >65% @350-900
nm
167 6.9 μs/9.1 μs 14
Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 300~1050 530 @910 nm 2.01 × 1011 0.035 μs 41
CsPb0.5Sn0.5I3
(5% (PEA)2Pb0.5Sn0.5I4)
700~900 270 @850 nm 5.42×1014 42
MA0.5FA0.5Pb0.5Sn0.5I3 (2.5% (PEA)2Pb0.5Sn0.5I4) 700~900 ≈100 @800 nm ≈1.6 × 1012 ≈14% @800 nm 10 μs /10 μs 51
(MAPbI3)0.5(FASnI3)0.5 300~1050 410 2.91×1012 >60 @808 nm 10.9 ms/8.9 ms 43
MA0.5FA0.5Pb0.5Sn0.5I3 350~1000 >200 @
800~950 nm
>1012 ≈10% @800 nm 44
MA0.3FA0.7Pb0.5Sn0.5I3 470~910 600 1.5 × 1012 85% @850 nm 45
FA0.5MA0.45Cs0.05Pb0.5Sn0.5I3 300~1050 350 @950 nm 2.21 × 1011 75% @800 nm 185 42.9 ns 46
Cs0.15FA0.85Pb0.5Sn0.5I3 300~1050 520 @850 nm 5.34 × 1012 75% @850 nm 224 39.68 ns 47
FA0.7MA0.3Sn0.5Pb0.5I3 450~900 510 1.8 × 1012 75.4% @840 nm 94 ns/97 ns 48
FA0.85Cs0.15Sn0.5Pb0.5I3 400~900 570 8.48 × 1012 80 @910 nm 67.5 ns/0.72 μs 49
MASn0.25Pb0.75I3 500~900 510 1.1 × 1013 192.6 52
图4 (a) Sn钙钛矿NWs的样品示意图[30] ;(b) CsSnI3钙钛矿PDs上升/下降时间[31];(c) 在空气中暴露6 h后的CsSnI3样品XPS曲线[32];(d) 有无KHQSA修饰的FASnI3薄膜的SEM图像[33];(e) FASnI3/PEDOT:PSS异质结的PDs的探测率曲线[35]
Fig.4 (a) Sample schematic of Sn perovskite NWs[30];(b) Rise/fall time of CsSnI3 perovskite PDs[31];(c)XPS curves of CsSnI3 samples after exposure to air for 6 h[32];(d) SEM images of FASnI3 thin films with and without KHQSA modification[33];(e) Detectivity curves of FASnI3/PEDOT:PSS perovskite PDs [35] Copyright 2016, American Chemical Society. Copyright 2019, American Chemical Society. Copyright 2020, Wiley-VCH. Copyright 2019, Wiley-VCH. Copyright 2020, American Chemical Society.
图5 (a) MASnxPb1-xI3钙钛矿薄膜的带隙(0 < x < 1) [37] ;(b) 有无铷离子掺杂下的钙钛矿薄膜的XRD图像[38] ;(c) 不同结晶时间下钙钛矿薄膜的SEM图像[39];(d) 不同厚度下(FASnI3)0.6(MAPbI3)0.4钙钛矿薄膜的SEM图像[14];(e) 利用PEAI双面钝化Sn/Pb钙钛矿PDs EQE 光谱曲线[41] ;(f) 有无偶氮苯衍生物下PDs的光电流和暗电流J-V曲线[46]
Fig.5 (a) Band gap of MASnxPb1-xI3 perovskite films (0 < x < 1)[37] ;(b) XRD images of perovskite films doped with or without rubidium ions[38] ;(c) SEM images of perovskite films at different crystallization times[39];(d) SEM images of (FASnI3)0.6(MAPbI3)0.4 perovskite films with different thicknesses [14];(e) Double-sided passivation of Sn/Pb perovskite PDs EQE spectral curve by PEAI[41] ;(f) Photocurrent and dark current J-V curves of PDs with or without azobenzene derivatives[46] Copyright 2018,Wiley-VCH. Copyright 2018, Wiley-VCH Copyright 2019, American Chemical Society. Copyright 2017, Wiley-VCH. Copyright 2020, Wiley-VCH. Copyright 2021,Elsevier.
表2 常见Pb基钙钛矿NIR-PDs
Table 2 Common Pb Perovskite NIR-PDs
Perovskite Wavelength range (nm) Responsivity
(mA·W−1)
Detection rate (Jones) EQE (%) LDR (dB) Response time [trise/tdecay] (µs) Ref.
MAPbI3/Gd-doped ZnO nanorods 250~1357 220 @1357 nm 9.3×109@1357 nm 4 × 105 /5 × 105 17
MAPbI3-xClx 1012 @1100 nm 5.6 × 1013 @895 nm 18
MAPbI3 400~1064 150 @820 nm 22% @820 nm 1.2 × 105/8 × 104 21
MAPbI3 400~1000 4 × 103 @800 nm 600% @800 nm 39/1.9 22
CsPbBr3/GeSn 450~2200 4.7 @2200 nm -/26 55
Si/MAPbBr3 single crystal 405~1064 5 @1064 nm 2×1010 @1064 nm 0.52/2.44 56
MAPbI3/Si-NPA 400~1050 8.13 @780 nm 9.74 × 1012 @780 nm 253.3/230.4 57
MAPbI3-x(SCN)x/Si-NWs
350~1100
1.3 × 104
@800 nm
1.0 × 1013 @800 nm 22.2/17.6 58
Cs-doped FAPbI3/Si nanowire array 300~1200 14.86 @850 nm 2.04 × 1010 @850 nm 4/8 59
PVP-modified MAPbIxCl3-x/Si 405~988 ≈1250 @988 nm ≈5.3 × 1011 @808 nm ≈275% @808 nm 44 645/560 60
Si/MAPbI3 300~1150 50.9 @815 nm 2.23 × 1012 @815 nm <10% 1.3×104/1.46×
104
61
MAPbIxCl3-x/Si 300~1150 870 @800 nm 6 × 1012 @800 nm 5×104
/1.5×105
62
MAPbI3/Si 400~1200 18.4 @970 nm 1.8 × 1012 @970 nm 23.5% 97
graphene/CH3NH3PbI3 400~800 180 >1015 5×104% 87 ms/540 ms 63
(PEA)2(MA)2Pb3I10/GaAs NWs 400~800 75 1.49×1011 568 ms/785 ms 74
FA0.85Cs0.15PbI3/PtSe2 300~1200 117.7 @808 nm 2.91 × 1012 @808 nm 14.9% @808 nm 0.078/0.060 68
FA0.85Cs0.15PbI3/PtSe2 200~1550 313 @808 nm 2.72 × 1013 @808 nm 50% @808 nm 3.5/4 69
MAPbI3/MoS2 500~850 1.11×105 @850 nm 2.39 × 1010 @850 nm 6.17×106/4.5×
106
71
graphene /(PEA)2SnI4/MoS2/ graphene 300~900 121 8.09 × 109 38.2 34 ms/38 ms 70
MAPbI3/PbS QDs layer 375~1100 132 @900 nm 5.1 × 1012 @900 nm 18.2% @900 nm 100 80
MAPbI3/PbS-SCN QDs layer 365~1550 1.58×103 @940 nm 3.0 × 1011 @940 nm <4.2×104 81
MAPbI3:PbS QDs 400~1000 3.30 × 1011 @900 nm 6% @900 nm <5 × 105 83
MAPbI2.5Br0.5PbS QDs 400~1400 99 @975 4 ×1012 @1240 nm 40% @1240 nm 60 <10 79
MAPbI3/PbSe QDs layer
300~1500 700 @1200 nm 7×107@1200 nm 2.5×103/3×103 82
MAPbI3-xClx:PbS QDs 300~1500 350 @1300 nm 9 × 1010@1300 250/500 98
MAPbI3/PDPP3T 300~940 154 @835 nm 8.8 × 1010 @835 nm 1% @937 nm 3×104/1.5×105 88
MAPbI3/PDPPTDTPT 350~1050 1 × 1011 @900 nm 10%~20% @800~950 nm 95 6.1 × 10−3 89
MAPbI3/PTB7-Th/IEICO-4F 340~940 518 >1010 @340~940 nm >70% 500/510 92
MAPbI3/SWCNTs/NDI-DPP 375~1400 150 @1064 nm 2×1012 @920~940 nm 20% @920~940 nm 4.32/12.16 93
MAPbI3/F8IC:PTB7-Th 300~1000 370 @870 nm 2.3 × 1011 @870 nm 54% @850 nm 191 35/20 94
图6 (a) 钙钛矿层覆盖Si-NPA衬底的SEM图像[57];(b) MAPbI3/SiNW 异质结器件的上升下降曲线[58];(c) Si/SnO2 /MAPbI3/MoO3异质结能带示意图[61]
Fig.6 (a) SEM images of Si-NPA substrate covered with perovskite layer[57];(b) The ascending and descending curves of MAPbI3/Si-NW heterojunction device[58]; (c) diagram of Si/SnO2 /MAPbI3/MoO3 heterojunction energy bands [61] Copyright 2019,Elsevier. Copyright 2021, Wiley-VCH. Copyright 2020, The Japan Society of Applied Physics.
图7 (a) PtSe2/钙钛矿异质结PDs的波长响应度和探测率[68]; (b) PdSe2 /钙钛矿异质结PDs光电流随不同偏振角度的函数变化[69]
Fig.7 (a) Wavelength responsiveness and detection of PtSe2/ perovskite heterojunction PDs[68]; (b) The photocurrent of PdSe2/perovskite heterojunction PDs varies as a function of different polarization angles[69] Copyright 2018, American Chemical Society. Copyright 2019, Wiley-VCH.
图9 (a) 用MAPbI3/PDPP3T复合光敏层构建柔性PDs的示意图[88] ; (b) 钙钛矿/PDPPTDTPT/PC61BM 复合PDs的EQE和TPC图[89] ; (c) 钙钛矿/PC61BM/C60 PDs 暗电流密度-电压(J-V)图像[90]; (d)引入双电子传输层IEICO-4F和PTB7-Th PDs能带图[92] ; (e) 引入NDI-DPP/钙钛矿PDs的探测率与波长的关系[93]
Fig9 (a) Schematic diagram of manufacturing flexible PDs using MAPbI3/PDPP3T composite photosensitive layer[88]; (b) EQE and TPC of perovskite /PDPPTDTPT/PC61BM composite PDs[89]; (c) Perovskite /PC61BM/C60 PDs dark current density-voltage (J-V) image[90]; (d) The dual-electron transport layer IEICO-4F and PTB7-Th PDs band map are introduced[92]; (e) detectivity versus wavelength of introduced NDI-DPP/perovskite PDs[93]. Copyright 2016, Wiley-VCH. Copyright 2017, Royal Society of Chemistry. Copyright 2015, Wiley-VCH. Copyright 2018, Wiley-VCH. Copyright 2017, Wiley-VCH.
图8 采用(a) PDPP3T[88];(b) PDPPTDTPT[89]; (c) F8IC[94]; (d) PTB7-Th[92]; (e) IEICO-4F[92]; (f) NDI-DPP[93]有机材料与钙钛矿复合,拓宽钙钛矿PDs的光谱响应范围
Fig.8 The structural formula of (a) PDPP3T[88]; (b) PDPPTDTPT[89]; (c) F8IC[94]; (d) PTB7-Th[92]; (e) IEICO-4F[92]; (f) NDI-DPP[93]; which are adopted to combine with perovskite to broaden the spectral response range of Pb perovskite-based PDs.
图10 (a) 用于图像传感的PbS-SCN/MAPbI3 PDs阵列的设计和演示图[81] ;(b) OIHP PDs的图像扫描系统示意图和实际成像图[99] ;(c) 近红外上转换检测系统示意图[41] ;(d) 光电探测器集成近红外声光通信系统示意图[46] ;(e) 6×6像素Sn/Pb钙钛矿器件的光电流分布和捕获图像[39]
Fig10 (a) Design and demonstration of a PbS-SCN/MAPbI3 photodetector array for image-sensing application[81] ;(b) Schematic of the image scanning system and actual imaging for the OIHP photodetector[99] ;(c) Schematic diagram of the NIR up-conversion detection system with pictures of experimental detection under weak light and darkness to avoid the effects of indoor lighting[41] ;(d) Schematic diagram of the integrated NIR acousto-optic communication system with mixed perovskite photodetector[46] ;(e) Photocurrent distribution and capture images of 6 × 6 pixel Sn/Pb chalcogenide devices[39] Copyright 2019,American Chemical Society. Copyright 2020, Nature. Copyright 2020, Wiley-VCH. Copyright 2021,Elsevier. Copyright 2021, American Chemical Society.
[1]
Pawbake A S, Waykar R G, Late D J, Jadkar S R. ACS Appl. Mater. Interfaces, 2016, 8(5): 3359.

doi: 10.1021/acsami.5b11325     URL    
[2]
Mueller T, Xia F N, Avouris P. Nat. Photonics, 2010, 4(5): 297.

doi: 10.1038/nphoton.2010.40    
[3]
Jie H N, Xue Y S, Ming W Z, Shen L S, Bai X J, Bo L J. Sci. Rep., 2014, 4(1): 5209.

doi: 10.1038/srep05209    
[4]
Fu B B, Sun L J, Liu L, Ji D Y, Zhang X T, Yang F X, Hu W P. Sci. China Mater., 2022, 65(10): 2779.

doi: 10.1007/s40843-022-2035-y    
[5]
Andrea P, Ansuman B, David K, Ian P. Lab Chip, 2008, 8(5): 794.

doi: 10.1039/b715143h     URL    
[6]
Park J, Lee C, Kim T, Kim H, Kim Y. Adv. Electron. Mater., 2021, 7(1): 2000932.

doi: 10.1002/aelm.v7.1     URL    
[7]
Young K J, Wook L J, Suk J H, Hyunjung S, Gyu P N. Chem. Rev., 2020, 120(15): 7867.

doi: 10.1021/acs.chemrev.0c00107     URL    
[8]
Hui D, Kun Y X, Dong D D, Bing L, Dun Y, Jie Y S, Ke Q K, Bing C Y, Jiang T, Sheng S H. Nano Lett., 2015, 15(12): 7963.

doi: 10.1021/acs.nanolett.5b03061     URL    
[9]
Long G Y, Chao L, Hideyuki T, Eiichi N. J. Phys. Chem. Lett., 2015, 6(3): 535.

doi: 10.1021/jz502717g     URL    
[10]
Feng L, Chun M, Hong W, Jin H W, Li Y W, D S A, Tom W. Nat. Commun., 2015, 6(1): 8238.

doi: 10.1038/ncomms9238    
[11]
National Renewable Energy Laboratory, (2023). https://www.nrel.gov/pv/interactive-cell-efficiency.html.
[12]
Chen Z H, Li H, Tang Y B, Huang X, Ho D, Lee C S. Mater. Res. Express, 2014, 1(1): 015034.

doi: 10.1088/2053-1591/1/1/015034     URL    
[13]
Hu X, Zhang X D, Liang L, Bao J, Li S, Yang W L, Xie Y. Adv. Funct. Mater., 2014, 24(46): 7373.

doi: 10.1002/adfm.v24.46     URL    
[14]
Wang W B, Zhao D W, Zhang F J, Li L D, Du M D, Wang C L, Yu Y, Huang Q Q, Zhang M, Li L L. Adv. Funct. Mater., 2017, 27(42): 1703953.

doi: 10.1002/adfm.v27.42     URL    
[15]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[16]
P A P, Peter V, Peter D H, Marianna P, Guy L, Jeroen D C, Joris V C. Opt. Express, 2015, 23(7): 9369.

doi: 10.1364/OE.23.009369     URL    
[17]
Alwadai N, Haque M A, Mitra S, Flemban T, Pak Y, Wu T, Roqan I. ACS Appl. Mater. Interfaces, 2017, 9(43): 37832.

doi: 10.1021/acsami.7b09705     URL    
[18]
Xie C, You P, Liu Z K, Li L, Yan F. Light. Sci. Appl., 2017, 6(8): e17023.

doi: 10.1038/lsa.2017.23     URL    
[19]
Perumal Veeramalai C, Yang S Y, Zhi R N, Sulaman M, Saleem M I, Cui Y Y, Tang Y, Jiang Y R, Tang L B, Zou B S. Adv. Opt. Mater., 2020, 8(15): 2000215.
[20]
Zhao Y C, Tan H R, Yuan H F, Yang Z Y, Fan J Z, Kim J H, Voznyy O, Gong X W, Quan L N, Tan C S, Hofkens J, Yu D P, Zhao Q, Sargent E H. Nat. Commun., 2018, 9: 1607.

doi: 10.1038/s41467-018-04029-7    
[21]
Lin Q Q, Armin A, Burn P L, Meredith P. Laser Photonics Rev., 2016, 10(6): 1047.

doi: 10.1002/lpor.v10.6     URL    
[22]
Zhang Y X, Liu Y C, Yang Z, Liu S F. J. Energy Chem., 2018, 27(3): 722.

doi: 10.1016/j.jechem.2017.11.002     URL    
[23]
Yu J, Zheng J, Chen H Y, Tian N, Li L, Qu Y M, Huang Y T, Luo Y X, Tan W Z. J. Mater. Chem. C, 2022, 10(1): 274.

doi: 10.1039/D1TC04961E     URL    
[24]
Xi Y Y, Wang X C, Ji T, Li G H, Shi L L, Liu Y C, Wang W Y, Ma J Q, Liu S Z, Hao Y Y. Adv. Opt. Mater., 2023, 2202423.
[25]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G. J. Am. Chem. Soc., 2012, 134(20): 8579.

doi: 10.1021/ja301539s     URL    
[26]
Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat. Photonics, 2014, 8(6): 489.

doi: 10.1038/nphoton.2014.82    
[27]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Adv. Mater., 2014, 26(41): 7122.

doi: 10.1002/adma.v26.41     URL    
[28]
Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G. J. Am. Chem. Soc., 2016, 138(44): 14750.

doi: 10.1021/jacs.6b09257     URL    
[29]
Lee S J, Shin S S, Im J, Ahn T K, Noh J H, Jeon N J, Seok S I, Seo J. ACS Energy Lett., 2018, 3(1): 46.

doi: 10.1021/acsenergylett.7b00976     URL    
[30]
Waleed A, Tavakoli M M, Gu L L, Wang Z Y, Zhang D Q, Manikandan A, Zhang Q P, Zhang R J, Chueh Y L, Fan Z Y. Nano Lett., 2017, 17(1): 523.

doi: 10.1021/acs.nanolett.6b04587     URL    
[31]
Han M M, Sun J M, Peng M, Han N, Chen Z H, Liu D, Guo Y N, Zhao S, Shan C X, Xu T, Hao X T, Hu W D, Yang Z X. J. Phys. Chem. C, 2019, 123(28): 17566.

doi: 10.1021/acs.jpcc.9b03289     URL    
[32]
Cao F R, Tian W, Wang M, Wang M, Li L. InfoMat, 2020, 2(3): 577.

doi: 10.1002/inf2.v2.3     URL    
[33]
Tai Q D, Guo X Y, Tang G Q, You P, Ng T W, Shen D, Cao J P, Liu C K, Wang N X, Zhu Y, Lee C S, Yan F. Angewandte Chemie Int. Ed., 2019, 58(3): 806.

doi: 10.1002/anie.v58.3     URL    
[34]
Liu C K, Tai Q D, Wang N X, Tang G Q, Loi H L, Yan F. Adv. Sci., 2019, 6(17): 1900751.

doi: 10.1002/advs.v6.17     URL    
[35]
Liu C K, Tai Q D, Wang N X, Tang G Q, Hu Z, Yan F. ACS Appl. Mater. Interfaces, 2020, 12(16): 18769.

doi: 10.1021/acsami.0c01202     URL    
[36]
Yuhei O, Atsushi M, Syota T, Takahiro S, Naotaka F, Qing S, Taro T, Kenji Y, S P S, Tingli M, Shuzi H. J. Phys. Chem. Lett., 2014, 5(6): 1004.

doi: 10.1021/jz5002117     URL    
[37]
Zhu H L, Choy W C H. Sol. RRL, 2018, 2(10): 1800146.
[38]
Zhu H L, Liang Z F, Huo Z B, Ng W K, Mao J, Wong K S, Yin W J, Choy W C H. Adv. Funct. Mater., 2018, 28(16): 1706068.

doi: 10.1002/adfm.v28.16     URL    
[39]
Zhu H L, Lin H, Song Z L, Wang Z S, Ye F, Zhang H, Yin W J, Yan Y F, Choy W C H. ACS Nano, 2019, 13(10): 11800.

doi: 10.1021/acsnano.9b05774     URL    
[40]
Liu H, Zhu H L, Wang Z S, Wu X, Huang Z F, Huqe M R, Zapien J A, Lu X H, Choy W C H. Adv. Funct. Mater., 2021, 31(28): 2010532.
[41]
Zhao Y, Li C L, Jiang J Z, Wang B M, Shen L. Small, 2020, 16(26): 2001534.
[42]
Cao F, Chen J D, Yu D J, Wang S, Xu X B, Liu J X, Han Z Y, Huang B, Gu Y, Leong Choy K, Zeng H B. Adv. Mater., 2020, 32(6): 1905362.

doi: 10.1002/adma.v32.6     URL    
[43]
Zhao R, Huang J Y, Liu M Y, Tan F R, Zhang P T, Chen Z, Yao X, Li S J. Nanotechnology, 2023, 34(21): 215702.

doi: 10.1088/1361-6528/acbcda    
[44]
Xu X B, Chueh C C, Jing P F, Yang Z B, Shi X L, Zhao T, Lin L Y, Jen A K Y. Adv. Funct. Mater., 2017, 27(28): 1701053.

doi: 10.1002/adfm.v27.28     URL    
[45]
Morteza Najarian A, Vafaie M, Johnston A, Zhu T, Wei M Y, Saidaminov M I, Hou Y, Hoogland S, García de Arquer F P, Sargent E H. Nat. Electron., 2022, 5(8): 511.

doi: 10.1038/s41928-022-00799-7    
[46]
Ma N N, Jiang J Z, Zhao Y, He L J, Ma Y, Wang H L, Zhang L L, Shan C X, Shen L, Hu W D. Nano Energy, 2021, 86: 106113.

doi: 10.1016/j.nanoen.2021.106113     URL    
[47]
He L J, Hu G J, Jiang J Z, Wei W, Xue X Z, Fan K, Huang H T, Shen L. Adv. Mater., 2023, 35(10): 2210016.
[48]
Liu F C, Liu K, Rafique S, Xu Z Y, Niu W Q, Li X G, Wang Y F, Deng L L, Wang J, Yue X F. Adv. Sci., 2023, 10(5): 2205879.

doi: 10.1002/advs.v10.5     URL    
[49]
Liu H, Zhu L, Zhang H, He X J, Yan F, Wong K S, Choy W C H. ACS Energy Lett., 2023, 8(1): 577.

doi: 10.1021/acsenergylett.2c02055     URL    
[50]
Jang W, Kim K, Kim B G, Nam J S, Jeon I, Wang D H. Adv. Funct. Mater., 2022, 32(51): 2270290.
[51]
Liu J X, Zou Y S, Huang B, Gu Y, Yang Y, Han Z Y, Zhang Y Z, Xu X B, Zeng H B. Nanoscale, 2020, 12(39): 20386.

doi: 10.1039/D0NR04974C     URL    
[52]
Chang C Y, Wu K H, Chang C Y, Guo R F, Li G L, Wang C Y. Mol. Syst. Des. Eng., 2022, 7(9): 1073.

doi: 10.1039/D2ME00032F     URL    
[53]
Sun Z H, Aigouy L, Chen Z Y. Nanoscale, 2016, 8(14): 7377.

doi: 10.1039/C5NR08677A     URL    
[54]
I S M, Azimul H M, Maxime S, L A A, Namchul C, Ibrahim D, Ulrich B, Erkki A, Tom W, M B O. Adv. Mater., 2016, 28(37): 8144.

doi: 10.1002/adma.v28.37     URL    
[55]
Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liag R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L. ACS Nano, 2020, 14(3): 2860.

doi: 10.1021/acsnano.9b06345     URL    
[56]
Zhang Z X, Xu C H, Zhu C Y, Tong X W, Fu C, Wang J, Cheng Y L, Luo L B. Sens. Actuat. A Phys., 2021, 332: 113176.

doi: 10.1016/j.sna.2021.113176     URL    
[57]
Cheng Y, Shi Z F, Yin S T, Li Y, Li S, Liang W Q, Wu D, Tian Y T, Li X J. Sol. Energy Mater. Sol. Cells, 2020, 204: 110230.

doi: 10.1016/j.solmat.2019.110230     URL    
[58]
Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G. Phys. Status Solidi RRL Rapid Res. Lett., 2021, 15(4): 2000537.
[59]
Liu J Q, Gao Y, Wu G A, Tong X W, Xie C, Luo L B, Liang L, Wu Y C. ACS Appl. Mater. Interfaces, 2018, 10(33): 27850.

doi: 10.1021/acsami.8b08387     URL    
[60]
Zhao F Y, Xu K, Luo X, Liang Y L, Peng Y Q, Lu F P. Adv. Opt. Mater., 2018, 6(1): 1700509.
[61]
Qu W, Weng S K, Zhang L P, Sun M, Liu B, Du W J, Zhang Y W. Appl. Phys. Express, 2020, 13(12): 121001.

doi: 10.35848/1882-0786/abc5fa    
[62]
Cao F R, Liao Q L, Deng K M, Chen L, Li L, Zhang Y. Nano Res., 2018, 11(3): 1722.

doi: 10.1007/s12274-017-1790-1    
[63]
Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H, Cho J H. Adv. Mater., 2015, 27(1): 41.

doi: 10.1002/adma.v27.1     URL    
[64]
Wang Y S, Zhang Y P, Lu Y, Xu W D, Mu H R, Chen C Y, Qiao H, Song J C, Li S J, Sun B Q, Cheng Y B, Bao Q L. Adv. Opt. Mater., 2015, 3(10): 1303.

doi: 10.1002/adom.v3.10     URL    
[65]
Spina M, Lehmann M, Náfrádi B, Bernard L, Bonvin E, Gaál R, Magrez A, Forró L, Horváth E. Small, 2015, 11(37): 4824.

doi: 10.1002/smll.v11.37     URL    
[66]
Qian L, Sun Y L, Wu M M, Xie D, Ding L M, Shi G Q. Adv. Mater., 2017, 29(22): 1606175.

doi: 10.1002/adma.v29.22     URL    
[67]
Feng F, Wang T, Qiao J, Min C J, Yuan X C, Somekh M. ACS Appl. Mater. Interfaces, 2021, 13(51): 61496.

doi: 10.1021/acsami.1c16631     URL    
[68]
Zhang Z X, Zeng L H, Tong X W, Gao Y, Xie C, Tsang Y H, Luo L B, Wu Y C. J. Phys. Chem. Lett., 2018, 9(6): 1185.

doi: 10.1021/acs.jpclett.8b00266     URL    
[69]
Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B, Tsang Y H. Adv. Sci., 2019, 6(19): 1901134.

doi: 10.1002/advs.v6.19     URL    
[70]
Fang C, Wang H Z, Shen Z X, Shen H Z, Wang S, Ma J Q, Wang J, Luo H M, Li D H. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419.

doi: 10.1021/acsami.8b20538     URL    
[71]
Kang D H, Pae S R, Shim J, Yoo G, Jeon J, Leem J W, Yu J S, Lee S, Shin B, Park J H. Adv. Mater., 2016, 28(35): 7799.

doi: 10.1002/adma.v28.35     URL    
[72]
Guo H, Tong Y, Fan H B, Ye Q, Zhang J, Wang H Y, Cao F R, Li L, Wang H Q. Sci. China Phys. Mech. Astron., 2022, 65(7): 274204.

doi: 10.1007/s11433-021-1827-x    
[73]
Zumeit A, Dahiya A S, Christou A, Mukherjee R, Dahiya R. Adv. Mater. Technol., 2022, 7(12): 2200772.
[74]
Hou X B, Hong X T, Lin F Y, Cui J Z, Dai Q, Tian Q L, Meng B H, Liu Y J, Tang J L, Li K X, Liao L, Wei Z P. Photon. Res., 2023, 11(4): 541.

doi: 10.1364/PRJ.480612     URL    
[75]
Saran R, Curry R J. Nat. Photonics, 2016, 10(2): 81.

doi: 10.1038/nphoton.2015.280    
[76]
Steigerwald M L, Alivisatos A P, Gibson J M, Harris T D, Kortan R, Muller A J, Thayer A M, Duncan T M, Douglass D C, Brus L E. J. Am. Chem. Soc., 1988, 110(10): 3046.

doi: 10.1021/ja00218a008     URL    
[77]
Zhang J B, Crisp R W, Gao J B, Kroupa D M, Beard M C, Luther J M. J. Phys. Chem. Lett., 2015, 6(10): 1830.

doi: 10.1021/acs.jpclett.5b00689     URL    
[78]
McDonald S A, Konstantatos G, Zhang S G, Cyr P W, Klem E J D, Levina L, Sargent E H. Nat. Mater., 2005, 4(2): 138.

doi: 10.1038/nmat1299    
[79]
García de Arquer F P, Gong X W, Sabatini R P, Liu M, Kim G H, Sutherland B R, Voznyy O, Xu J X, Pang Y, Hoogland S, Sinton D, Sargent E. Nat. Commun., 2017, 8: 14757.

doi: 10.1038/ncomms14757     URL    
[80]
Liu C, Wang K, Du P C, Wang E M, Gong X, Heeger A J. Nanoscale, 2015, 7(39): 16460.

doi: 10.1039/C5NR04575D     URL    
[81]
Zhang J Y, Xu J L, Chen T, Gao X, Wang S D. ACS Appl. Mater. Interfaces, 2019, 11(47): 44430.

doi: 10.1021/acsami.9b14645     URL    
[82]
Yu Y, Zhang Y T, Zhang Z, Zhang H T, Song X X, Cao M X, Che Y L, Dai H T, Yang J B, Wang J L, Zhang H, Yao J Q. J. Phys. Chem. Lett., 2017, 8(2): 445.
[83]
Zhao D, Huang J, Qin R H, Yang G J, Yu J S. Adv. Opt. Mater., 2018, 6(23): 1870090.

doi: 10.1002/adom.v6.23     URL    
[84]
Pan W T, Tan M R, He Y H, Wei H T, Yang B. Nano Lett., 2022, 22(6): 2277.

doi: 10.1021/acs.nanolett.1c04569     URL    
[85]
Hao H Z, Jun Z F, Shi A Q, Miao Z, Ling M X, Xiao W J, Jian Z, Jian W. ACS Energy Lett., 2018, 3(3): 555.

doi: 10.1021/acsenergylett.8b00100     URL    
[86]
Miao Z, Jun Z F, Shi A Q, Qian S Q, Bin W W, Ling M X, Jian Z, Hua T W. J. Mater. Chem. A, 2017, 5(7): 3589.

doi: 10.1039/C7TA00211D     URL    
[87]
Dou L T, Yang Y, You J B, Hong Z R, Chang W H, Li G, Yang Y,. Nat. Commun., 2014, 5: 5404.

doi: 10.1038/ncomms6404    
[88]
Chen S, Teng C J, Zhang M, Li Y R, Xie D, Shi G Q. Adv. Mater., 2016, 28(28): 5969.

doi: 10.1002/adma.v28.28     URL    
[89]
Shen L, Lin Y Z, Bao C X, Bai Y, Deng Y H, Wang M M, Li T, Lu Y F, Gruverman A, Li W W, Huang J S. Mater. Horiz., 2017, 4(2): 242.

doi: 10.1039/C6MH00508J     URL    
[90]
Lin Q Q, Armin A, Lyons D M, Burn P L, Meredith P. Adv. Mater., 2015, 27(12): 2060.

doi: 10.1002/adma.v27.12     URL    
[91]
Wang Y K, Yang D Z, Zhou X K, Ma D G, Vadim A, Ahamad T, Alshehri S M. Adv. Opt. Mater., 2017, 5(12): 1700213.

doi: 10.1002/adom.v5.12     URL    
[92]
Wu G, Fu R L, Chen J H, Yang W T, Ren J, Guo X K, Ni Z Y, Pi X D, Li C Z, Li H Y, Chen H Z. Small, 2018, 14(39): 1802349.
[93]
Xu W Z, Guo Y K, Zhang X T, Zheng L Y, Zhu T, Zhao D H, Hu W P, Gong X. Adv. Funct. Mater., 2018, 28(7): 1705541.

doi: 10.1002/adfm.v28.7     URL    
[94]
Li C L, Ma Y, Xiao Y F, Shen L, Ding L M. InfoMat, 2020, 2(6): 1247.

doi: 10.1002/inf2.v2.6     URL    
[95]
I S M, Valerio A, Riccardo C, L A A, Wei P, Ibrahim D, Jian Y M, Sjoerd H, H S E, M B O. Nat. Commun., 2015, 6(Nov.): 8724.
[96]
Zhang X H, Yang S Z, Zhou H, Liang J W, Liu H W, Xia H, Zhu X L, Jiang Y, Zhang Q L, Hu W, Zhang X J, Liu H J, Hu W D, Wang X, Pan A L. Adv. Mater., 2017, 29(21): 1604431.
[97]
Cong H, Chu X B, Wan F S, Chu Z M, Wang X Y, Ma Y, Jiang J Z, Shen L, You J B, Xue C L. Small Methods, 2021, 5(8): 2100517.
[98]
Ka I, Gerlein L F, Asuo I M, Nechache R, Cloutier S G. Nanoscale, 2018, 10(19): 9044.

doi: 10.1039/C7NR08608C     URL    
[99]
Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L. Light. Sci. Appl., 2020, 9: 31.

doi: 10.1038/s41377-020-0264-5    
[1] 马娟, 杨蕊瑜, 陈焱峰, 刘颖, 陈淑芬. 准二维蓝光钙钛矿发光二极管的研究进展[J]. 化学进展, 2024, 36(2): 224-233.
[2] 陈威燃, 马林, 赵婷, 严铮洸, 肖家文, 王振中, 韩晓东. 稀土掺杂卤化铅钙钛矿的制备、性能与辐射探测器[J]. 化学进展, 2023, 35(12): 1864-1880.
[3] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[6] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[7] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[8] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[9] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[10] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[11] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[15] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
阅读次数
全文


摘要

钙钛矿基近红外光电探测器