English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 95-105 DOI: 10.7536/PC230525 前一篇   后一篇

• 综述 •

光催化去除水体中的抗生素

于江波1, 于婧1, 刘杰2, 吴占超2,*(), 匡少平1,*()   

  1. 1 青岛科技大学环境与安全工程学院 青岛266042
    2 青岛科技大学化学与分子工程学院 青岛266042
  • 收稿日期:2023-05-25 修回日期:2023-08-19 出版日期:2024-01-24 发布日期:2023-09-10
  • 作者简介:

    吴占超 青岛科技大学化学与分子工程学院教授、博士生导师。主要从事有机物及重金属废水处理材料的合成与性能研究。先后主持国家自然科学基金面上项目、国家自然科学青年基金项目、山东省自然科学基金面上项目和青岛市重大科技攻关计划项目等科研项目9项;获得山东省高等学校科学技术奖2项;出版学术专著2部;发表SCI论文80余篇;授权国家发明专利6项。

    匡少平 青岛科技大学环境与安全工程学院教授,博士生导师,研究生院院长。长期从事资源环境领域的研究工作,研究方向为:固体废物污染化学与控制、土壤环境化学与污染控制、环境材料技术研发与应用等。主持国家高技术研究发展计划(863计划)、国家自然科学基金项目、山东省重大科技创新工程项目等科研项目30余项。在国内外学术刊物上发表论文120余篇,其中SCI、EI收录论文50余篇;主编、参编专著及教材6部。荣获山东省环境保护科技奖、山东高等学校优秀科研成果奖等5项。

  • 基金资助:
    山东省重大科技创新工程项目(2021CXGC011206)

Photocatalytic Removal of Antibiotics from Water

Jiangbo Yu1, Jing Yu1, Jie Liu2, Zhanchao Wu2(), Shaoping Kuang1()   

  1. 1 School of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
    2 School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
  • Received:2023-05-25 Revised:2023-08-19 Online:2024-01-24 Published:2023-09-10
  • Contact: * e-mail: wuzhan_chao@163.com (Zhanchao Wu); kuangshaoping@126.com (Shaoping Kuang)
  • Supported by:
    Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC011206)

随着抗生素的普遍应用,抗生素的水体污染问题也越来越严重。目前,从水中去除抗生素污染物技术包括物理吸附、絮凝和化学氧化。然而,这些过程通常会在水中留下大量的化学试剂和难以处理的沉积物,导致后处理比较困难。光催化技术是利用光催化材料,在光照的情况下使抗生素彻底分解,最终形成无毒的CO2和H2O。光催化降解抗生素具有成本低、效率高、无二次污染的优点。本文综述了几种常用的降解抗生素的光催化材料的研究进展,并对其今后的研究与应用作了进一步展望。

With the widespread use of antibiotics, the problem of water pollution caused by antibiotics is becoming increasingly serious. Currently, technologies for removing antibiotic pollutants from water include physical adsorption, flocculation, and chemical oxidation. However, these processes often leave a large amount of chemical reagents and difficult-to-dispose sediment in water, making post-treatment more difficult. Photocatalytic technology uses photocatalytic materials to decompose antibiotics under light, ultimately forming non-toxic CO2 and H2O. Photocatalytic degradation of antibiotics has the advantages of low cost, high efficiency and free secondary pollution. In this paper, the research progress of several commonly used photocatalytic materials for degrading antibiotics is reviewed, and their future researches and applications are also prospected.

Contents

1 Introduction

2 The impact of antibiotics in wastewater on the environment and human health

3 Principles of photocatalytic degradation of antibiotics

4 Commonly used photocatalytic materials for antibiotic degradation

4.1 Metal oxide based photocatalyst

4.2 Bi-based photocatalysts

4.3 Photocatalysts based on metal organic frameworks (MOFs)

4.4 Graphite like g-C3N4 photocatalyst

5 Photocatalytic degradation of antibiotics

5.1 Photocatalytic degradation of TC

5.2 Photocatalytic degradation of CIP

6 Conclusion and outlook

()
图1 日常生活中的抗生素污染物
Fig. 1 Antibiotic pollutants in daily life
图2 光催化降解抗生素原理
Fig. 2 Principle of photocatalytic degradation of antibiotics
图3 不同半导体的能带隙值[21]
Fig. 3 Energy band gaps of different semiconductors[21]
图4 常见Bi基光催化剂的能带隙值[36]
Fig. 4 Energy band gap value of Bi-based phtotocatalysts [36]
图5 BiOX的能带隙值[39]
Fig. 5 Energy band gap value of BiOX[39]
图6 基于MOFs的光催化剂[51]
Fig. 6 Photocatalysts based on MOFs[51]
图7 TC和CIP结构图[65,66]
Fig. 7 Structure diagrams of TC and CIP[65,66]
图8 TC可能的降解途径[72]
Fig. 8 Possible degradation pathways of TC[72]
图9 Z型Ag3PO4@MoS2体系从抗生素中光催化回收氢[6]
Fig. 9 Z-scheme Ag3PO4@MoS2 system for photocatalytic recovery of hydrogen from antibiotics[6]
表1 不同催化剂降解抗生素及其降解效果
Table 1 Degradation of antibiotics with different catalysts and their degradation effects
[1]
Chen Z L, Guo J S, Jiang Y X, Shao Y. Environ. Sci. Eur., 2021, 33(1): 1.

doi: 10.1186/s12302-020-00446-y    
[2]
Akerdi A G, Bahrami S H. J. Environ. Chem. Eng., 2019, 7(5): 103283.
[3]
de Souza D I, Dottein E M, Giacobbo A, Siqueira Rodrigues M A, de Pinho M N, Bernardes A M. J. Environ. Chem. Eng., 2018, 6(5): 6147.
[4]
Jaria G, Lourenço M A O, Silva C P, Ferreira P, Otero M, Calisto V, Esteves V I. J. Mol. Liq., 2020, 299: 112098.

doi: 10.1016/j.molliq.2019.112098     URL    
[5]
Wang H, Wu Y, Feng M B, Tu W G, Xiao T, Xiong T, Ang H X, Yuan X Z, Chew J W. Water Res., 2018, 144: 215.

doi: S0043-1354(18)30568-2     pmid: 30031366
[6]
Zhang S Q, Hu G H, Chen M X, Li B, Dai W L, Deng F, Yang L X, Zou J P, Luo S L. Appl. Catal. B Environ., 2023, 330: 122584.

doi: 10.1016/j.apcatb.2023.122584     URL    
[7]
Chen Z H, Li S S, Peng Y N, Hu C. Catal. Sci. Technol., 2020, 10(16): 5470.

doi: 10.1039/D0CY00898B     URL    
[8]
Shao X L, Wang K, Peng L J, Li K, Wen H Z, Le X Y, Wu X H, Wang G H. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 652: 129846.

doi: 10.1016/j.colsurfa.2022.129846     URL    
[9]
Wei Z D, Liu J Y, Fang W J, Xu M Q, Qin Z, Jiang Z, Shangguan W F. Chem. Eng. J., 2019, 358: 944.

doi: 10.1016/j.cej.2018.10.096     URL    
[10]
Wu Y Y, Li Y Q, Hu H J, Zeng G S, Li C H. ACS EST Eng., 2021, 1(3): 603.

doi: 10.1021/acsestengg.1c00003     URL    
[11]
Arun J, Shriniti V, Shyam S, Priyadharsini P, Gopinath K P, Sivaramakrishnan R, Thuy Lan Chi N, Pugazhendhi A. Fuel, 2023, 340: 127471.

doi: 10.1016/j.fuel.2023.127471     URL    
[12]
Li L W, Feng H G, Dong Z B, Yang T T, Xue S L. J. Colloid Interface Sci., 2023, 649: 10.
[13]
Wei Z D, Liu J Y, Shangguan W F. Chin. J. Catal., 2020, 41(10): 1440.
[14]
Velempini T, Prabakaran E, Pillay K. Mater. Today Chem., 2021, 19: 100380.
[15]
Kovalakova P, Cizmas L, McDonald T J, Marsalek B, Feng M B, Sharma V K. Chemosphere, 2020, 251: 126351.

doi: 10.1016/j.chemosphere.2020.126351     URL    
[16]
Kühne M, Hamscher G, Körner U, Schedl D, Wenzel S. Food Chem., 2001, 75(4): 423.

doi: 10.1016/S0308-8146(01)00230-8     URL    
[17]
Romeiro A, Freitas D, Emília Azenha M, Canle M, Burrows H D. Photochem. Photobiol. Sci., 2017, 16(6): 935.

doi: 10.1039/c6pp00447d     URL    
[18]
Chen X Y, Yao J J, Xia B, Gan J Y, Gao N Y, Zhang Z. J. Hazard. Mater., 2020, 383: 121220.
[19]
Djurišić A B, He Y L, Ng A M C. APL Mater., 2020, 8(3): 030903.

doi: 10.1063/1.5140497     URL    
[20]
Soni V, Khosla A, Singh P, Nguyen V H, Van Le Q, Selvasembian R, Hussain C M, Thakur S, Raizada P. J. Environ. Manag., 2022, 308: 114617.
[21]
Haque F, Daeneke T, Kalantar-zadeh K, Ou J Z. Nano Micro Lett., 2018, 10(2): 1.
[22]
Do T C M V, Nguyen D Q, Nguyen K T, Le P H. Materials, 2019, 12(15): 2434.

doi: 10.3390/ma12152434     URL    
[23]
Du J G, Ma S L, Yan Y H, Li K, Zhao F Y, Zhou J G. Colloids Surf. A Physicochem. Eng. Aspects, 2019, 572: 237.

doi: 10.1016/j.colsurfa.2019.04.018     URL    
[24]
Li W L, Li B R, Meng M J, Cui Y H, Wu Y L, Zhang Y L, Dong H J, Feng Y H. Appl. Surf. Sci., 2019, 487: 1008.

doi: 10.1016/j.apsusc.2019.05.162     URL    
[25]
Lan N T, Anh V H, An H D, Hung N P, Nhiem D N, Van Thang B, Lieu P K, Khieu D Q. J. Nanomater., 2020, 2020: 1.
[26]
Serrà A, Zhang Y, Sepúlveda B, Gómez E, Nogués J, Michler J, Philippe L. Appl. Catal. B Environ., 2019, 248: 129.

doi: 10.1016/j.apcatb.2019.02.017     URL    
[27]
Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi S M. Ind. Eng. Chem. Res., 2020, 59(36): 15894.

doi: 10.1021/acs.iecr.0c03192     URL    
[28]
Mardikar S P, Kulkarni S, Adhyapak P V. J. Environ. Chem. Eng., 2020, 8(2): 102788.
[29]
Semeraro P, Bettini S, Sawalha S, Pal S, Licciulli A, Marzo F, Lovergine N, Valli L, Giancane G. Nanomaterials, 2020, 10(8): 1458.

doi: 10.3390/nano10081458     URL    
[30]
Molina Higgins M C, Hall H, Rojas J V. J. Photochem. Photobiol. A Chem., 2021, 409: 113138.
[31]
Rong R C, Wang L M. J. Alloys Compd., 2021, 850: 156742.
[32]
Shurbaji S, Huong P T, Altahtamouni T M. Catalysts, 2021, 11(4): 437.

doi: 10.3390/catal11040437     URL    
[33]
Yang Y R, Qiu M, Chen F Y, Qi Q, Yan G M, Liu L, Liu Y F. Appl. Surf. Sci., 2021, 541: 148415.

doi: 10.1016/j.apsusc.2020.148415     URL    
[34]
Qiao D S, Qu X, Chen X Y, Sun B J, Ding W X, Chen C T, Peng X H, Sun D P. Appl. Surf. Sci., 2023, 619: 156630.

doi: 10.1016/j.apsusc.2023.156630     URL    
[35]
Chen P, Zhang Q X, Zheng X S, Tan C W, Zhuo M H, Chen T S, Wang F L, Liu H J, Liu Y, Feng Y P, Lv W Y, Liu G G. J. Hazard. Mater., 2020, 384: 121443.
[36]
Fang W J, Shangguan W F. Int. J. Hydrog. Energy, 2019, 44(2): 895.
[37]
Sivakumar R, Lee N Y. Chemosphere, 2022, 297: 134227.

doi: 10.1016/j.chemosphere.2022.134227     URL    
[38]
Huang C, Chen L L, Li H P, Mu Y G, Yang Z G. RSC Adv., 2019, 9(48): 27768.

doi: 10.1039/c9ra04445k    
[39]
Ganose A M, Cuff M, Butler K T, Walsh A, Scanlon D O. Chem. Mater., 2016, 28(7): 1980.

pmid: 27274616
[40]
Kandi D, Behera A, Sahoo S, Parida K. Sep. Purif. Technol., 2020, 253: 117523.

doi: 10.1016/j.seppur.2020.117523     URL    
[41]
Jia Z H, Li T, Zheng Z F, Zhang J D, Liu J X, Li R, Wang Y W, Zhang X C, Wang Y F, Fan C M. Chem. Eng. J., 2020, 380: 122422.

doi: 10.1016/j.cej.2019.122422     URL    
[42]
Fang W L, Wang L, Meng X C, Li C H. J. Alloys Compd., 2023, 947: 169606.
[43]
Du C Y, Zhang Z, Yu G L, Wu H P, Chen H, Zhou L, Zhang Y, Su Y H, Tan S Y, Yang L, Song J H, Wang S T. Chemosphere, 2021, 272: 129501.

doi: 10.1016/j.chemosphere.2020.129501     URL    
[44]
Zhang H, Sun R, Li D C, Dou J M. Chin. J. Struc. Chem. 2022, 41, 2211071.
[45]
Zhang J W, Xiang S, Wu P, Wang D Q, Lu S Y, Wang S L, Gong F J, Wei X Q, Ye X S, Ding P. Sci. Total Environ., 2022, 811: 152351.

doi: 10.1016/j.scitotenv.2021.152351     URL    
[46]
Gao Y X, Lu J, Xia J, Yu G. ACS Appl. Mater. Interfaces, 2020, 12(11): 12706.

doi: 10.1021/acsami.9b21122     URL    
[47]
Liu N N, Shang Q G, Gao K, Cheng Q R, Pan Z Q. New J. Chem., 2020, 44(16): 6384.

doi: 10.1039/D0NJ00510J     URL    
[48]
Chen D D, Yi X H, Zhao C, Fu H F, Wang P, Wang C C. Chemosphere, 2020, 245: 125659.

doi: 10.1016/j.chemosphere.2019.125659     URL    
[49]
Abazari R, Morsali A, Dubal D P. Inorg. Chem. Front., 2020, 7(12): 2287.

doi: 10.1039/D0QI00050G     URL    
[50]
Askari N, Beheshti M, Mowla D, Farhadian M. Chemosphere, 2020, 251: 126453.

doi: 10.1016/j.chemosphere.2020.126453     URL    
[51]
Du C Y, Zhang Z, Yu G L, Wu H P, Chen H, Zhou L, Zhang Y, Su Y H, Tan S Y, Yang L, Song J H, Wang S T. Chemosphere, 2021, 272: 129501.

doi: 10.1016/j.chemosphere.2020.129501     URL    
[52]
Hariganesh S, Vadivel S, Maruthamani D, Kumaravel M, Paul B, Balasubramanian N, Vijayaraghavan T. Appl. Organomet. Chem., 2020, 34(2): e5365.

doi: 10.1002/aoc.v34.2     URL    
[53]
Li S J, Cui J N, Wu X, Zhang X, Hu Q, Hou X H. J. Hazard. Mater., 2019, 373: 408.
[54]
Jiang R R, Lu G H, Zhou R R, Yang H H, Yan Z H, Wu D H, Liu J C, Nkoom M. J. Alloys Compd., 2020, 820: 153166.
[55]
Alaghmandfard A, Ghandi K. Nanomaterials, 2022, 12(2): 294.

doi: 10.3390/nano12020294     URL    
[56]
Liu T, Li Y, Sun H, Zhang M, Xia Z, Yang Q. Chin. J. Struc. Chem. 2022, 41:2206055.
[57]
Yang C, Yang J, Liu S S, Zhao M X, Duan X, Wu H L, Liu L, Liu W Z, Li J L, Ren S, Liu Q C. J. Environ. Manag., 2023, 335: 117608.
[58]
Wang H J, Zhang J, Wang P, Yin L L, Tian Y, Li J J. Chinese Chem. Lett., 2020, 31:2789.

doi: 10.1016/j.cclet.2020.07.043    
[59]
Luo S H, Zhang C, Almatrafi E, Yan M, Liu Y, Fu Y K, Wang Z W, Li L, Zhou C Y, Xu P, Liu Z F, Zeng G M. Appl. Mater. Today, 2021, 24: 101118.
[60]
Viet N M, Trung D Q, Giang B L, Le Minh Tri N, Thao P, Pham T H, Kamand F Z, Al Tahtamouni T M. J. Water Process. Eng., 2019, 32: 100954.
[61]
Pattanayak D S, Pal D, Mishra J, Thakur C. Environ. Sci. Pollut. Res., 2023, 30(10): 25546.

doi: 10.1007/s11356-022-20170-9    
[62]
Zhang R, Jiang J C, Zeng K L. Inorg. Chem. Commun., 2022, 140: 109418.

doi: 10.1016/j.inoche.2022.109418     URL    
[63]
Xu L Y, Dai R, Yang J, Yan J F, Zhang Y Y, Dai Y, Liao C G, Zhang Z Y, Zhao W, Lei X Y, Zhang F C, Zhang H. J. Alloys Compd., 2023, 936: 168163.
[64]
Zhang H, Tang G G, Wan X, Xu J, Tang H. Appl. Surf. Sci., 2020, 530: 147234.

doi: 10.1016/j.apsusc.2020.147234     URL    
[65]
Abdurahman M H, Abdullah A Z, Shoparwe N F. Chem. Eng. J., 2021, 413: 127412.

doi: 10.1016/j.cej.2020.127412     URL    
[66]
Chopra I, Roberts M. Microbiol. Mol. Biol. Rev., 2001, 65(2): 232.

doi: 10.1128/MMBR.65.2.232-260.2001     URL    
[67]
Tettey M, Sereboe L, Edwin F, Frimpong-Boateng K. Ghana Med J, 2005, 39, 128.
[68]
Daghrir R, Drogui P. Environ. Chem. Lett., 2013, 11(3): 209.

doi: 10.1007/s10311-013-0404-8     URL    
[69]
Wang P H, Yap P S, Lim T T. Appl. Catal. A Gen., 2011, 399(1/2): 252.

doi: 10.1016/j.apcata.2011.04.008     URL    
[70]
Chen F, Yang Q, Sun J, Yao F B, Wang S N, Wang Y L, Wang X L, Li X M, Niu C G, Wang D B, Zeng G M. ACS Appl. Mater. Interfaces, 2016, 8(48): 32887.

doi: 10.1021/acsami.6b12278     URL    
[71]
Wang W, Fang J J, Shao S F, Lai M, Lu C H. Appl. Catal. B Environ., 2017, 217: 57.

doi: 10.1016/j.apcatb.2017.05.037     URL    
[72]
Jiang H L, Wang Q, Chen P H, Zheng H T, Shi J W, Shu H Y, Liu Y B. J. Clean. Prod., 2022, 339: 130771.
[73]
Malakootian M, Nasiri A, Amiri Gharaghani M. Chem. Eng. Commun., 2020, 207(1): 56.

doi: 10.1080/00986445.2019.1573168     URL    
[74]
Campoli-Richards D M, Monk J P, Price A, Benfield P, Todd P A, Ward A. Drugs, 1988, 35(4): 373.

pmid: 3292209
[75]
Fief C A, Hoang K G, Phipps S D, Wallace J L, Deweese J E. ACS Omega, 2019, 4(2): 4049.

doi: 10.1021/acsomega.8b03428     URL    
[76]
Yu X J, Zhang J, Zhang J, Niu J F, Zhao J, Wei Y C, Yao B H. Chem. Eng. J., 2019, 374: 316.

doi: 10.1016/j.cej.2019.05.177     URL    
[77]
Pattnaik S P, Behera A, Martha S, Acharya R, Parida K. J. Mater. Sci., 2019, 54(7): 5726.
[1] 于慧萍, 秦亚伟, 董金勇. 可降解聚烯烃的设计与合成[J]. 化学进展, 2023, 35(9): 1294-1303.
[2] 杨世迎, 杨震. 零价铝表面物相转变及影响污染物去除的作用机制[J]. 化学进展, 2023, 35(7): 1030-1039.
[3] 周丽, Abdelkrim Yasmine, 姜志国, 于中振, 曲晋. 微塑料:生物效应、分析和降解方法综述[J]. 化学进展, 2022, 34(9): 1935-1946.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[6] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[7] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[8] 雷雨洋, 李方方, 欧阳洁, 李敏杰, 郭良宏. 浙江地区抗生素残留的环境分布特征及来源分析[J]. 化学进展, 2021, 33(8): 1414-1425.
[9] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[10] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.
[11] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[12] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[13] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[14] 封啸, 任颜卫, 江焕峰. 金属-有机框架材料在光催化二氧化碳还原中的应用[J]. 化学进展, 2020, 32(11): 1697-1709.
[15] 杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪. 硝基芳烃与醇还原胺化:催化剂和催化机制[J]. 化学进展, 2020, 32(1): 72-83.
阅读次数
全文


摘要

光催化去除水体中的抗生素