English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 106-119 DOI: 10.7536/PC230519 前一篇   后一篇

• 综述 •

基于苯硼酸衍生物的糖类传感器

施坦, 寇东辉, 薛亚南, 张淑芬, 马威*()   

  1. 大连理工大学 精细化工国家重点实验室 智能材料化工前沿科学中心 大连 116024
  • 收稿日期:2023-05-19 修回日期:2023-08-26 出版日期:2024-01-24 发布日期:2023-12-10
  • 作者简介:

    马威 大连理工大学化工学院教授,博士生导师。主要从事可视化智能传感材料研究。荣获2016年国家技术发明二等奖1项,2015和2018年中国石油和化学工业联合会技术发明一等奖各1项。在Advanced Functional Materials、ACS Applied Materials & Interfaces、Chemical Engineering Journal、Dyes and Pigments、精细化工等国内外重要学术期刊上发表学术论文70余篇,授权国家发明专利20余项。

  • 基金资助:
    国家自然科学基金项目(22278064); 国家自然科学基金项目(21878040); 国家自然科学基金项目(22238002); 中央高校基本科研业务费专项资金(DUT22LAB610); 大连理工大学科研创新团队(DUT2022TB10)

Saccharide Sensors Based on Phenylboronic Acid Derivatives

Tan Shi, Donghui Kou, Yanan Xue, Shufen Zhang, Wei Ma()   

  1. State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
  • Received:2023-05-19 Revised:2023-08-26 Online:2024-01-24 Published:2023-12-10
  • Contact: * e-mail: weima@dlut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22278064); National Natural Science Foundation of China(21878040); National Natural Science Foundation of China(22238002); Fundamental Research Funds for the Central Universities(DUT22LAB610); Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)

苯硼酸作为全人工合成的新型糖类识别分子在糖类检测领域受到了广泛的关注,其具有稳定性好、识别能力强等特点,并且易于与多种检测方法耦合。本文首先介绍了苯硼酸与糖类的结合机理,然后总结了对苯硼酸进行结构修饰的策略,主要论述了在硼酸基团的邻、间、对位引入吸电子基团或供电子基团的方法,以及在降低pKa和提高糖类检测选择性方面取得的进展;同时也总结了近年来基于这些新型苯硼酸衍生物的糖类传感器,包括电化学传感器、荧光传感器、凝胶传感器和光子晶体传感器,主要分析物为结构类似的葡萄糖、果糖等单糖,并分别论述了检测原理。最后对基于苯硼酸衍生物的糖类传感器进行比较,分析各自的优缺点,并分别从诊疗一体化和复杂化学环境糖类识别检测两个方向对未来苯硼酸衍生物的糖类检测应用进行展望。

Phenylboronic acid, a kind of synthetic molecule that can covalently bind with saccharide, has attracted wide attention in the field of saccharide detection. It has the characteristics of good stability, strong recognition ability and easy coupling with various detection systems. In this paper, the mechanism of phenylboronic acid binding to saccharide and its specific applications in detection was first introduced. What’s more, the strategies for structural modification, in the manner of introducing electron-withdrawing group or electron-donating group into ortho, meta and para position of the boric acid group on the benzene ring, were mainly discussed, and the progress made in reducing pKa and improving the selectivity according to these strategies were summarized. At the same time, the saccharide sensors based on these new phenylboronic acid derivatives in recent years were also summarized, including electrochemical sensors, fluorescence sensors, gels/microgels and photonic crystals, and their detection principles were discussed. The main analytes are monosaccharides with similar structures, such as glucose and fructose. Finally, the research of these sensors based on phenylboronic acid derivatives was compared, and their advantages and disadvantages were analyzed. Meanwhile, the applications of saccharide sensors based on phenylboronic acid derivatives in the future are prospected from two aspects including the integration of diagnosis and treatment and the identification of saccharide in complex chemical environment.

Contents

1 Introduction

2 Phenylboronic acid and its derivatives

2.1 Reaction principle of phenylboronic acid and saccharides

2.2 Structural modification strategy of phenylboronic acid

2.3 Detection principle of saccharides in phenylboronic acid

3 Saccharide sensors based on phenylboronic acid derivatives

3.1 Electrochemical sensors for saccharide detections

3.2 Fluorescent sensors for saccharide detections

3.3 Photonic crystals for saccharide detections

3.4 Gels for saccharide detections

4 Conclusion and outlook

()
图 1 不同形式的苯硼酸在溶液环境中的平衡以及与糖类化合物响应平衡
Fig. 1 Equilibrium of different forms of phenylboronic acid in solution environment and their response equilibria with saccharides
图2 (a)常见吸电子基改性苯硼酸衍生物的分子结构;(b)邻位给电子基改性苯硼酸衍生物的分子结构;(c)2-丙烯酰胺基苯硼酸的分子结构;(d)常见二元苯硼酸衍生物的分子结构
Fig. 2 (a) Molecular structure of common electron- withdrawing modified phenylboronic acid derivatives;(b) molecular structure of ortho-electron-donating modified boronic acid derivatives; (c) molecular structure of 2-acrylamidophenylboronic acid; (d) molecular structure of common dibasic phenylboronic acid derivatives
图3 硼酸基团邻位给电子基官能化的苯硼酸在溶液环境中的电离平衡[39]
Fig. 3 Ionization equilibria of electron-donating group functionalized phenylboronic acid in solution[39]
图4 2-丙烯酰胺基PBA在溶液环境中的电离平衡
Fig. 4 Ionization equilibrium of 2-acrylamidophenylboronic acid in solution
图5 双阳离子二硼酸分子(DBA2+)的分子结构[48]
Fig. 5 Molecular structure of diboronic acid (DBA2+)[48]
图6 氧化还原改性后的4-二茂铁-苯硼酸(4-Fc-PBA)/天然β-环糊精(β-CDs)复合物(a)检测果糖的机理;(b)基于氧化峰和(c) 基于还原峰的校准线(果糖浓度高达5 mM)[62]
Fig. 6 (a) Mechanism of fructose detection by 4-Ferrocene- phenylboronicacid (4-Fc-PBA)/natural β-cyclodextrins (β-CDs) calibration lines based on (b) oxidation peaks and on (c) reduction peaks (fructose concentration up to 5 mM)[62]
图7 涂有PBA-MPSi的Ta2O5电极在不同浓度的葡萄糖-人血清溶液中的表面电位(ΔVout)偏移图(根据Langmuir吸附等温线拟合近似曲线)[64]
Fig. 7 Plot of shift in the surface potential (ΔVout) at different concentrations of glucose dissolved in human serum (Approximate curve was fitted by Langmuir adsorption isotherm) [64]
图8 在pH值为8的PBS溶液中,恢复型竞争反应类荧光复合探针(5 mg·mL?1)对不同浓度葡萄糖响应的荧光光谱(插图: 复合探针的(F?F0)/F0对葡萄糖浓度的半对数图)[73]
Fig. 8 Fluorescence response of composite probe (5?mg·mL?1) upon addition of various concentrations of glucose in a pH 8 PBS solution. Inset: semilogarithmic plot of (F?F0)/F0 of composite probe vs the concentration of glucose [73]
图9 (a)苯并噁唑基复合探针分子1和2的结构和合成示意图[82];(b) 探针分子1F、2N、3Ph的分子结构[83]
Fig. 9 (a) Structures and synthetic procedure of fluorescence probe 1 and 2[82]; (b) structures of fluorescence probe 1F, 2N and 3Ph[83]
图 10 苯硼酸改性复合荧光探针(a) 1F/γ-CyD和(b) 2N/γ-CyD在不同糖浓度(D-葡萄糖、D-果糖、D-半乳糖和L-葡萄糖)的二甲基亚砜(DMSO)/水中时在494 nm处的荧光强度(1F/γ-CyD和2N/γ-CyD的激发波长分别为328和378 nm)[83]
Fig. 10 Fluorescence intensities at 494 nm of 1F/γ-CyD (a) and 2N/γ-CyD (b) at various concentrations of saccharides (D-glucose, D-fructose, D-galactose, and L-glucose) in DMSO/water (2/98 in v/v) (The excitation wavelengths were set as 328 nm for 1F/γ-CyD and 374 nm for 2N/γ-CyD)[83]
图11 SPBA微凝胶的(a)SEM图和(b)葡萄糖响应行为(5.0 mM PBS,25.0 ℃)[88]
Fig. 11 (a) SEM images and (b) glucose response behavior of microgels (5.0 mM PBS, 25.0 ℃)[88]
图 12 24 ℃水凝胶纤维在葡萄糖传感(pH=7.4,1.0~12.0 mM, 24 ℃)中的可重复使用性[87]
Fig. 12 Reusability of the hydrogel fibers in sensing glucose(pH=7.4, 1.0~12.0 mM, 24 ℃)[87]
图13 竞争反应型水凝胶对葡萄糖(0.1 M)、果糖(0.1 M)和H2O2(3%)的响应[93]
Fig. 13 Stimuli-responsiveness of hydrogels against glucose (0.1 M), fructose (0.1 M), and H2O2 (3%)[93]
图14 微凝胶在不同浓度葡萄糖的pH = 7.4 PBS溶液中的<Dh>[Glu]/<Dh>0.0 mM与温度的关系[94]
Fig. 14 Glucose-dependent <Dh>[Glu]/<Dh>0.0 mM of microgels as a function of the solution temperature, all measurements were made in PBS of pH = 7.4[94]
图15 基于蛋白石结构的P(MMA-NIPAM-AAPBA)三维光子晶体传感器在(a) 0 mM和(b) 20 mM葡萄糖浓度下的数码照片[101]
Fig. 15 Digital photos of P(MMA-NIPAM-AAPBA) three-dimensional photonic crystal sensor based on opal structure at (a) 0 mM and (b) 20 mM glucose concentration[101]
图16 加入(a) 0.26 mol (b) 0.52 mol AAPBA制备的反蛋白石传感器随葡萄糖浓度增大而红移的反射光谱和照片[103]
Fig. 16 Reflectance spectrum and photos of inverse opal sensor prepared by adding (a) 0.26 mol (b) 0.52 mol of AAPBA with the increase of glucose concentration[103]
图17 在100 mM葡萄糖溶液中布拉格堆叠的反射峰随时间的变化(插图显示Bragg堆叠的比色读数以及没有3-APBA的对照实验,比例尺: 2.0 mm)[106]
Fig. 17 Peak shift of the Bragg stacks as a function of time in 100 mM glucose solution. Insets show colorimetric readouts of the Bragg stacks, and the control experiment without 3-APBA. Scale bar: 2.0 mm [106]
[1]
Bunn H F, Higgins P J. Science, 1981, 213(4504): 222.

doi: 10.1126/science.12192669     pmid: 12192669
[2]
Taskinen M, Packard C J, Borén J. Nutrients, 2019, 11(9): 1987.

doi: 10.3390/nu11091987     URL    
[3]
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H Y, Hélder A, Santos, Pan G. Adv. Sci., 2022, 9(3): 2102466.

doi: 10.1002/advs.v9.3     URL    
[4]
Güemes M, Rahman S A, Hussain K. Arch. Dis. Child., 2016, 101(6): 569.

doi: 10.1136/archdischild-2015-308336     pmid: 26369574
[5]
Kawasaki T, Akanuma H, Yamanouchi T. Diabetes Care, 2002, 25(2): 353.

doi: 10.2337/diacare.25.2.353     URL    
[6]
Lim S, Taskinen M R, Borén J. Obes. Rev., 2019, 20(4): 599.

doi: 10.1111/obr.v20.4     URL    
[7]
Muriel P, López-Sánchez P, Ramos-Tovar E. Int. J. Mol. Sci., 2021, 22(13): 6969.

doi: 10.3390/ijms22136969     URL    
[8]
Soto J, Hughes T, Li Y S. ACS Omega, 2019, 4(19): 18312.

doi: 10.1021/acsomega.9b02384     URL    
[9]
Bian Z, Qi Y, Xue L, Hu A, Yang H, Chu F. Optik, 2022, 255: 168655.

doi: 10.1016/j.ijleo.2022.168655     URL    
[10]
Jeon W Y, Kim H H, Choi Y B. Membranes, 2021, 11(6): 384.

doi: 10.3390/membranes11060384     URL    
[11]
Cohen R, Cohen Y, Mukha D, Yehezkeli O. Electrochim. Acta, 2021, 367: 137477.

doi: 10.1016/j.electacta.2020.137477     URL    
[12]
Trivedi U B, Lakshminarayana D, Kothari I L, Patel P B, Panchal C J. Sens. Actuator B-Chem., 2009, 136(1): 45.

doi: 10.1016/j.snb.2008.10.020     URL    
[13]
Voitechovič E, Vektarienė A, Vektaris G, Jančienė R, Razumienė J, Gurevičienė V. Electroanalysis, 2020, 32(5): 1005.

doi: 10.1002/elan.v32.5     URL    
[14]
Jafarzadeh S, Bargahi N, Shamloo H B, Soleymani J. RSC Adv., 2022, 12(14): 8492.

doi: 10.1039/d2ra00035k     pmid: 35424830
[15]
Wei M, Li X, Serpe M J. ACS Appl. Polym. Mater., 2019, 1(3): 519.

doi: 10.1021/acsapm.8b00207     URL    
[16]
Zhang H, Lu Q, Zuo F, Yuan R, Chen S. Sens. Actuator B-Chem., 2017, 241: 887.

doi: 10.1016/j.snb.2016.11.013     URL    
[17]
Kuivila H G, Keough A H, Soboczenski E J. J. Org. Chem., 1954, 19(5): 780.

doi: 10.1021/jo01370a013     URL    
[18]
Wen X, Liu Y, Liu Q, Chen Z, Hu X, Xu C, Chen H, Xing M, Qu H, Zhang M. Opt. Express, 2022, 30(26): 47541.

doi: 10.1364/OE.474662     pmid: 36558681
[19]
Li M T, Zhang H, Liu M, Dong B. J. Mater. Chem. C, 2017, 5(18): 4400.
[20]
Zhu J, Liu W, Zhang B, Zhou D, Fan X, Wang X, Liu X. Nanomaterials, 2022, 12(17): 3065.

doi: 10.3390/nano12173065     URL    
[21]
Wang Z, Li S. University Chemistry, 2020, 35(07): 95.
(王卓, 李朔. 大学化学, 2020, 35(7): 95.).
[22]
Wang C, Lin B, Zhu H, Bi F, Xiao S, Wang L, Gai G, Zhao L. Molecules, 2019, 24(6): 1089.

doi: 10.3390/molecules24061089     URL    
[23]
Kazunori K, Hiroaki M, Masayuki B, Teruo O, Yasuhisa S. J. Am. Chem. Soc., 1998, 120(48): 12694.

doi: 10.1021/ja982975d     URL    
[24]
Duin V M, Peters J A, Kieboom A P G, Bekkum V H. Tetrahedron, 1984, 40(15): 2901.

doi: 10.1016/S0040-4020(01)91300-6     URL    
[25]
Wu X, Li Z, Chen X, John S F, Tony D, Jiang Y. Chem. Soc. Rev., 2013, 42(20): 8032.

doi: 10.1039/c3cs60148j     URL    
[26]
Martínez-Aguirre M A, Medrano F, Ramírez-Rave S, Yatsimirsky A K. J. Phys. Org. Chem., 2022, 35(12): e4425.

doi: 10.1002/poc.v35.12     URL    
[27]
Springsteen G, Wang B H. Tetrahedron, 2002, 58(26): 5291.

doi: 10.1016/S0040-4020(02)00489-1     URL    
[28]
Yan J, Springsteen G, Deeter S, Wang B H. Tetrahedron, 2004, 60(49): 11205.

doi: 10.1016/j.tet.2004.08.051     URL    
[29]
Valenzuela S A, Howard J R, Park H M, Darbha S, Anslyn E V. J. Org. Chem., 2022, 87(22): 15071.

doi: 10.1021/acs.joc.2c01514     pmid: 36318490
[30]
Hoare T, Pelton R. Biomacromolecules, 2008, 9(2): 733.

doi: 10.1021/bm701203r     pmid: 18198833
[31]
Li S, Davis E N, Anderson J, Lin Q, Wang Q. Biomacromolecules, 2009, 10(1): 113.

doi: 10.1021/bm8009768     URL    
[32]
Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromolecules, 2003, 4(5): 1410.

pmid: 12959613
[33]
Zhang C, Losego M D, Braun P V. Chem. Mater., 2013, 25(15): 3239.

doi: 10.1021/cm401738p     URL    
[34]
Zhang Y, Wu M, Dai W, Li Y, Wang X, Tan D, Yang Z, Liu S, Xue L, Lei Y. Nanoscale, 2019, 11(13): 6471.

doi: 10.1039/C9NR00668K     URL    
[35]
GhavamiNejad A, Li J, Lu B, Zhou L, Lam L, Giacca A, Wu X Y. Adv. Mater., 2019, 31(30): 1901051.

doi: 10.1002/adma.v31.30     URL    
[36]
Fu Y, Sun Y, Chen M, Xing W, Xu Y, Qian X, Zhu W. Biomacromolecules, 2022, 23(3): 1251.

doi: 10.1021/acs.biomac.1c01496     URL    
[37]
Wang Z, Wang J, Li H, Gu Z. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(47):29512.

doi: 10.1073/pnas.2011099117     URL    
[38]
Kim K T, Cornelissen J J, Nolte R J, van Hest J C. J. Am. Chem. Soc., 2009, 131(39): 13908.

doi: 10.1021/ja905652w     URL    
[39]
Wulff G, Lauer M, Böhnke H. Angew. Chem.-Int. Edit., 1984, 23(9): 741.

doi: 10.1002/anie.v23:9     URL    
[40]
Yang X, Lee M C, Sartain F, Pan X, Lowe C R. Chem.-Eur. J., 2006, 12(33): 8491.

doi: 10.1002/chem.v12:33     URL    
[41]
Dowlut M, Hall D G. J. Am. Chem. Soc., 2006, 128(13): 4226.

doi: 10.1021/ja057798c     URL    
[42]
Brooks W L, Deng C, Sumerlin B S. ACS Omega, 2018, 3(12): 17863.

doi: 10.1021/acsomega.8b02999     URL    
[43]
Lorand J P, Edwards J O. J. Org. Chem., 1959, 24(6): 769.

doi: 10.1021/jo01088a011     URL    
[44]
Zhang C, Cano G, Braun P V. Adv. Mater., 2014, 26(32): 5678

doi: 10.1002/adma.201401710    
[45]
Hansen J S, Christensen J B, Solling T I, Jakobsen P, Hoeg-Jensen T. Tetrahedron, 2011, 67(6): 1334.

doi: 10.1016/j.tet.2010.11.062     URL    
[46]
Carlo F, Christoph A. S, Marcus W, Oliver S, Stefan H, Beate K, Jens D, Christina G, Ernst-Walter K, Rainer H. Angew. Chem.-Int. Edit., 2012, 51:10472.

doi: 10.1002/anie.v51.42     URL    
[47]
Maseda M, Miyazaki Y, Takamuku T. J. Mol. Liq., 2021, 341: 117343.

doi: 10.1016/j.molliq.2021.117343     URL    
[48]
Wang B, Chou K, Queenan B N, Pennathur S, Bazan G C. Angew. Chem.-Int. Edit., 2019, 58(31): 10612.

doi: 10.1002/anie.v58.31     URL    
[49]
Tang Z, Guan Y, Zhang Y. Polym. Chem., 2014, 5(5): 1782.

doi: 10.1039/C3PY01190A     URL    
[50]
Sęk J P, Kaczmarczyk S, Guńka K, Kowalczyk A, Borys K M, Kasprzak A, Nowicka A M. Dalton Trans., 2021, 50(3): 880.

doi: 10.1039/D0DT03776A     URL    
[51]
Granot E, Tel-Vered R, Lioubashevski O, Willner I. Adv. Funct. Mater., 2008, 18(3): 478.

doi: 10.1002/adfm.v18:3     URL    
[52]
Chen L Y, Hwang E, Zhang J. Sensors, 2018, 18(5): 1440.

doi: 10.3390/s18051440     URL    
[53]
Cai B, Luo Y, Guo Q, Zhang X, Wu Z. Carbohydr. Res., 2017, 445: 32.

doi: 10.1016/j.carres.2017.04.006     URL    
[54]
Wu J, Bremner D H, Li H, Sun X, Zhu L. Mater. Sci. Eng. C-Mater. Biol. Appl., 2016, 69: 1026.

doi: 10.1016/j.msec.2016.07.078     URL    
[55]
Robinson S, Dhanlaksmi N. Photonic Sens., 2017, 7(1): 11.

doi: 10.1007/s13320-016-0347-3     URL    
[56]
Anzai J. Mater Sci Eng C Mater Biol Appl., 2016, 67: 737.

doi: 10.1016/j.msec.2016.05.079     URL    
[57]
Murakami H, Akiyoshi H, Wakamatsu T, Sagara T, Nakashima N. Chem. Lett., 2000, 29(8): 940.

doi: 10.1246/cl.2000.940     URL    
[58]
Komkova M A, Valeev R G, Kolyagin Y G, Andreev E A, Beltukov A N, Nikitina V N, Yatsimirsky A K, Karyakin A A, Eliseev A A. Mater. Today Chem., 2022, 26: 101070.
[59]
Takahashi S, Kurosawa S, Anzai J I. Electroanalysis, 2008, 20(7): 816.

doi: 10.1002/elan.v20:7     URL    
[60]
Takahashi S, Anzai J. Bunseki Kagaku, 2007, 56(11): 951.

doi: 10.2116/bunsekikagaku.56.951     URL    
[61]
Li J, Sun Y, Wei Y, Zheng J. Chin. Chem. Lett., 2013, 24(4): 291.

doi: 10.1016/j.cclet.2013.01.051     URL    
[62]
Casulli M A, Taurino I, Hashimoto T, Carrara S, Hayashita T. Small, 2020, 16(44): 2003359.

doi: 10.1002/smll.v16.44     URL    
[63]
Tseng A C, Sakata T. ACS Appl. Mater. Interfaces, 2022, 14(21): 24729.

doi: 10.1021/acsami.2c01779     URL    
[64]
Kajisa T, Hosoyamada S. Langmuir, 2021, 37(46): 13559.

doi: 10.1021/acs.langmuir.1c01740     pmid: 34753289
[65]
Bao W, Hai W, Bao L, Yang F, Liu Y, Goda T, Liu J. Mater. Chem. Front., 2021, 5(20): 7675.

doi: 10.1039/D1QM00926E     URL    
[66]
Wu S, Guo H, Wang L, Xin Y, Cheng Y S, Fan W S. Sens. Actuators B-Chem., 2017, 245: 117.
[67]
Wang K, Zhang R, Yue X, Zhou Z, Bai L, Tong Y, Wang B, Gu D, Wang S, Qiao Y, Liu Q, Xue X, Yin Y, Xi R, Meng M. ACS Sens., 2021, 6(4): 1543.

doi: 10.1021/acssensors.0c02217     URL    
[68]
Deng M, Song G, Zhong K, Wang Z, Xia X, Tian Y. Sens. Actuators B-Chem., 2022, 352: 131067.

doi: 10.1016/j.snb.2021.131067     URL    
[69]
Yang W, He H, Drueckhammer D G. Angew. Chem. Int. Ed., 2001, 40(9): 1714.

pmid: 11353489
[70]
Springsteen G, Wang B. Chem. Commun., 2001(17): 1608.
[71]
Qiao J, Liu Q, Wu H, Cai H, Qi L. Microchim. Acta, 2019, 186(6): 366.

doi: 10.1007/s00604-019-3475-9    
[72]
Xie X, Zhang Z, Jiang Q, Zheng S, Yun Y, Wu H, Li C, Tian F, Su M, Li F. ACS Nano, 2022, 16(12): 20094.

doi: 10.1021/acsnano.2c08708     URL    
[73]
Li J, Li X, Weng R, Qiang T, Wang X. Sens. Actuator B-Chem., 2020, 304: 127349.

doi: 10.1016/j.snb.2019.127349     URL    
[74]
Ouyang F, Zhang X, Wang T, Shuai Q. Mater. Today Commun., 2022, 33: 104681.
[75]
Cooper C R, James T D. Chem. Lett., 1998, 27(9): 883.

doi: 10.1246/cl.1998.883     URL    
[76]
Cao H, Diaz D I, Dicesare N, Lakowicz J R, Heagy M D. Org. Lett., 2002, 4(9): 1503.

doi: 10.1021/ol025723x     URL    
[77]
Kashiwazaki G, Watanabe R, Nishikawa A, Kawamura K, Kitayama T, Hibi T. RSC Adv., 2022, 12(24): 15083.

doi: 10.1039/d2ra01569b     pmid: 35693230
[78]
Mehta P K, Neupane L N, Lee K H. Sens. Actuators B-Chem., 2023, 375: 132913.

doi: 10.1016/j.snb.2022.132913     URL    
[79]
Rahali S, Belhocine Y, Allal H, Bouhadiba A, Assaba I M, Seydou M. Struct. Chem., 2022, 33: 195.

doi: 10.1007/s11224-021-01835-6    
[80]
Sugita K, Tsuchido Y, Kasahara C, Casulli M A, Fujiwara S, Hashimoto T, Hayashita T. Front. Chem., 2019, 7: 806.

doi: 10.3389/fchem.2019.00806     pmid: 31828059
[81]
Sugita K, Suzuki Y, Tsuchido Y, Fujiwara S, Hashimoto T, Hayashita T. RSC Adv., 2022, 12(31): 20259.

doi: 10.1039/d2ra03567g     pmid: 35919610
[82]
Suzuki Y, Hashimoto T, Hayashita T. RSC Adv., 2022, 12(19): 12145.

doi: 10.1039/d2ra00749e     pmid: 35481078
[83]
Suzuki Y, Mizuta Y, Mikagi A, Misawa-Suzuki T, Tsuchido Y, Sugaya T, Hashimoto T, Ema K, Hayashita T. ACS Sens., 2023, 8(1): 218.

doi: 10.1021/acssensors.2c02087     URL    
[84]
Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y. Biomaterials, 1994, 15(2): 121.

pmid: 8011858
[85]
Brooks W L, Sumerlin B S. Chem. Rev., 2016, 116(3): 1375.

doi: 10.1021/acs.chemrev.5b00300     URL    
[86]
Zhang Y, Yang J, Zhang J, Li S W, Zheng L S, Zhang Y L, Meng H P, Zhang X G, Wu Z M. J. Mat. Chem. B, 2020, 8(21): 4627.

doi: 10.1039/D0TB00561D     URL    
[87]
Yetisen A K, Jiang N, Fallahi A, Montelongo Y, Ruiz-Esparza G U, Tamayol A, Zhang Y S, Mahmood I, Yang S A, Kim K S, Butt H, Khademhosseini A, Yun S H. Adv. Mater., 2017, 29(15): 1606380.

doi: 10.1002/adma.v29.15     URL    
[88]
Wu Q, Du X, Chang A, Jiang X, Yan X, Cao X, Farooqic Z H, Wu W. Polym. Chem., 2016, 7(42): 6500.

doi: 10.1039/C6PY01521B     URL    
[89]
Wang J, Yang Z, Zhou C, Qiao C, Yuan F, Liu Q, Luo X X. J. Macromol. Sci. Part B-Phys., 2022, 61(4/5): 557.

doi: 10.1080/00222348.2022.2071040     URL    
[90]
Liu N, Xiang X, Sun M, Li P, Qin H, Liu H, Zhou Y, Wang L, Wu L, Zhu J. Biosens. Bioelectron. X, 2022, 10: 100110.
[91]
Shan M, Gong C, Li B, Wu J. Polym. Chem., 2017, 8(19): 2997.

doi: 10.1039/C7PY00519A     URL    
[92]
Xiang Y, Xian S, Ollier R C, Yu S, Su B, Pramudya I, Webber M J. J. Control. Release, 2022, 348: 601.
[93]
Shen K, Yeh Y Y, Chiu T H, Wang R, Yeh Y C. ACS Biomater. Sci. Eng., 2022, 8(10): 4249.

doi: 10.1021/acsbiomaterials.2c00571     URL    
[94]
Zhou M, Lu F, Jiang X, Wu Q, Changa A, Wu W. Polym. Chem., 2015, 6(48): 8306.

doi: 10.1039/C5PY01441G     URL    
[95]
Wang Q, Fu M, Guan Y, James T D, Zhang Y. Sci. China Chem., 2020, 63(3): 377.

doi: 10.1007/s11426-019-9680-6    
[96]
Chen C, Dong Z G, Shen J H, Chen H W, Zhu Y H, Zhu Z G. ACS Omega, 2018, 3(3): 3211.

doi: 10.1021/acsomega.7b02046     URL    
[97]
Morandi V, Marabelli F, Amendola V, Meneghetti M, Comoretto D. Adv. Funct. Mater., 2007, 17(15): 2779.

doi: 10.1002/adfm.v17:15     URL    
[98]
Elshaarani T, Yu H J, Wang L, Abdin Z U, Ullah R S, Haroon M, Khan R U, Fahad S, Khan A, Nazir A, Usman M, Naveed K U. J. Mat. Chem. B, 2018, 6(23): 3831.

doi: 10.1039/C7TB03332J     URL    
[99]
Alexeev V L, Das S, Finegold D N, Asher S A. Clin. Chem., 2004, 50(12): 2353.

doi: 10.1373/clinchem.2004.039701     URL    
[100]
Ruan J, Chen C, Shen J, Zhao X, Qian S, Zhu Z. Polymers, 2017, 9(4): 125.

doi: 10.3390/polym9040125     URL    
[101]
Hong X, Peng Y, Bai J, Ning B, Liu Y, Zhou Z, Gao Z. Small, 2014, 10(7): 1308.

doi: 10.1002/smll.v10.7     URL    
[102]
Zeng Y, Wang J, Wang Z, Chen G, Yu J, Li S, Li Q, Li H, Wen D, Gu Z. Nano Today, 2020, 35: 100984.

doi: 10.1016/j.nantod.2020.100984     URL    
[103]
Feng X Q, Xu J, Liu Y X, Zhao W P. J. Mat. Chem. B, 2019, 7(22): 3576.

doi: 10.1039/C9TB00226J     URL    
[104]
Zhang P P, Zhu J C, Zhao B J, Xu S H, Wang L, Luo X L. Chin. J. Anal. Chem., 2022, 50(4): 100054.

doi: 10.1016/j.cjac.2022.100054     URL    
[105]
Chen Q, Wei Z, Wang S, Zhou J, Wu Z. Microchimica. Acta, 2021, 188(6): 210.

doi: 10.1007/s00604-021-04849-3    
[106]
Jiang N, Butt H, Montelongo Y, Liu F, Afewerki S, Ying G L, Dai Q, Yun S H, Yetisen A K. Adv. Funct. Mater., 2018, 28(24): 1702715.

doi: 10.1002/adfm.v28.24     URL    
[107]
Cai J, Luo W, Pan J, Li G, Pu Y, Si L, Shi G, Shao Y, Ma H, Guan J. Adv. Sci., 2022, 9(9): 2105239.

doi: 10.1002/advs.v9.9     URL    
[108]
Munir S, Hussain S, Park S Y. ACS Appl. Mater. Interfaces, 2019, 11(41): 37434.

doi: 10.1021/acsami.9b10316     URL    
[109]
Miyagi K, Takano T, Teramoto Y. J. Appl. Polym. Sci., 2022, 139(41): e52984.

doi: 10.1002/app.v139.41     URL    
[1] 金诗萍, 孙莹, 张雪勤. 聚合物水凝胶材料的透氧性能[J]. 化学进展, 2023, 35(9): 1304-1312.
[2] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[3] 徐志远, 高国伟, 李延生, 廖擎纬, 胡敬芳, 张学记. 居家诊断心肌梗死:基于适体的cTnI传感技术[J]. 化学进展, 2023, 35(8): 1266-1274.
[4] 任启蒙, 王青磊, 李因文, 宋学省, 上官雪慧, 李法强. 锂电池高电压电解液[J]. 化学进展, 2023, 35(7): 1077-1096.
[5] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[6] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[7] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[8] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[9] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[10] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[11] 李立清, 钟秀敏, 章礼旭, 刘昆明, 王全兵, 马杰. 双网络水凝胶制备及其力学改性[J]. 化学进展, 2023, 35(11): 1674-1685.
[12] 汤炜, 邴研, 刘旭东, 姜鸿基. 基于二苯甲酮框架的多功能有机发光材料[J]. 化学进展, 2023, 35(10): 1461-1485.
[13] 张荃, 段思雨, 霍中元, 孟新旺, 王骏, 许国贺. 基于壳聚糖的新型敷料及其应用[J]. 化学进展, 2023, 35(10): 1450-1460.
[14] 赵楚斌, 汪海林. 生物大分子液-液相分离研究方法[J]. 化学进展, 2023, 35(10): 1486-1491.
[15] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
阅读次数
全文


摘要

基于苯硼酸衍生物的糖类传感器