English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 67-80 DOI: 10.7536/PC230516 前一篇   后一篇

• 综述 •

四苯乙烯基共价有机框架的设计、合成及应用

王子情1, 杜金峰2, 陆福泰1,2,*(), 邓启良1,2,*   

  1. 1 天津科技大学理学院 天津 300457
    2 天津科技大学化工与材料学院 天津 300457
  • 收稿日期:2023-05-17 修回日期:2023-07-28 出版日期:2024-01-24 发布日期:2023-08-06
  • 作者简介:

    陆福泰 天津科技大学化工与材料学院硕士生导师,2012年于天津大学获得博士学位,主要从事金属有机框架材料和共价有机框架材料研究,主持国家自然科学基金1项,发表SCI论文10余篇。

    邓启良 天津科技大学化工与材料学院教授,博士生导师,天津市色谱学会副秘书长,首批天津市中青年科技创新领军人才,Current Chinese Science编委,国家自然科学基金评审专家,教育部博士、硕士论文评审专家,《分析化学》、《色谱》、Biosensors and BioelectronicsChemical communicationSensors and Actuators B Chemical等国内外著名期刊审稿专家。发表SCI论文90篇,他引1200余次,申请国家发明专利17件,其中11件获得授权。先后主持国家自然科学基金三项、科技部“科技支撑计划”项目三项,编写中、英文专著各一部。

  • 基金资助:
    国家自然科学基金(2190080961)

Tetraphenylethene-Based Covalent Organic Frameworks (COFs): Design, Synthesis and Applications

Ziqing Wang1, Jinfeng Du2, Futai Lu1,2(), Qiliang Deng1,2   

  1. 1 College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
    2 College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received:2023-05-17 Revised:2023-07-28 Online:2024-01-24 Published:2023-08-06
  • Contact: * e-mail: lufutai@tust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(2190080961)

共价有机框架(COFs)作为一类新型的结晶多孔材料,是由构筑单元通过共价键自组装而成。COFs具有孔道规整、热稳定性高、结晶度高、结构可调等特点,因此在气体存储与分离、催化、质子传导、储能材料、光电、传感以及生物医学等领域具有广泛的应用。近年来,四苯乙烯基共价有机框架(TPE-based COFs)因其聚集诱导发光效应明显、合成简单、易功能化而备受关注。本文简述了四苯乙烯基COFs的构筑单元、拓扑结构、合成策略,以及其在不同领域的应用进展。最后指出了四苯乙烯基COFs的发展前景以及可能面临的挑战。

Covalent organic frameworks (COFs) as a new class of crystalline porous materials are assembled by appropriate building blocks through covalent bonds. COFs have been utilized in many fields such as storage and separation of gases, catalysis, proton conduction, energy storage, optoelectronics, sensing and biomedicine due to their regular channels, high thermal stability, high crystallinity and adjustable structure. In recent years, tetraphenylethylene-based covalent organic frameworks (TPE-based COFs) have attracted much attention due to their obvious aggregation induced luminescence effect, simple synthesis and easy functionalization. In this paper, the construction units, topological structures, synthesis strategies and application progress of TPE-based COFs in different fields are briefly reviewed. Finally, the development prospects and possible challenges of TPE-based COFs are pointed out.

Contents

1 Introduction

2 Construction unit and topological structure of TPE-based COFs

3 Synthesis strategy of TPE-based COFs

4 Applications

4.1 Catalysis

4.2 Adsorption

4.2.1 Ions adsorption

4.2.2 Gas adsorption

4.2.3 Biomolecule adsorption

4.3 Sensors

4.3.1 Sensors for detecting explosives

4.3.2 Ion sensors

4.3.3 Acid-base sensors

4.3.4 Enantioselective sensors

4.3.5 Biosensors

4.4 Optoelectronic

4.4.1 Light emitting diode

4.4.2 Electrochemical energy storage

4.4.3 Others

4.5 Bio-related applications

5 Prospects and challenges

()
图1 用于合成四苯乙烯基COFs的单体
Fig. 1 Monomers for use in the synthesis of TPE-based COFs
图2 成功用于合成四苯乙烯基COFs的构筑单元
Fig. 2 Building units successfully used for the synthesis of TPE-based COFs
图3 用于四苯乙烯基COFs的键连方式
Fig. 3 Linkages used in TPE-based COFs
图4 四苯乙烯基COFs的拓扑结构
Fig. 4 Topological structures of TPE-based COFs
图5 TP-COF的合成路线及可见光下光催化析氢过程[55]
Fig. 5 The synthetic route of TP-COF and the process of photocatalytic H2 evolution under visible light[55]
图6 (a)273 K时NAT-COF C3H8, C2H6, C2H4和CH4的气体吸附[65];(b)SCU-COF-2粉末填充柱穿透实验示意图[69]
Fig. 6 (a) Gas adsorption of C3H8, C2H6, C2H4 and CH4 for NAT-COF at 273 K[65]; (b) The schematic diagram of breakthrough experiments in the columns packed with SCU-COF-2 powder[69]
图7 丙酮中加入TNP (0~25 ppm)后Py-TPE-COF的荧光猝灭实验[72]
Fig. 7 Fluorescence quenching experiments of the Py-TPE-COF upon addition of TNP (0-25 ppm) in acetone[72]
图8 (a) COF-DHTA的Al3+传感过程[75];(b) TTPE-COF在293 K下对水、苯和甲苯的吸附等温线,以及在365 nm紫外灯下的荧光照片[67]
Fig. 8 (a) Al3+ sensing mechanism of COF-DHTA[75]; (b) Water, benzene, and toluene adsorption isotherms of the TTPE-COF at 293 K, and the fluorescence photographs under a 365 nm UV lamp[67]
图9 TFA熏蒸不同时间后试纸的荧光发射光谱以及TFA蒸气和TEA蒸气(λex = 365 nm)作用下试纸的光学照片[78]
Fig. 9 Fluorescence emission spectra of test paper fumigated by TFA at different times and optical photographs of test paper upon exposure to TFA vapour and TEA vapour (λex= 365 nm)[78]
图10 7@PVDF暴露于α-蒎烯后的下降百分比[80]
Fig. 10 Decrease percentage upon exposure to α-pinene for 7@PVDF[80]
图11 用L-苯丙氨酸滴定NUS-30纳米片的Stern-Volmer图和NUS-30纳米片的AFM图像[82]
Fig. 11 Stern-Volmer plots of NUS-30 nanosheets being titrated with L-phenylalanine and AFM images of NUS-30 nanosheets[82]
图12 (a)PT-COF的电容储存过程[40];(b)钙钛矿电池的能级图和示意图[39]
Fig. 12 (a) The capacitor storage process of PT-COF[40]; (b) The energy-level diagram and schematic illustration of the PVSCs[39]
图13 COFTFBE?PDAN@FeIIITA-PEI的制备和用于目标肿瘤细胞的发光成像和铁死亡的示意图[86]
Fig. 13 Schematic illustration of the preparation of COFTFBE?PDAN@FeIIITA-PEI for luminescence imaging and ferroptosis in target tumor cells[86]
[1]
Luo J D, Xie Z L, Lam J W Y, Cheng L, Tang B Z, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B. Chem. Commun., 2001, (18): 1740.
[2]
Wen J, Huang Z, Hu S, Li S, Li W Y, Wang X L. J. Hazard. Mater., 2016, 318: 363.

doi: 10.1016/j.jhazmat.2016.07.004     URL    
[3]
Selvaraj M, Rajalakshmi K, Ahn D H, Yoon S J, Nam Y S, Lee Y, Xu Y G, Song J W, Lee K B. Anal. Chimica Acta, 2021, 1148: 238178.

doi: 10.1016/j.aca.2020.12.053     URL    
[4]
Zhan C, Zhang G X, Zhang D Q. ACS Appl. Mater. Interfaces, 2018, 10(15): 12141.

doi: 10.1021/acsami.7b14446     URL    
[5]
Zhang Y Y, Li Y X, Yang N, Yu X, He C H, Niu N, Zhang C Y, Zhou H P, Yu C, Jiang S C. Sens. Actuat. B Chem., 2018, 257: 1143.

doi: 10.1016/j.snb.2017.10.018     URL    
[6]
Wang Z Y, Gu Y, Liu J Y, Cheng X, Sun J Z, Qin A J, Tang B Z. J. Mater. Chem. B, 2018, 6(8): 1279.
[7]
Wang Y L, Liu H L, Chen Z, Pu S Z. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 245: 118928.

doi: 10.1016/j.saa.2020.118928     URL    
[8]
Palma-Cando A, Woitassek D, Brunklaus G, Scherf U. Mater. Chem. Front., 2017, 1(6): 1118.

doi: 10.1039/C6QM00281A     URL    
[9]
Lv W X, Yang Q T, Li Q, Li H Y, Li F. Anal. Chem., 2020, 92(17): 11747.

doi: 10.1021/acs.analchem.0c01796     URL    
[10]
Lin G W, Peng H R, Chen L, Nie H, Luo W W, Li Y H, Chen S M, Hu R R, Qin A J, Zhao Z J, Tang B Z. ACS Appl. Mater. Interfaces, 2016, 8(26): 16799.

doi: 10.1021/acsami.6b04924     URL    
[11]
Liao C W, Hsu Y C, Chu C C, Chang C H, Krucaite G, Volyniuk D, Grazulevicius J V, Grigalevicius S. Org. Electron., 2019, 67: 279.

doi: 10.1016/j.orgel.2018.12.025     URL    
[12]
Huang C G, Zhou S N, Chen C, Wang X Y, Ding R, Xu Y S, Cheng Z W, Ye Z Q, Sun L J, Wang Z J, Hu D Y, Jia X D, Zhang G Y, Gao S. Small, 2022, 18(47): 2205062.

doi: 10.1002/smll.v18.47     URL    
[13]
Su S, Ma Y F, Tian L M, Wang Z. Sci. Sin. Chimica, 2017, 47(9): 1075.
(苏姗, 马宇帆, 田立枚, 王卓. 中国科学: 化学, 2017, 47(9): 1075.).
[14]
Zhang C H, Wu Z T, Xie C X. ShanDong Chem. Ind., 2022, 51(19): 93.
( 张程昊, 吴中涛, 解从霞. 山东化工, 2022, 51(19): 93.).
[15]
Luo Y Q, Feng L, Zheng R L. AnHui Chem Ind, 2022, 48(4): 10.
(罗一权, 冯亮, 郑仁林. 安徽化工, 2022, 48(4): 10.).
[16]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166.

doi: 10.1126/science.1120411     URL    
[17]
Côté A P, El-Kaderi H M, Furukawa H, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007, 129(43): 12914.

doi: 10.1021/ja0751781     URL    
[18]
Hunt J R, Doonan C J, LeVangie J D, Côté A P, Yaghi O M. J. Am. Chem. Soc., 2008, 130(36): 11872.

doi: 10.1021/ja805064f     URL    
[19]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369     URL    
[20]
Rodríguez-San-Miguel D, Zamora F. Chem. Soc. Rev., 2019, 48(16): 4375.

doi: 10.1039/c9cs00258h     pmid: 31310256
[21]
Liu R Y, Tan T K, Gong Y F, Chen Y Z, Li Z E, Xie S L, He T, Lu Z, Yang H, Jiang D L. Chem. Soc. Rev., 2021, 50(1): 120.

doi: 10.1039/D0CS00620C     URL    
[22]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550     URL    
[23]
Guo L L, Yang L, Li M Y, Kuang L J, Song Y H, Wang L. Coord. Chem. Rev., 2021, 440: 213957.

doi: 10.1016/j.ccr.2021.213957     URL    
[24]
Meng Z, Mirica K A. Chem. Soc. Rev., 2021, 50(24): 13498.

doi: 10.1039/D1CS00600B     URL    
[25]
Patial S, Soni V, Kumar A, Raizada P, Ahamad T, Pham X M, Van Le Q, Nguyen V H, Thakur S, Singh P. Environ. Res., 2023, 218: 114982.

doi: 10.1016/j.envres.2022.114982     URL    
[26]
Shi Y Q, Yang J L, Gao F, Zhang Q C. ACS Nano, 2023, 17(3): 1879.

doi: 10.1021/acsnano.2c11346     URL    
[27]
Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem. Rev., 2006, 106(9): 3652.

doi: 10.1021/cr020452p     pmid: 16967917
[28]
Jiang S Y, Gan S X, Zhang X, Li H, Qi Q Y, Cui F Z, Lu J, Zhao X. J. Am. Chem. Soc., 2019, 141(38): 14981.

doi: 10.1021/jacs.9b08017     URL    
[29]
Jin E Q, Geng K Y, Lee K H, Jiang W M, Li J, Jiang Q H, Irle S, Jiang D L. Angew. Chem., 2020, 132(29): 12260.

doi: 10.1002/ange.v132.29     URL    
[30]
Chen Z A, Wang K, Tang Y M, Li L, Hu X N, Han M X, Guo Z Y, Zhan H B, Chen B L. Angewandte Chemie Int. Ed., 2023, 62(1): e202213268.

doi: 10.1002/anie.v62.1     URL    
[31]
Nguyen H L, Hanikel N, Lyle S J, Zhu C H, Proserpio D M, Yaghi O M. J. Am. Chem. Soc., 2020, 142(5): 2218.

doi: 10.1021/jacs.9b13094     pmid: 31944678
[32]
Xiong Y F, Liao Q B, Huang Z P, Huang X, Ke C, Zhu H T, Dong C Y, Wang H S, Xi K, Zhan P, Xu F, Lu Y Q. Adv. Mater., 2020, 32(9): 1907242.

doi: 10.1002/adma.v32.9     URL    
[33]
Lan Y S, Han X H, Tong M M, Huang H L, Yang Q Y, Liu D H, Zhao X, Zhong C L. Nat. Commun., 2018, 9: 5274.

doi: 10.1038/s41467-018-07720-x    
[34]
Kang X, Wu X W, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci., 2020, 11(6): 1494.

doi: 10.1039/C9SC04882K     URL    
[35]
Nguyen H L, Gropp C, Ma Y H, Zhu C H, Yaghi O M. J. Am. Chem. Soc., 2020, 142(48): 20335.

doi: 10.1021/jacs.0c11064     URL    
[36]
EL-Mahdy A F M, Mohamed M G, Mansoure T H, Yu H H, Chen T, Kuo S W. Chem. Commun., 2019, 55(99): 14890.

doi: 10.1039/C9CC08107K     URL    
[37]
Gong L, Gao Y, Wang Y H, Chen B T, Yu B Q, Liu W B, Han B, Lin C X, Bian Y Z, Qi D D, Jiang J Z. Catal. Sci. Technol., 2022, 12(21): 6566.

doi: 10.1039/D2CY01326F     URL    
[38]
Xing X L, Liao Q B, Ahmed S A, Wang D N, Ren S B, Qin X, Ding X L, Xi K, Ji L N, Wang K, Xia X H. Nano Lett., 2022, 22(3): 1358.

doi: 10.1021/acs.nanolett.1c04633     URL    
[39]
Mohamed M G, Lee C C, EL-Mahdy A F M, Lüder J, Yu M H, Li Z, Zhu Z L, Chueh C C, Kuo S W. J. Mater. Chem. A, 2020, 8(22): 11448.
[40]
Patra B C, Bhattacharya S. Chem. Mater., 2021, 33(21): 8512.

doi: 10.1021/acs.chemmater.1c02973     URL    
[41]
Dalapati S, Jin E Q, Addicoat M, Heine T, Jiang D L. J. Am. Chem. Soc., 2016, 138(18): 5797.

doi: 10.1021/jacs.6b02700     pmid: 27108740
[42]
Liu Y Z, Diercks C S, Ma Y H, Lyu H, Zhu C H, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(1): 677.

doi: 10.1021/jacs.8b12177     URL    
[43]
Peng L, Sun J, Huang J, Song C Y, Wang Q K, Wang L Q, Yan H G, Ji M B, Wei D P, Liu Y Q, Wei D C. Chem. Mater., 2022, 34(7): 2886.

doi: 10.1021/acs.chemmater.1c02382     URL    
[44]
Chen X, Addicoat M, Jin E Q, Xu H, Hayashi T, Xu F, Huang N, Irle S, Jiang D L. Sci. Rep., 2015, 5: 14650.

doi: 10.1038/srep14650    
[45]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016, 138(14): 4710.

doi: 10.1021/jacs.6b01244     URL    
[46]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.

doi: 10.1021/acs.chemmater.8b03685     URL    
[47]
Zhang B, Mao H Y, Matheu R, Reimer J A, Alshmimri S A, Alshihri S, Yaghi O M. J. Am. Chem. Soc., 2019, 141(29): 11420.

doi: 10.1021/jacs.9b05626     pmid: 31276387
[48]
Han X H, Chu J Q, Wang W Z, Qi Q Y, Zhao X. Chin. Chemical Lett., 2022, 33(5): 2464.

doi: 10.1016/j.cclet.2021.11.066     URL    
[49]
Maschita J, Banerjee T, Lotsch B V. Chem. Mater., 2022, 34(5): 2249.

doi: 10.1021/acs.chemmater.1c04051     URL    
[50]
Li W, Wang R, Jiang H X, Chen Y, Tang A N, Kong D M. Talanta, 2022, 236: 122829.

doi: 10.1016/j.talanta.2021.122829     URL    
[51]
Li X H, Tang H J, Gao L, Chen Z Y, Li H J, Wang Y H, Yang K X, Lu S Y, Wang K M, Zhou Q, Wang Z L. Polymer, 2022, 241: 124474.

doi: 10.1016/j.polymer.2021.124474     URL    
[52]
Rogge S M J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez A I, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez E V, Llabrés i Xamena F X, Van Speybroeck V, Gascon J. Chem. Soc. Rev., 2017, 46(11): 3134.

doi: 10.1039/c7cs00033b     pmid: 28338128
[53]
Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch B V. ACS Energy Lett., 2018, 3(2): 400.

doi: 10.1021/acsenergylett.7b01123     pmid: 29457140
[54]
Yan Y, He T, Zhao B, Qi K, Liu H F, Xia B Y. J. Mater. Chem. A, 2018, 6(33): 15905.
[55]
Xu Z L, Cui X, Li Y H, Li Y W, Si Z J, Duan Q. Appl. Surf. Sci., 2023, 613: 155966.

doi: 10.1016/j.apsusc.2022.155966     URL    
[56]
Sick T, Hufnagel A G, Kampmann J, Kondofersky I, Calik M, Rotter J M, Evans A, Döblinger M, Herbert S, Peters K, Böhm D, Knochel P, Medina D D, Fattakhova-Rohlfing D, Bein T. J. Am. Chem. Soc., 2018, 140(6): 2085.

doi: 10.1021/jacs.7b06081     URL    
[57]
Rotter J M, Weinberger S, Kampmann J, Sick T, Shalom M, Bein T, Medina D D. Chem. Mater., 2019, 31(24): 10008.

doi: 10.1021/acs.chemmater.9b02286     URL    
[58]
Yu H P, Zhang J Z, Yan X R, Wu C G, Zhu X R, Li B W, Li T F, Guo Q Q, Gao J F, Hu M J, Yang J. J. Mater. Chem. A, 2022, 10(20): 11010.
[59]
Lv H W, Sa R J, Li P Y, Yuan D Q, Wang X C, Wang R H. Sci. China Chem., 2020, 63(9): 1289.

doi: 10.1007/s11426-020-9801-3    
[60]
He C, Si D H, Huang Y B, Cao R. Angewandte Chemie Int. Ed., 2022, 61(40): e202207478.

doi: 10.1002/anie.v61.40     URL    
[61]
Liu N, Shi L F, Han X H, Qi Q Y, Wu Z Q, Zhao X. Chin. Chemical Lett., 2020, 31(2): 386.

doi: 10.1016/j.cclet.2019.06.050     URL    
[62]
Gao Q, Li X, Ning G H, Xu H S, Liu C B, Tian B B, Tang W, Loh K P. Chem. Mater., 2018, 30: 1762.

doi: 10.1021/acs.chemmater.8b00117     URL    
[63]
Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F, Zhao X. Chem. Commun., 2016, 52(78): 11704.

doi: 10.1039/C6CC06637B     URL    
[64]
Zhang Q. Masteral Dissertation of Nanjing University, 2019.
(张奇. 南京大学硕士论文, 2019.)
[65]
Li J Y, He Y, Zou Y C, Yan Y, Song Z G, Shi X D. Chin. Chem. Lett., 2022, 33: 3017.

doi: 10.1016/j.cclet.2021.12.011     URL    
[66]
Chen L J, Gong C T, Wang X K, Dai F N, Huang M C, Wu X W, Lu C Z, Peng Y W. J. Am. Chem. Soc., 2021, 143(27): 10243.

doi: 10.1021/jacs.1c03739     URL    
[67]
Cui D, Ding X S, Xie W, Xu G J, Su Z M, Xu Y H, Xie Y Z. CrystEngComm, 2021, 23(33): 5569.

doi: 10.1039/D1CE00870F     URL    
[68]
Wang P, Xu Q, Li Z P, Jiang W M, Jiang Q H, Jiang D L. Adv. Mater., 2018, 30(29): 1801991.

doi: 10.1002/adma.v30.29     URL    
[69]
He L W, Chen L, Dong X L, Zhang S T, Zhang M X, Dai X, Liu X J, Lin P, Li K F, Chen C L, Pan T T, Ma F Y, Chen J C, Yuan M J, Zhang Y G, Chen L, Zhou R H, Han Y, Chai Z F, Wang S A. Chem, 2021, 7(3): 699.

doi: 10.1016/j.chempr.2020.11.024     URL    
[70]
Lu Z X, Liu Y X, Liu X L, Lu S H, Li Y, Yang S X, Qin Y, Zheng L Y, Zhang H B. J. Mater. Chem. B, 2019, 7(9): 1469.
[71]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2012, 221/222: 147.
[72]
Gao Q, Li X, Ning G H, Leng K, Tian B B, Liu C B, Tang W, Xu H S, Loh K P. Chem. Commun., 2018, 54(19): 2349.

doi: 10.1039/C7CC09866A     URL    
[73]
Faheem M, Aziz S, Jing X F, Ma T T, Du J Y, Sun F X, Tian Y Y, Zhu G S. J. Mater. Chem. A, 2019, 7(47): 27148.
[74]
Ding H M. Doctoral Dissertation of Wuhan University, 2018.
(丁慧敏. 武汉大学博士论文, 2018.).
[75]
Xiu J, Zhang N, Li C, Salah A, Wang G. Microporous Mesoporous Mater., 2021, 316: 110979.

doi: 10.1016/j.micromeso.2021.110979     URL    
[76]
Zheng M X, Yao C, Xie W, Xu Y H, Hu H. Bull. Chem. Soc. Jpn., 2021, 94(8): 2133.

doi: 10.1246/bcsj.20210121     URL    
[77]
Cui F Z, Xie J J, Jiang S Y, Gan S X, Ma D L, Liang R R, Jiang G F, Zhao X. Chem. Commun., 2019, 55(31): 4550.

doi: 10.1039/C9CC01548E     URL    
[78]
Gong W, Dong Y J, Liu C Y, Shi H L, Yin M X, Li W J, Song Q B, Zhang C. Dyes Pigments, 2022, 204: 110464.

doi: 10.1016/j.dyepig.2022.110464     URL    
[79]
Wu X C, Zhang X D, Li Y J, Wang B W, Li Y, Chen L G. J. Mater. Sci., 2021, 56(3): 2717.
[80]
Wu X W, Han X, Xu Q S, Liu Y H, Yuan C, Yang S, Liu Y, Jiang J W, Cui Y. J. Am. Chem. Soc., 2019, 141(17): 7081.

doi: 10.1021/jacs.9b02153     URL    
[81]
Song L L, Gao W Q, Wang S W, Bi H Q, Deng S Y, Cui L, Zhang C Y. Sens. Actuat. B Chem., 2022, 373: 132751.

doi: 10.1016/j.snb.2022.132751     URL    
[82]
Dong J Q, Li X, Peh S B, Yuan Y D, Wang Y X, Ji D X, Peng S J, Liu G L, Ying S M, Yuan D Q, Jiang J W, Ramakrishna S, Zhao D. Chem. Mater., 2019, 31(1): 146.

doi: 10.1021/acs.chemmater.8b03685     URL    
[83]
Li G R, Tian W C, Zhong C, Yang Y X, Lin Z A. ACS Appl. Mater. Interfaces, 2022, 14(18): 21750.

doi: 10.1021/acsami.2c04391     URL    
[84]
Ding H M, Li J, Xie G H, Lin G Q, Chen R F, Peng Z K, Yang C L, Wang B S, Sun J L, Wang C. Nat. Commun., 2018, 9: 5234.

doi: 10.1038/s41467-018-07670-4    
[85]
Sun Q, Aguila B, Lan P C, Ma S Q. Adv. Mater., 2019, 31(19): 1900008.

doi: 10.1002/adma.v31.19     URL    
[86]
You J, Yuan F, Cheng S S, Kong Q Q, Jiang Y L, Luo X Z, Xian Y Z, Zhang C L. Chem. Mater., 2022, 34(15): 7078.

doi: 10.1021/acs.chemmater.2c01726     URL    
[87]
Guo L, Jia S, Diercks C S, Yang X J, Alshmimri S A, Yaghi O M. Angew. Chem. Int. Ed., 2020, 59(5): 2023.

doi: 10.1002/anie.v59.5     URL    
[88]
Pang Z F, Zhou T Y, Liang R R, Qi Q Y, Zhao X. Chem. Sci., 2017, 8(5): 3866.

doi: 10.1039/C6SC05673C     URL    
[89]
Peng Y W, Li L X, Zhu C Z, Chen B, Zhao M T, Zhang Z C, Lai Z C, Zhang X, Tan C L, Han Y, Zhu Y H, Zhang H. J. Am. Chem. Soc., 2020, 142(30): 13162.

doi: 10.1021/jacs.0c05596     URL    
[90]
Liang R R, Cui F Z, Ru-Han A, Qi Q Y, Zhao X. CCS Chem., 2020, 2(2): 139.

doi: 10.31635/ccschem.020.201900094     URL    
[1] 张炜煜, 李杰, 李红, 姬佳奇, 宫琛亮, 丁三元. 共价有机框架材料在质子交换膜中的应用[J]. 化学进展, 2024, 36(1): 48-66.
[2] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[3] 马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波. 共价有机框架材料在碘捕捉方面的研究进展[J]. 化学进展, 2023, 35(7): 1097-1105.
[4] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[5] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[6] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[9] 吴天宇, 黄昊哲, 汪骏豪, 罗浩洋, 徐军, 叶海木. 高分子单晶:从结晶策略到功能化应用[J]. 化学进展, 2023, 35(12): 1727-1751.
[10] 张荃, 段思雨, 霍中元, 孟新旺, 王骏, 许国贺. 基于壳聚糖的新型敷料及其应用[J]. 化学进展, 2023, 35(10): 1450-1460.
[11] 汪忠华, 吴亦初, 吴中山, 朱冉冉, 杨阳, 吴范宏. 先进人工智能技术在新药研发中的应用[J]. 化学进展, 2023, 35(10): 1505-1518.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[15] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.