English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1415-1437 DOI: 10.7536/PC230510   后一篇

• 综述 •

毫纳结构复合材料的制备、协同效应及其深度水处理应用

付宛宜1, 李雨航1, 杨志超1, 张延扬1,2, 张孝林1,2, 刘子尧1, 潘丙才1,2,*()   

  1. 1 南京大学环境学院 污染控制与资源化研究国家重点实验室 南京 210023
    2 南京大学 环境纳米技术研究中心 南京 210023
  • 收稿日期:2023-05-11 修回日期:2023-06-10 出版日期:2023-10-24 发布日期:2023-08-07
  • 作者简介:

    潘丙才 南京大学教授、环境学院副院长、南京大学环境纳米技术研究中心主任、国家有机毒物污染控制与资源化工程技术研究中心副主任。国家杰出青年基金获得者,入选教育部长江学者奖励计划、国家高层次人才特殊支持计划等。发表学术论文300多篇,论文总引用>20000次、H指数78,2014年至今连续入选Elsevier中国高被引学者榜单;授权国内外发明专利逾160件。研究方向为深度水处理技术及其原理,包括水处理纳米技术及原理、高级氧化还原技术及原理、污染物形态分析技术等。

  • 基金资助:
    国家重点研发计划(2022YFA1205601); 国家重点研发计划(2022YFA1205602); 国家自然科学基金项目(21925602); 国家自然科学基金项目(22236003)

Millimeter-Sized Nanocomposites for Advanced Water Treatment: Preparation, Synergistic Effects and Applications

Wanyi Fu1, Yuhang Li1, Zhichao Yang1, Yanyang Zhang1,2, Xiaolin Zhang1,2, Ziyao Liu1, Bingcai Pan1,2,*()   

  1. 1 State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University,Nanjing 210023, China
    2 Research Center for Environmental Nanotechnology (RCENT), Nanjing University,Nanjing 210023, China
  • Received:2023-05-11 Revised:2023-06-10 Online:2023-10-24 Published:2023-08-07
  • Contact: *e-mail: bcpan@nju.edu.cn
  • Supported by:
    National Key R&D Program(2022YFA1205601); National Key R&D Program(2022YFA1205602); National Natural Science Foundation of China(21925602); National Natural Science Foundation of China(22236003)

纳米材料具有较高的比表面积和较强的表面效应,在水处理领域展现出优异的净污性能,具有广阔的应用前景。将纳米颗粒负载于毫米级载体中制备毫纳结构复合材料,可有机结合纳米颗粒的高反应活性与载体的良好操作性,是突破纳米材料易聚团失活、难分离、稳定性差、潜在环境风险等工程应用瓶颈并实现规模化应用的重要技术手段。本文综述了毫纳结构复合材料的制备方法、结构特性及其在吸附和催化氧化除污性能及机制方面的研究进展,并从纳米颗粒的限域生长、限域吸附特性和限域催化氧化特性等方面阐述限域效应及载体-纳米颗粒的协同净污效应。最后,针对目前毫纳结构复合材料方向亟待解决的科学问题和实际应用挑战提出了展望,以期为推动纳米材料的实际应用提供一定的理论指导和技术参考。

Nanomaterial features a high surface area-to-volume ratio and strong surface effects, offering excellent performance in water treatment and broad application prospects. Incorporating nanoparticles into millimeter-scale hosts to prepare millimeter-sized nanocomposite materials can couple the high reactivity of nanoparticles with the easy operability of millimeter-scale hosts. This is an important technical approach to overcome the engineering application bottlenecks of nanomaterials, such as their tendency to agglomerate, low stability, potential environmental risks, and difficult separation. This review summarizes the preparation methods, structural characteristics, and adsorptive and catalytic oxidative removal of pollutants from aqueous systems by millimeter-sized nanocomposites. It elaborates on the confinement effects from the perspectives of confined growth of nanoparticles, confined adsorption properties, and confined catalytic oxidation properties, as well as the synergistic purification effect between the hosts and nanoparticles. Finally, the scientific issues and practical challenges that urgently need to be addressed in the development of millimeter-sized nanocomposites are discussed. We believe this review will provide theoretical guidance and technical references for promoting the practical applications of nanomaterials.

Contents

1 Introduction

2 Common hosts and preparation methods of millimeter-sized nanocomposites

2.1 Polymeric hosts

2.2 Carbon-based hosts

2.3 Natural mineral based hosts

2.4 Ceramic-based hosts

3 Confinement effects and synergistic purification effects of millimeter-nanometer structure

3.1 Confined growth of nanoparticles in millimeter-sized hosts

3.2 Confined adsorption and regeneration of nanoparticles inside millimeter-sized hosts

3.3 Confined catalytic oxidation of nanoparticles inside millimeter-sized hosts

4 Practical applications of millimeter-sized nanocomposites in water treatment

4.1 Applications in adsorption

4.2 Applications in catalytic degradation

5 Conclusions and perspectives

5.1 Research gaps in scientific issues regarding nanoconfinement effects

5.2 Challenges to be addressed for practical applications of nanocomposite materials

()
图1 用于制备毫纳结构复合材料的(a)载体材料类别及(b~g)各类典型的制备方法[1,9,13,22,30,40]
Fig.1 (a) Categories of millimeter-scale host materials and (b~g) typical preparation methods for millimeter-sized nanocomposites[1,9,13,22,30,40]
表1 以高分子聚合物为载体的毫纳结构复合材料应用于去除水中污染物的研究
Table 1 Studies on millimeter-sized nanocomposites with polymers as hosts applied in water decontamination
Millimeter-scale hosts Appearance
size of
hosts (mm)
Embedded
nanoparticles
Size of
nano-
particles
(nm)
Preparation methods Target pollutants Removal mechanism Adsorption capacity (mg/g) Removal efficiency Treated water matrix Experimental scale Operation duration ref
Macroporous ion exchange resins
D201a 0.7~0.9 HZO N.A.b Impregnation-precipitation Phosphate Adsorption 21.3 N.A Effluent from
municipal WWTPe
Fixed-bed column 1800 BV 2
D201 0.6~0.7 HZO 20~40 Impregnation-precipitation As(V) Adsorption 70.53 N.A. Acidic mining effluent Fixed-bed column 2900 BV 3
D201 0.4~1.0 HLO 3.56~
67.23
Impregnation-precipitation Phosphate Adsorption N.A. 91.23% River water Pilot-scale fixed-bed 8 months,
10 m3/d
5
D201 0.9~1.1 nZVI 2~11 Impregnation-precipitation Cu(Ⅱ)-
EDTA
Adsorption N.A. 88.3% Synthetic solution Fixed-bed column 500 BV 6
D201 0.4~0.8 HFO N.A. Impregnation-precipitation Selenite Adsorption ~37 N.A. Simulated wastewater Fixed-bed column ~1200 BV 107
D201 0.6~1.0 HFO N.A. Iron exchange-
precipitation
Phosphate Adsorption 17.8 N.A. Industrial effluent from a pesticide plant Fixed-bed column ~930 BV 10
D201 N.A. Li/Al LDHsc 5~20 Iron exchange-
precipitation
Fluoride Adsorption 32.6 N.A. Fluoride contaminated groundwater Fixed-bed column ~155 BV 84
D201 0.7~0.9 CeO2 2.5~4.2 Iron exchange-
precipitation
As(Ⅲ) Oxidation-adsorption 9.96 99.6% Simulated wastewater Fixed-bed column ~6500 BV 108
D201 0.6~0.8 nZVI 10~30 Iron exchange-reduction Se(Ⅵ) Adsorption N.A. >99% Simulated wastewater Fixed-bed column ~1240 BV 109
D201 (chloride type) 0.6~1.0 HFO 12.3 Iron exchange-
precipitation
Phosphate Adsorption N.A. <0.5 mg/L Biochemical effluent
from municipal WWTP
Field fixed-bed 3500~4000 BV 79
Cation exchanger D001 ~1 HFO N.A. Impregnation-precipitation Cu(Ⅱ)-
citrate
Adsorption/
Oxidation
N.A. 81.6% Simulated wastewater Fixed-bed column 1300 BV 110
Strongly basic anion
exchanger HAIX
0.5~0.7 HFO N.A. Iron exchange-
precipitation (commercial ArsenXnp)
As Adsorption N.A. <50 μg/L Arsenic well water Field fixed-bed 29 000 BV 7
Strongly basic anion
exchanger HAIX
0.3~1.2 HFO 3~5 Iron exchange-
precipitation (commercial
ArsenXnp)
As(V) Adsorption N.A. <10 μg/L Arsenic drinking water Field fixed-bed 91~120 days 86
Anion exchanger IRA-900 N.A. HFO N.A. Iron exchange-
precipitation
Phosphate Adsorption N.A. <10 μg/L Secondary effluent
from municipal WWTP
Fixed-bed column 1500 BV 111
Anion exchanger
DOWEXTM M4195
0.3~0.8 HFO N.A. Impregnation-
precipitation
Phosphate Adsorption N.A. <10 μg/L Simulated wastewater Fixed-bed column ~320 BV 112
Cross-linked ion exchange resins
Highly cross-linked
anion exchanger of
polystyrene matrix
0.6~0.7 HZO N.A. Impregnation-precipitation Fluoride Adsorption 20.9 <1.5 mg/L Simulated fluoride-
containing groundwater
Fixed-bed column ~80 BV 82
Cross-linked anion
exchanger
0.45~
0.55
HFO 11.6 Impregnation-precipitation As(V) Adsorption 31.6 <10 μg/L Simulated wastewater Fixed-bed column 2950 BV 12
Strongly basic anion
exchanger of poly-
styrene matrix
0.7~1.0 HMO 5.0~7.0 Impregnation-precipitation Phosphate Adsorption N.A. <0.5 mg/L Simulated wastewater Fixed-bed column 460 BV 54
Gel type ion exchange resins
Gel anion exchanger IRA-900 N.A. HFO N.A. Swelling-precipitation As(V) Adsorption N.A. >90% Simulated wastewater Fixed-bed column 10,000 BV 64
Gel cation exchanger C-100 0.3~0.5 HFO 20~100 Coprecipitation Pb(Ⅱ) Adsorption N.A. <0.2 mg/L Lead-acid battery
wastewater
Field fixed-bed 6500 BV 88
Gel strongly basic anion exchanger 201 × 4 N.A. HFO N.A. Iron exchange-
precipitation
As(V) Adsorption N.A. <10 μg/L Simulated wastewater Fixed-bed column 3900 BV 22
Synthetic polymers
Polystyrene bead 2 FeOOH 2.0~7.3 Flash freezing-in situ growth As(V) Adsorption 140~190 N.A. Single contaminant
solution
Laboratory beaker N.A. 13
Polystyrene bead 2 α-Fe2O3 3 Flash freezing-in situ growth As(V) Adsorption 32.0 <10 μg/L Simulated wastewater Fixed-bed column ~2900 BV 55
PDMS sponged 9 TiO2-Au 3~15 Sugar-template method RhB Photocatalysis N.A. ~96% in
3 h
Single contaminant
solution
Laboratory beaker N.A. 113
Polyurethane sponge N.A. Iron oxide N.A. Hydrothermal growth
method
As(Ⅲ),
As(V)
Adsorption As(Ⅲ): 4.2
As(V): 4.6
<50 μg/L Simulated wastewater Fixed-bed column As(Ⅲ): 123 BV
As(V): 144 BV
23
Natural polymers
Chitosan N.A. Iron oxide N.A. Impregnation-deposition Phosphate Adsorption N.A. 52.3% Stream water Pilot-scale adsorption tower 33 days 81
Bead cellulose 0.3~0.9 Fe(OH)3 200~300 Impregnation-deposition As(Ⅲ),
As(V)
Adsorption As(Ⅲ): 99.6
As(V): 33.2
<10 μg/L Simulated fluoride-
containing groundwater
Fixed-bed column As(Ⅲ): 2200 BV
As(V): 5000 BV
24
表2 以碳基材料和天然矿物为载体的毫纳结构复合材料应用于水处理的研究
Table 2 Studies on millimeter-sized nanocomposites with carbon-based materials and natural minerals as hosts applied in water decontamination
Millimeter-scale hosts Appearance size of hosts (mm) Nanoparticles Size of na-
noparticles (nm)
Preparation methods Target pollutants Removal mecha-nism Adsorption capacity (mg/g) Removal efficiency Treated water matrix Experimental scale Operation duration ref
Carbon-based material
Activated carbon 0.25~0.5 HFO 2 Impregnation-calcination As(V) Adsorption 5 N.A.a Single contaminant solution Laboratory conical flask N.A. 28
Straw biochar 5~10 Ce 2~5 Impregnation-precipitation- pyrolysis Phosphate Adsorption 77.7 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 114
Corncob biochar N.A. FeNi 880 Carbonization-activation RhB Photo-Fenton catalysis N.A. 97% in
90 min
Single contaminant solution Laboratory photo-reactor N.A. 30
Biochar aerogel N.A. nZVI 50~100 Impregnation-Pyrolysis
reduction
U (Ⅵ) Adsorption-reduction 720.8 90.1% in
80 min
Single contaminant solution Laboratory conical flask N.A. 31
Coffee ground
biochar
N.A. Pd 2~11 Impregnation-calcination 4-nitrophenol and meth-
ylene blue
Catalytic reduction N.A. N.A. Single contaminant solution Laboratory beaker N.A. 115
Natural minerals
Zeolite N.A. nZVI 37~110 Impregnation-reduction As(V) Adsorption 47.3 59% in
180 min
Single contaminant solution Laboratory batch
adsorption experiments
N.A. 116
Zeolite 0.8~1.2 HAlO N.A. Impregnation-ion exchange Phosphate Adsorption 7.0 N.A. Simulated wastewater Fixed-bed column 137 BV 117
Zeolite N.A. La N.A. Hydrothermal method Phosphate Adsorption N.A. >95% Primary and secondary
effluent from wastewater
treatment plant
Laboratory batch
adsorption experiments
N.A. 118
Zeolite 0.18~0.25 Mg-Al-La ternary hy-droxides 82.1 Coprecipitation Phosphate Adsorption 80.8 <0.5 mg/L Single contaminant solution Fixed-bed column ~4800
BV
119
Diatomite N.A. HFO N.A. Impregnation-calcination As Adsorption 20.5 < 50 μg/L Groundwater containing high
concentrations of arsenic
Fixed-bed column 937 BV, 44 d 120
Diatomite N.A. Magnetite 15 Hydrosol method Cr(Ⅵ) Adsorption 69.2 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 121
Diatomite 0.15 nZVI 10 Hydrothermal reduction method Phosphate Adsorption 37.0 N.A. Single contaminant solution Laboratory batch
adsorption experiments
N.A. 122
Diatomite 0.05 nZVI 20~60 Impregnation-reduction Simazine Catalytic reduction 0.97 N.A. Single contaminant solution Laboratory beaker N.A. 123
表3 以陶瓷基为载体的毫纳结构复合材料应用于/降解去除水中污染物的研究
Table 3 Studies on millimeter-sized nanocomposites with ceramic-based materials as hosts applied in water decontamination
Millimeter-scale
hosts
Appearance size
of hosts
Nanoparticles Size of
nanoparticles
Preparation methods Target pollutants Removal mecha-
nism
Adsorption capacity
(mg/g)
Treated water
matrix
Experimental scale Operation duration ref
Al2O3 spheres
Al2O3 sphere 3-5 mm Cu-Co
bi-mental
N.A.a Impregnation- carbothermal reduction COD of coal-gasification wastewater Catalytic ozonation 58.8% Coal-gasification wastewater Pilot-scale fixed-
bed, 5 m3/d
30 days 39
Al2O3 sphere 3-5 mm Fe N.A. Impregnation-calcination P-nitrophenol Catalytic ozonation TOC: 68.1% Single contaminant
solution
Laboratory fixed bed reactor 45 min 40
Al2O3 sphere 10.3 mm Fe2O3 N.A. Impregnation-calcination COD and color of distillery wastewater Catalytic ozonation COD: ~78%
Color: ~90%
Distillery wastewater Laboratory ozone
reaction column
30 min 124
γ-Al2O3 sphere 3-5 mm MnxCe1-xO2 ≤25nm Impregnation-calcination COD of coking wastewater Catalytic ozonation COD: >45.6% Bio-treated coking
wastewater
Full-scale applica-
tion, 100 m3/h
885 days 104
γ-Al2O3 sphere N.A. Mn-CeOx N.A. Impregnation-calcination Bromaminic acid Catalytic ozonation TOC: 64.7% Chemical industry
wastewater
Pilot-scale ozone
oxidation tower
22 days 106
γ-Al2O3 sphere 2 mm Cu-Mn oxides 5~10nm High-gravity-assisted im-pregnation Nitrobenzene Catalytic ozonation TOC: 81.7% Single contaminant
solution
Laboratory high-
gravity rotating
packed bed
60 min 125
γ-Al2O3 sphere 2 mm Ce-MnOx N.A. High-gravity-assisted im-pregnation Nitrobenzene Catalytic ozonation TOC: 98.3% Single contaminant
solution
Fixed-bed column 100 min 126
Ceramic membranes
ZrO2/TiO2 flat
ceramic mem-brane
Diameter 47 mm, thickness 2.5 mm FeOCl N.A. Impregnation-calcination Bisphenol A Fenton-like >82% Simulated wastewater Laboratory mem-
brane filtration
120 h 75
α-Al2O3 flat ceramic
membrane
Length 1046 mm, width 280 mm Mn oxides N.A. Impregnation-calcination DOC, PPCPs, EDCs Ozonation-ceramic membrane filtra-tion-biologically active carbon filtra-tion DOC:47.5%
PPCPs:98.5%
EDCs:99.8%
Secondary effluent
from WWTP
Pilot-scale,
20 m3/d
48 days 46
α-Al2O3 flat ceramic mem-brane Diameter 22 mm, thickness 2 mm Co3O4 N.A. Impregnation-calcination Sulfamethoxazole PMS fenton-like 59% Single contaminant
solution
Laboratory mem-
brane filtration
100 min 44
α-Al2O3 flat ceramic
membrane
Diameter 38 mm, thickness 2.5 mm Ti-Mn/TiO2 100nm Dip coating- calcination Dye Red-3BS and Aniline Catalytic ozonation CODCr:52.1% Simulated wastewater Laboratory mem-
brane filtration
6 h 93
Al2O3 spheres
α-Al2O3 tubular
ceramic membrane
Length 1016 mm, diameter 30 mm Ti-Mn/TiO2 20nm Dip coating- calcination Aquaculture wastewater Catalytic ozonation-membrane filtration CODMn: 38.0%
Color: 93.1%
Aquaculture wastewater Pilot-scale 240 min 45
α-Al2O3 tubular
ceramic membrane
Length 250 mm, outer diameter 10 mm, inner diam-eter 7 mm Ce/TiOx 8.3nm Sol-impregnation-calcination Diethyltoluamide Catalytic ozonation- membrane filtration 40% Single contaminant solution Laboratory mem-
brane filtration
30 min 47
Tubular ceramic
membrane
Length 1000 mm, diameter 30 mm TiO2 200~
500nm
Impregnation-calcination COD of
dyestuff wastewater
Membrane filtration- catalytic ozonation CODCr: >90% Secondary effluent
from dyestuff
WWTP
Pilot-scale, 10 t/d 30 days 43
AAO template Diameter 24 mm, thickness 0.06 mm Fe3O4 N.A. Solvothermal
method
Para-chlorobenzoic acid Heterogeneous Fenton N.A. Single contaminant
solution
Laboratory con-
tinuous flow-through
experiment
N.A. 66
图2 纳米限域与开放体系中磷酸锆的生长行为及吸附机制[49]
Fig.2 Growth behavior and adsorption mechanism of confined and bulk zirconium phosphate[49]
图3 限域体系中纳米颗粒对污染物的吸附特性:(a)La(OH)3吸附磷酸根的晶型变化[63];(b)离子交换树脂的Donnan膜效应对污染物的富集及离子交换作用[11];(c)限域驱动磷酸钙分区结晶并提升抗污染能力[65]
Fig.3 Confined adsorption properties of milli-sized nanocomposites. (a) Changes in crystal phase of La(OH)3 for phosphate adsorption[63]; (b) The Donnan membrane effect of ion exchange resin for the enrichment and ion exchange of pollutants[11]; (c) The confinement-driven calcium phosphate partitioning crystallization and improved anti-pollution ability[65]
图4 膜孔的限域催化氧化特性:(a)限域空间内HO·高强度、集约化的高效利用[66];(b)膜孔对大分子有机物的尺寸排阻效应及对小分子有机物限域氧化[75]
Fig.4 Confined catalytic oxidation in membrane pores. (a) Intensive utilization of HO· in confined space[66]; (b) Size exclusion effect of membrane pores on large molecular organic compounds and confined oxidation of small molecular organic compounds[75]
图5 潘丙才等开发的毫纳结构复合材料。(a)不同复合材料的外观;(b)材料样品;(c)规模化量产的毫纳结构复合材料和(d)固定床水处理工程装置。
Fig.5 Millimeter-sized nanocomposites developed by Prof. Bingcai Pan’s research group. (a) Appearance of different composite materials; (b) Material samples; (c) Large-scale production of nanoscale composite materials; and (d) Fixed-bed water treatment engineering equipment
图6 全燮教授等研发的(a)管式陶瓷膜、(b)膜组件、(c)中试装置流程示意图及(d)现场照片[91,92]
Fig.6 Catalytic ceramic membranes developed by Professor Xie Quan’s research group. (a) Tubular ceramic membranes; (b) membrane components; (c) flow diagrams and (d) on-site photos of pilot-scale equipment[91,92]
图7 张锡辉等研发的(a)平板陶瓷膜、(b)膜组件、(c)臭氧氧化-陶瓷膜过滤-BAC中试实验现场装置图及(d)流程示意图[95]
Fig.7 Flat ceramic membrane developed by Prof. Xihui Zhang’s research group. (a) flat ceramic membrane sheet; (b) ceramic membrane modules; (c) on-site photos and (d) process flow diagram of the pilot-scale ozone-ceramic membrane-BAC experimental equipment[95]
图8 大连理工大学张国权等研发的Mn-CeOx/γ-Al2O3臭氧催化剂、量产照片及中试现场装置图[106]
Fig.8 Mn-CeOx/γ-Al2O3 ozone catalysts developed by Professor Guoquan Zhang’s research group at Dalian University of Technology, with production photos and pilot-scale plant equipment diagram[106]
[1]
Zhang Q J, Pan B C, Chen X Q, Zhang W M, Pan B J, Zhang Q X, Lv L, Zhao X S. Sci. China Ser. B, 2008, 51(4): 379.

doi: 10.1007/s11426-007-0117-6     URL    
[2]
Chen L, Zhao X, Pan B C, Zhang W X, Hua M, Lv L, Zhang W M. J. Hazard. Mater., 2015, 284: 35.

doi: 10.1016/j.jhazmat.2014.10.048     URL    
[3]
Li Z G. Master Dissertation of Nanjing University, 2014.
(李志刚. 南京大学硕士论文, 2014).
[4]
Zhang Y Y, Pan B C, Shan C, Gao X A. Environ. Sci. Technol., 2016, 50(3): 1447.

doi: 10.1021/acs.est.5b04630     URL    
[5]
Zhang Y Y, Ahmed S, Zheng Z X, Liu F, Leung C F, Choy T Y, Kwok Y T, Pan B C, Lo I M C. Chem. Eng. J., 2021, 412: 128630.

doi: 10.1016/j.cej.2021.128630     URL    
[6]
Liu F, Shan C, Zhang X L, Zhang Y Y, Zhang W M, Pan B C. J. Hazard. Mater., 2017, 321: 290.

doi: 10.1016/j.jhazmat.2016.09.022     URL    
[7]
Sarkar S, Blaney L M, Gupta A, Ghosh D, SenGupta A K. React. Funct. Polym., 2007, 67(12): 1599.

doi: 10.1016/j.reactfunctpolym.2007.07.047     URL    
[8]
Smith R C, Li J Z, Padungthon S, Sengupta A K. Front. Environ. Sci. Eng., 2015, 9(5): 929.

doi: 10.1007/s11783-015-0795-9     URL    
[9]
Pan B C, Chen X Q, Zhang W M, Pan B J, Shen W, Zhang Q J, Du W, Zhang Q X, Chen J. Chinese Patent No.: ZL200510095177.5, 2005, 1.
(潘丙才, 陈新庆, 张炜铭, 潘丙军, 沈威, 张庆建, 杜伟, 张全兴, 陈金. ZL200510095177.5, 2005. 1).
[10]
Pan B J, Wu J, Pan B C, Lv L, Zhang W M, Xiao L L, Wang X S, Tao X C, Zheng S R. Water Res., 2009, 43(17): 4421.

doi: 10.1016/j.watres.2009.06.055     URL    
[11]
Pan B C, Xu J S, Wu B, Li Z G, Liu X T. Environ. Sci. Technol., 2013, 47(16): 9347.

doi: 10.1021/es401710q     URL    
[12]
Li H C, Shan C, Zhang Y Y, Cai J G, Zhang W M, Pan B C. ACS Appl. Mater. Interfaces, 2016, 8(5): 3012.

doi: 10.1021/acsami.5b09832     URL    
[13]
Zhang X L, Cheng C, Qian J S, Lu Z D, Pan S Y, Pan B C. Environ. Sci. Technol., 2017, 51(16): 9210.

doi: 10.1021/acs.est.7b01608     URL    
[14]
Zhang X L, Wang Y H, Chang X F, Wang P, Pan B C. Environ. Sci.: Nano, 2017, 4(3): 679.
[15]
Nie G Z, Pan B C, Zhang S J, Pan B J. J. Phys. Chem. C, 2013, 117(12): 6201.

doi: 10.1021/jp3119154     URL    
[16]
Rotzetter A C C, Kellenberger C R, Schumacher C M, Mora C, Grass R N, Loepfe M, Luechinger N A, Stark W J. Adv. Mater., 2013, 25(42): 6057.

doi: 10.1002/adma.v25.42     URL    
[17]
Teng C Y, Sheng Y J, Tsao H K. J. Chem. Phys., 2017, 146(1): 014904.

doi: 10.1063/1.4973608     URL    
[18]
Williams R J J, Hoppe C E, Zucchi I A, Romeo H E, Dell’Erba I E, GÓmez M L, Puig J, Leonardi A B. J. Colloid Interface Sci., 2014, 431: 223.

doi: 10.1016/j.jcis.2014.06.022     URL    
[19]
Chang Q G, Lin W, Ying W C. J. Hazard. Mater., 2010, 184(1/3): 515.

doi: 10.1016/j.jhazmat.2010.08.066     URL    
[20]
Gu Z M, Fang J, Deng B L. Environ. Sci. Technol., 2005, 39(10): 3833.

doi: 10.1021/es048179r     URL    
[21]
Savina I N, English C J, Whitby R L D, Zheng Y S, Leistner A, Mikhalovsky S V, Cundy A B. J. Hazard. Mater., 2011, 192(3): 1002.

doi: 10.1016/j.jhazmat.2011.06.003     pmid: 21715089
[22]
Liu Y, Gao Y, Zhao X, Shan C, Zhang X L, Pan B C. Acta Polym. Sin., 2018(7): 939.
(刘艳, 高洋, 赵昕, 单超, 张孝林, 潘丙才. 高分子学报, 2018(7): 939.).
[23]
Nguyen T V, Vigneswaran S, Ngo H H, Kandasamy J. J. Hazard. Mater., 2010, 182(1-3): 723.

doi: 10.1016/j.jhazmat.2010.03.071     URL    
[24]
Guo X J, Chen F H. Environ. Sci. Technol., 2005, 39(17): 6808.

doi: 10.1021/es048080k     URL    
[25]
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Int. J. Biol. Macromol., 2020, 151: 124.

doi: S0141-8130(19)40310-3     pmid: 32068056
[26]
Shoukat A, Wahid F, Khan T, Siddique M, Nasreen S, Yang G, Ullah M W, Khan R. Int. J. Biol. Macromol., 2019, 129: 965.

doi: S0141-8130(18)35642-3     pmid: 30738165
[27]
Mullick A, Neogi S. Ultrason. Sonochem., 2018, 45: 65.

doi: S1350-4177(18)30355-9     pmid: 29705326
[28]
Arcibar-Orozco J A, Avalos-Borja M, Rangel-Mendez J R. Environ. Sci. Technol., 2012, 46(17): 9577.

doi: 10.1021/es204696u     URL    
[29]
Ghanizadeh G, Ehrampoush M, Ghaneian M. J. Environ. Health Sci. Eng., 2010, 7: 145.
[30]
Sun Z, Zhang Y X, Guo S T, Shi J M, Shi C, Qu K Q, Qi H J, Huang Z H, Murugadoss V, Huang M N, Guo Z H. Adv. Compos. Hybrid Mater., 2022, 5(2): 1566.

doi: 10.1007/s42114-022-00477-4    
[31]
Wang R X, Li M Z, Liu T, Li X Y, Zhou L, Tang L, Gong C Y, Gong X A, Yu K F, Li N, Zhu W K, Chen T. J. Clean. Prod., 2022, 364: 132654.

doi: 10.1016/j.jclepro.2022.132654     URL    
[32]
Dai Y J, Zhang N X, Xing C M, Cui Q X, Sun Q Y. Chemosphere, 2019, 223: 12.

doi: 10.1016/j.chemosphere.2019.01.161     URL    
[33]
Li X P, Wang C B, Zhang J G, Liu B, Liu J P, Chen G Y. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34: 1047.
(李湘萍, 王传斌, 张建光, 刘彬, 刘菊平, 陈冠益. 石油学报(石油加工), 2018, 34: 1047.).
[34]
Zeng Q, Gong C L, Qian C. Technol. Dev. Chem. Ind., 2023, 52(4): 8.
(曾奇, 龚长林, 钱程. 化工技术与开发, 2023, 52(4): 8.).
[35]
Jiang Y S, Jin W Q, Zhang J, Fang S S. J. Inorg. Mater., 2002, 17(6): 1301.
(蒋引珊, 金为群, 张军, 方送生. 无机材料学报, 2002, 17(6): 1301.).
[36]
Wang L J, Zheng S L, Shu F. J. Chin. Ceram. Soc., 2006, 34(7): 823.
(王利剑, 郑水林, 舒锋. 硅酸盐学报, 2006, 34(7): 823.).
[37]
Zhang G X, Liu Y Y, Zheng S L, Sun Z M. Adv. Powder Technol., 2021, 32(11): 4364.

doi: 10.1016/j.apt.2021.09.041     URL    
[38]
Zhang N, Ma Z X, Liu J. China Non-metallic Minerals Industry, 2010, (105): 23.
(张宁, 马正先, 刘江. 中国非金属矿工业导刊, 2010, (105): 23.).
[39]
Wei K J, Cao X X, Gu W C, Liang P, Huang X A, Zhang X Y. Environ. Sci. Technol., 2019, 53(12): 6917.

doi: 10.1021/acs.est.8b07132     URL    
[40]
Wang Z C, Xu T, Tang D D, Zhou Y, Zheng B J, Qiu Y C, He D K, Zeng X, Jiang R, Mao X H. Colloids Surf. A, 2023, 658: 130560.

doi: 10.1016/j.colsurfa.2022.130560     URL    
[41]
Qiao H, Meng Y F, Yu S Z, Yang Y X. Industrial Water Treatment, 2023, 43(03): 114.
(乔函, 孟一帆, 余思泽, 杨忆新. 工业水处理, 2023, 43(03): 114.).
[42]
He Z M, Lyu Z Y, Gu Q L, Zhang L, Wang J. Colloids Surf. A, 2019, 578: 123513.

doi: 10.1016/j.colsurfa.2019.05.074     URL    
[43]
Zhang J L, Yu H T, Quan X, Chen S, Zhang Y B. Chem. Eng. J., 2016, 301: 19.

doi: 10.1016/j.cej.2016.04.148     URL    
[44]
Bao Y P, Lee W J, Lim T T, Wang R, Hu X. Appl. Catal. B, 2019, 254: 37.

doi: 10.1016/j.apcatb.2019.04.081     URL    
[45]
Chen S, Yu J Q, Wang H, Yu H T, Quan X. Desalination, 2015, 363: 37.

doi: 10.1016/j.desal.2014.09.006     URL    
[46]
Chen R, Zhang K, Wang H, Wang X M, Zhang X H, Huang X. J. Membr. Sci., 2022, 652: 120509.

doi: 10.1016/j.memsci.2022.120509     URL    
[47]
Lee W J, Bao Y P, Guan C T, Hu X, Lim T T. Chem. Eng. J., 2021, 410: 128307.

doi: 10.1016/j.cej.2020.128307     URL    
[48]
Parija A, Waetzig G R, Andrews J L, Banerjee S. J. Phys. Chem. C, 2018, 122(45): 25709.

doi: 10.1021/acs.jpcc.8b04622     URL    
[49]
Zhang X L, Shen J L, Pan S Y, Qian J S, Pan B C. Adv. Funct. Mater., 2020, 30(12): 1909014.

doi: 10.1002/adfm.v30.12     URL    
[50]
Cantaert B, Beniash E, Meldrum F C. Chem. A Eur. J., 2013, 19(44): 14918.

doi: 10.1002/chem.v19.44     URL    
[51]
Wucher B, Yue W B, Kulak A N, Meldrum F C. Chem. Mater., 2007, 19(5): 1111.

doi: 10.1021/cm0620640     URL    
[52]
Tian C, Zhao J A, Zhang J, Chu S Q, Dang Z, Lin Z, Xing B S. Environ. Sci.: Nano, 2017, 4(11): 2134.
[53]
Yang D R, Feng J, Jiang L L, Wu X L, Sheng L Z, Jiang Y T, Wei T, Fan Z J. Adv. Funct. Mater., 2015, 25(45): 7080.

doi: 10.1002/adfm.v25.45     URL    
[54]
Pan B C, Han F C, Nie G Z, Wu B, He K, Lu L. Environ. Sci. Technol., 2014, 48(9): 5101.

doi: 10.1021/es5004044     URL    
[55]
Pan S Y, Zhang X L, Qian J S, Lu Z D, Hua M, Cheng C, Pan B C. Nanoscale, 2017, 9(48): 19154.

doi: 10.1039/C7NR06980D     URL    
[56]
Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K. Science, 2018, 360: 1339.

doi: 10.1126/science.aat4191     pmid: 29930134
[57]
Lu C H, Hu C Z, Ritt C L, Hua X, Sun J Q, Xia H L, Liu Y Y, Li D W, Ma B W, Elimelech M, Qu J H. J. Am. Chem. Soc., 2021, 143(35): 14242.

doi: 10.1021/jacs.1c05765     URL    
[58]
Schulthess C P, Taylor R W, Ferreira D R. Soil Sci. Soc. Am. J., 2011, 75(2): 378.

doi: 10.2136/sssaj2010.0129nps     URL    
[59]
Kovaleva E G, Molochnikov L S, Antonov D O, Tambasova Stepanova D P, Hartmann M, Tsmokalyuk A N, Marek A, Smirnov A I. J. Phys. Chem. C, 2018, 122(35): 20527.

doi: 10.1021/acs.jpcc.8b04938     URL    
[60]
Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain M A, Shrestha P, Sugiyama H, Endo M, Mao H B. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(38): 9539.

doi: 10.1073/pnas.1805939115     URL    
[61]
Sowers T D, Harrington J M, Polizzotto M L, Duckworth O W. Geochim. Cosmochim. Acta, 2017, 198: 194.

doi: 10.1016/j.gca.2016.10.049     URL    
[62]
van Genuchten C M, Addy S E A, Peña J, Gadgil A J. Environ. Sci. Technol., 2012, 46(2): 986.

doi: 10.1021/es201913a     URL    
[63]
Zhang Y Y, Wang M L, Gao X A, Qian J S, Pan B C. Environ. Sci. Technol., 2021, 55(1): 665.

doi: 10.1021/acs.est.0c05577     URL    
[64]
Cumbal L, SenGupta A K. Environ. Sci. Technol., 2005, 39(17): 6508.

doi: 10.1021/es050175e     URL    
[65]
Zhang Y Y, She X W, Gao X A, Shan C, Pan B C. Environ. Sci. Technol., 2019, 53(1): 365.

doi: 10.1021/acs.est.8b05177     URL    
[66]
Zhang S, Sun M, Hedtke T, Deshmukh A, Zhou X C, Weon S, Elimelech M, Kim J H. Environ. Sci. Technol., 2020, 54(17): 10868.

doi: 10.1021/acs.est.0c02192     URL    
[67]
Muñoz-Santiburcio D, Wittekindt C, Marx D. Nat. Commun., 2013, 4: 2349.

doi: 10.1038/ncomms3349     pmid: 23949229
[68]
Plecis A, Schoch R B, Renaud P. Nano Lett., 2005, 5(6): 1147.

doi: 10.1021/nl050265h     URL    
[69]
Argyris D, Cole D R, Striolo A. ACS Nano, 2010, 4(4): 2035.

doi: 10.1021/nn100251g     URL    
[70]
Kovaleva E G, Molochnikov L S, Venkatesan U, Marek A, Stepanova D P, Kozhikhova K V, Mironov M A, Smirnov A I. J. Phys. Chem. C, 2016, 120(5): 2703.

doi: 10.1021/acs.jpcc.5b10241     URL    
[71]
Kovaleva E G, Molochnikov L S, Tambasova D, Marek A, Chestnut M, Osipova V A, Antonov D O, Kirilyuk I A, Smirnov A I. J. Membr. Sci., 2020, 604: 118084.

doi: 10.1016/j.memsci.2020.118084     URL    
[72]
Zhang S, Hedtke T, Wang L, Wang X X, Cao T C, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(24): 16708.

doi: 10.1021/acs.est.1c06551     URL    
[73]
Di Trani N, Pimpinelli A, Grattoni A. ACS Appl. Mater. Interfaces, 2020, 12(10): 12246.

doi: 10.1021/acsami.9b19182     URL    
[74]
Yu Z H, Ji N, Li X Y, Zhang R, Qiao Y N, Xiong J, Liu J, Lu X B. Angew. Chem. Int. Ed., 2023, 62(3): e202213612.
[75]
Zhang S, Hedtke T, Zhu Q H, Sun M, Weon S, Zhao Y M, Stavitski E, Elimelech M, Kim J H. Environ. Sci. Technol., 2021, 55(13): 9266.

doi: 10.1021/acs.est.1c01391     URL    
[76]
Zhang Y Y, Zhang W X, Pan B C. Chemosphere, 2015, 141: 227.

doi: 10.1016/j.chemosphere.2015.07.023     URL    
[77]
Li Q H. Master Dissertation of Nanjing University, 2021.
(李求豪. 南京大学硕士论文, 2021).
[78]
Gao X. Master Dissertation of Nanjing University, 2019.
(高翔. 南京大学硕士论文, 2019).
[79]
Hua M, Xiao L L, Pan B C, Zhang Q X. Front. Environ. Sci. Eng., 2013, 7(3): 435.

doi: 10.1007/s11783-013-0508-1     URL    
[80]
Xu P Z. Master Dissertation of Nanjing University, 2020.
(许沛智. 南京大学硕士论文, 2020.).
[81]
Kim J H, Kim S B, Lee S H, Choi J W. Environ. Technol., 2018, 39(6): 770.

doi: 10.1080/09593330.2017.1310937     URL    
[82]
Zhang X L, Zhang L, Li Z X, Jiang Z, Zheng Q, Lin B, Pan B C. Environ. Sci. Technol., 2017, 51(22): 13363.

doi: 10.1021/acs.est.7b04164     URL    
[83]
Deng Z N, Cheng S K, Xu N A, Zhang X L, Pan B C. ACS EST Eng., 2023, 3(2): 226.

doi: 10.1021/acsestengg.2c00284     URL    
[84]
Cai J G, Zhang Y Y, Pan B C, Zhang W M, Lv L, Zhang Q X. Water Res., 2016, 102: 109.

doi: 10.1016/j.watres.2016.06.030     URL    
[85]
Chinese Academy of Sciences. News, 2015-11-03.
(中国科学院. 合肥研究院智能所“天然矿物纳米复合除氟剂饮用水除氟技术”通过鉴定. 2015-11-03[2023-05-01]. https://www.cas.cn/yx/201511/t20151103_4453117.shtml).
[86]
Sylvester P, Westerhoff P, Möller T, Badruzzaman M, Boyd O. Environ. Eng. Sci., 2007, 24(1): 104.

doi: 10.1089/ees.2007.24.104     URL    
[87]
Deng Z N, Fang Z Y, Liu A R, Xu N, Zhang X L. Sci. Total Environ., 2021, 777: 146103.

doi: 10.1016/j.scitotenv.2021.146103     URL    
[88]
Pranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy M M, Nguyen T T, Padungthon S. J. Environ. Chem. Eng., 2021, 9(5): 106282.

doi: 10.1016/j.jece.2021.106282     URL    
[89]
Science and Technology Development Center of the Ministry of Education. Appraisal of achievements, 2013-09-26.
(教育部科技发展中心. 基于环境纳米复合材料的重金属废水深度处理与资源化新技术. 2013-09-26[2023-05-01]. http://www.cutech.edu.cn/cn/gxzxjdcgjj/arwlyfl/ssjhxm/2013/09/1380130862897976.htm).
[90]
Huang M J, Li Y S, Zhang C Q, Yu H Q. Proc. Natl. Acad. Sci.U.S.A., 2022, 119: e2202682119.

doi: 10.1073/pnas.2202682119     URL    
[91]
Zhu Y Q, Chen S, Quan X, Zhang Y B, Gao C, Feng Y J. J. Membr. Sci., 2013, 431: 197.

doi: 10.1016/j.memsci.2012.12.048     URL    
[92]
Zhu Y Q. Doctoral Dissertation of Dalian University of Technology, 2013.
(朱云庆. 大连理工大学博士论文, 2013).
[93]
Zhang J L. Doctoral Dissertation of Dalian University of Technology, 2017.
(张建琳. 大连理工大学博士论文, 2017).
[94]
Yu J Q. Master Dissertation of Dalian University of Technology, 2015.
(于金旗. 大连理工大学硕士论文, 2015.).
[95]
Zhang K. Doctoral Dissertation of Tsinghua University, 2020.
(张凯. 清华大学博士论文, 2020.).
[96]
Corneal L M, Masten S J, Davies S H R, Tarabara V V, Byun S, Baumann M J. J. Membr. Sci., 2010, 360(1/2): 292.

doi: 10.1016/j.memsci.2010.05.026     URL    
[97]
Moslemi M, Davies S H, Masten S J. Water Res., 2011, 45(17): 5529.

doi: 10.1016/j.watres.2011.08.015     URL    
[98]
Wang X Y, Davies S H, Masten S J. Sep. Purif. Technol., 2017, 186: 182.

doi: 10.1016/j.seppur.2017.04.055     URL    
[99]
Kim J, Shan W Q, Davies S H R, Baumann M J, Masten S J, Tarabara V V. Environ. Sci. Technol., 2009, 43(14): 5488.

doi: 10.1021/es900342q     URL    
[100]
Karnik B S, Davies S H, Baumann M J, Masten S J. Environ. Sci. Technol., 2005, 39(19): 7656.

doi: 10.1021/es0503938     URL    
[101]
Byun S, Davies S H, Alpatova A L, Corneal L M, Baumann M J, Tarabara V V, Masten S J. Water Res., 2011, 45(1): 163.

doi: 10.1016/j.watres.2010.08.031     pmid: 20822791
[102]
Alpatova A L, Davies S H, Masten S J. Sep. Purif. Technol., 2013, 107: 179.

doi: 10.1016/j.seppur.2013.01.013     URL    
[103]
He C. Doctoral Dissertation of China University of Mining & Technology-Beijing, 2021.
(何灿. 中国矿业大学 (北京) 博士论文, 2021.).
[104]
He C, Wang J B, Wang C R, Zhang C H, Hou P, Xu X Y. Water Res., 2020, 183: 116090.

doi: 10.1016/j.watres.2020.116090     URL    
[105]
He C, Huang Q, Zhang L L, Luo H L, Xue T. Industrial Water Treatment, 2019, 39(11): 107.
(何灿, 黄祁, 张力磊, 罗华霖, 薛通. 工业水处理, 2019, 39(11): 107.).

doi: 10.11894/iwt.2018-1061    
[106]
Wu Z W, Zhang G Q, Zhang R Y, Yang F L. Ind. Eng. Chem. Res., 2018, 57(6): 1943.

doi: 10.1021/acs.iecr.7b04516     URL    
[107]
Pan B J, Xiao L L, Nie G Z, Pan B C, Wu J, Lv L, Zhang W M, Zheng S R. J. Environ. Monit., 2010, 12(1): 305.

doi: 10.1039/B913827G     URL    
[108]
Shan C, Dong H, Huang P, Hua M, Liu Y, Gao G D, Zhang W M, Lv L, Pan B C. Chem. Eng. J., 2019, 360: 982.

doi: 10.1016/j.cej.2018.07.051     URL    
[109]
Guan X H, Liu F, Zhang W M, Pan B C. Ind. Eng. Chem. Res., 2017, 56(18): 5309.

doi: 10.1021/acs.iecr.7b00507     URL    
[110]
Liu B M, Pan S L, Liu Z Y, Li X, Zhang X, Xu Y H, Sun Y J, Yu Y, Zheng H L. J. Hazard. Mater., 2020, 386: 121969.

doi: 10.1016/j.jhazmat.2019.121969     URL    
[111]
Blaney L M, Cinar S, SenGupta A K. Water Res., 2007, 41(7): 1603.

pmid: 17306856
[112]
Sengupta S, Pandit A. Water Res., 2011, 45(11): 3318.

doi: 10.1016/j.watres.2011.03.044     URL    
[113]
Lee S Y, Kang D, Jeong S, Do H T, Kim J H. ACS Omega, 2020, 5(8): 4233.

doi: 10.1021/acsomega.9b04127     URL    
[114]
Wang Y, Xie X M, Chen X L, Huang C H, Yang S. J. Hazard. Mater., 2020, 396: 122626.

doi: 10.1016/j.jhazmat.2020.122626     URL    
[115]
Chan H F, Shi C C, Wu Z X, Sun S H, Zhang S K, Yu Z H, He M H, Chen G X, Wan X F, Tian J F. J. Colloid Interface Sci., 2022, 608: 1414.

doi: 10.1016/j.jcis.2021.10.028     URL    
[116]
Suazo-Hernández J, Sepúlveda P, Manquián-Cerda K, Ramírez-Tagle R, Rubio M A, Bolan N, Sarkar B, Arancibia-Miranda N. J. Hazard. Mater., 2019, 373: 810.

doi: S0304-3894(19)30407-8     pmid: 30974329
[117]
Guaya D A, Valderrama C, Farran A, Armijos C, Cortina J L. Chem. Eng. J., 2015, 271: 204.

doi: 10.1016/j.cej.2015.03.003     URL    
[118]
He Y H, Lin H, Dong Y B, Wang L. Appl. Surf. Sci., 2017, 426: 995.

doi: 10.1016/j.apsusc.2017.07.272     URL    
[119]
Shi W M, Fu Y W, Jiang W, Ye Y Y, Kang J X, Liu D Q, Ren Y Z, Li D S, Luo C G, Xu Z. Chem. Eng. J., 2019, 357: 33.

doi: 10.1016/j.cej.2018.08.003     URL    
[120]
Jang M, Min S H, Park J K, Tlachac E J. Environ. Sci. Technol., 2007, 41(9): 3322.

doi: 10.1021/es062359e     URL    
[121]
Yuan P, Liu D, Fan M D, Yang D, Zhu R L, Ge F, Zhu J X, He H P. J. Hazard. Mater., 2010, 173(1/3): 614.

doi: 10.1016/j.jhazmat.2009.08.129     URL    
[122]
Wang J X, Zhang G Q, Qiao S, Zhou J T. Chem. Eng. J., 2021, 412: 128696.

doi: 10.1016/j.cej.2021.128696     URL    
[123]
Sun Z M, Zheng S L, Ayoko G A, Frost R L, Xi Y F. J. Hazard. Mater., 2013, 263: 768.

doi: 10.1016/j.jhazmat.2013.10.045     URL    
[124]
Sreethawong T, Chavadej S. J. Hazard. Mater., 2008, 155(3): 486.

doi: 10.1016/j.jhazmat.2007.11.091     pmid: 18179871
[125]
Shao S J, Lei D, Song Y, Liang L N, Liu Y Z, Jiao W Z. Ind. Eng. Chem. Res., 2021, 60(5): 2123.

doi: 10.1021/acs.iecr.0c05751     URL    
[126]
Shao S J, Li Z X, Zhang J W, Gao K C, Liu Y Z, Jiao W Z. Chem. Eng. Sci., 2022, 248: 117246.

doi: 10.1016/j.ces.2021.117246     URL    
[1] 李怡宁, 隋铭皓. 基于过氧乙酸的高级氧化技术及在水处理消毒中的应用[J]. 化学进展, 2023, 35(8): 1258-1265.
[2] 申小雨, 杜中田, 郭百睿, 郭忠旭, 梁长海. 1,6-己二醇选择氧化内酯化制备ε-己内酯[J]. 化学进展, 2023, 35(8): 1191-1198.
[3] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[4] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[5] 陈欣怡, 夏开胜, 高强, 杨振, 李雨蝶, 孟伊, 陈亮, 刘成林. 锂离子选择性吸附材料的制备与提取应用[J]. 化学进展, 2023, 35(10): 1519-1533.
[6] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.