English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 18-26 DOI: 10.7536/PC230507 前一篇   后一篇

• 综述 •

纳米酶在脑疾病治疗中的应用

孟子楹1, 王杰1, 王嘉璞1, 魏延1,2, 黄棣1,2, 梁紫微1,2,*()   

  1. 1 太原理工大学生物医学工程学院生物医学工程系 纳米生物材料与再生医学研究中心 太原 030024
    2 山西浙大新材料与化工研究院 太原 030024
  • 收稿日期:2023-05-10 修回日期:2023-06-19 出版日期:2024-01-24 发布日期:2023-08-06
  • 作者简介:

    梁紫微 太原理工大学生物医学工程学院副教授、硕士生导师。 主要研究方向为纳米生物材料与肿瘤靶向治疗。

  • 基金资助:
    国家自然科学基金项目(82103147); 国家自然科学基金项目(12272253); 山西省基础研究计划项目(20210302124007); 山西省基础研究计划项目(202203021221047); 山西浙大新材料与化工研究院研发项目(2021SX-AT008); 山西浙大新材料与化工研究院研发项目(2021SX-AT009)

Application of Nanozymes in the Treatment of Brain Diseases

Ziying Meng1, Jie Wang1, Jiapu Wang1, Yan Wei1,2, Di Huang1,2, Ziwei Liang1,2()   

  1. 1 College of Biomedical Engineering, Taiyuan University of Technology, Research Center for Nano-Biomaterials & Regenerative Medicine, Taiyuan 030024, China
    2 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
  • Received:2023-05-10 Revised:2023-06-19 Online:2024-01-24 Published:2023-08-06
  • Contact: * e-mail: liangziweiguozhong@163.com
  • Supported by:
    National Natural Science Foundation of China(82103147); National Natural Science Foundation of China(12272253); Natural Science Foundation of Shanxi Province, China(20210302124007); Natural Science Foundation of Shanxi Province, China(202203021221047); Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-AT008); Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-AT009)

近年来,作为新一代人工酶的纳米酶,凭借着优于天然酶的多酶活性、高稳定性和靶向性等特点逐步进入医学领域,又因对活性氧的调控作用而被应用于多种疾病及癌症的治疗。脑类疾病作为病死率最高的疾病之一,病理环境中存在过多的活性氧,易产生复杂的炎症反应。因此,将纳米酶应用于脑部环境或成为有效的脑疾病监测和治疗手段。本文综述了纳米酶应用于脑疾病治疗的原理及近年来该领域的研究现状,包括纳米酶通过调控活性氧的水平诱导癌细胞凋亡、纳米酶辅助传统抗癌疗法、纳米酶借助膜蛋白进行脑癌监测以及在创伤性脑损伤、脑卒中、大脑退行性疾病、脑型疟疾和癫痫中的应用。最后,对其应用于临床治疗所面临的问题进行了讨论。

In recent years, nanozymes, as a new generation of artificial enzymes, have gradually entered the medical field due to their multi-enzyme activity, high stability and targeting ability, which are superior to natural enzymes. Moreover, nanozymes have been applied to the treatment of a variety of diseases and cancer because of their regulatory effect on reactive oxygen species. Brain diseases, as one of the highest mortality diseases, are prone to produce complex inflammatory responses due to excessive reactive oxygen species in the pathological environment. Therefore, the application of nanozymes in the brain environment may become an effective means of monitoring and treatment of brain diseases. This article reviews the principles of nanozymes in the treatment of brain diseases and the current research status in this field in recent years, including nanozymes inducing cancer cell death by regulating the level of reactive oxygen species, nanozymes assisting traditional anticancer therapy, nanozymes using membrane proteins to monitor brain cancer, and their applications in traumatic brain injury, stroke, brain degenerative diseases, cerebral malaria and epilepsy. At the end of this text, the problems of its application in clinical treatment are discussed.

Contents

1 Introduction

2 Development of researches about nanozymes

3 Application of nanozymes in the treatment of brain cancer and brain diseases

3.1 Nanozymes in brain cancer

3.2 Nanozymes in degenerative disease

3.3 Nanozymes in other brain diseases

4 Conclusion and outlook

()
表1 部分纳米酶较天然酶的优点[15???~19]
Table 1 Advantages of some nanozymes compared with native enzymes[15???~19]
图1 纳米酶通过活性氧参与脑癌治疗
Fig. 1 Nanozymes are involved in brain cancer therapy via ROS
[1]
Quader S, Kataoka K, Cabral H. Adv. Drug Deliv. Rev., 2022, 182: 114115.

doi: 10.1016/j.addr.2022.114115     URL    
[2]
Jiang F, Yang J M, Zhang Y T, Dong M, Wang S X, Zhang Q Y, Liu F F, Zhang K, Zhang C. Nat. Rev. Cardiol., 2014, 11(7): 413.

doi: 10.1038/nrcardio.2014.59     pmid: 24776703
[3]
Kuriakose D, Xiao Z C. Int. J. Mol. Sci., 2020, 21(20): 7609.

doi: 10.3390/ijms21207609     URL    
[4]
Hou Y X, Zhang R F, Yan X, Fan K L. Sci. Sin. Vitae, 2020, 50(3): 311.

doi: 10.1360/SSV-2019-0216     URL    
(侯亚欣, 张若飞, 阎锡蕴, 范克龙. 中国科学(生命科学), 2020, 50(3): 311.)
[5]
Wei H, Gao L Z, Fan K L, Liu J W, He J Y, Qu X G, Dong S J, Wang E K, Yan X Y. Nano Today, 2021, 40: 101269.

doi: 10.1016/j.nantod.2021.101269     URL    
[6]
Jansman M M T, Hosta-Rigau L. Catalysts, 2019, 9(8): 691.

doi: 10.3390/catal9080691     URL    
[7]
Zhu M Y, Dai Y Q, Wu Y N, Liu K, Qi X M, Sun Y M. Nanotechnology, 2018, 29(46): 465704.

doi: 10.1088/1361-6528/aaddc2     URL    
[8]
Sharifi M, Hosseinali S H, Yousefvand P, Salihi A, Shekha M S, Aziz F M, JouyaTalaei A, Hasan A, Falahati M. Mater. Sci. Eng. C, 2020, 108: 110422.

doi: 10.1016/j.msec.2019.110422     URL    
[9]
Tang R Y, Xia X M, Zhang X, Jiang H, Wang B H, Zhang P L, Zhang Y J, Tang Y X, Zhou Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2022, 266: 120467.
[10]
Ding H, Hu B, Zhang B, Zhang H, Yan X Y, Nie G H, Liang M M. Nano Res., 2021, 14(3): 570.

doi: 10.1007/s12274-020-3053-9    
[11]
Sun H J, Zhou Y, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2018, 57(30): 9224.

doi: 10.1002/anie.v57.30     URL    
[12]
Niu X H, Li X, Lyu Z Y, Pan J M, Ding S C, Ruan X F, Zhu W L, Du D, Lin Y H. Chem. Commun., 2020, 56(77): 11338.

doi: 10.1039/D0CC04890A     URL    
[13]
Zhang R F, Fan K L, Yan X Y. Sci. China Life Sci., 2020, 63(8): 1183.
[14]
Jiang D W, Ni D L, Rosenkrans Z T, Huang P, Yan X Y, Cai W B. Chem. Soc. Rev., 2019, 48(14): 3683.

doi: 10.1039/C8CS00718G     URL    
[15]
Lin Y H, Ren J S, Qu X G. Acc. Chem. Res., 2014, 47(4): 1097.

doi: 10.1021/ar400250z     URL    
[16]
Wang X X, Wu Q, Shan Z, Huang Q M. Biosens. Bioelectron., 2011, 26(8): 3614.

doi: 10.1016/j.bios.2011.02.014     URL    
[17]
Ji S F, Jiang B, Hao H G, Chen Y J, Dong J C, Mao Y, Zhang Z D, Gao R, Chen W X, Zhang R F, Liang Q, Li H J, Liu S H, Wang Y, Zhang Q H, Gu L, Duan D M, Liang M M, Wang D S, Yan X Y, Li Y D. Nat. Catal., 2021, 4(5): 407.

doi: 10.1038/s41929-021-00609-x    
[18]
Jiao L, Xu W Q, Zhang Y, Wu Y, Gu W L, Ge X X, Chen B B, Zhu C Z, Guo S J. Nano Today, 2020, 35: 100971.

doi: 10.1016/j.nantod.2020.100971     URL    
[19]
Zhang S F, Li Y H, Sun S, Liu L, Mu X Y, Liu S H, Jiao M L, Chen X Z, Chen K, Ma H Z, Li T, Liu X Y, Wang H, Zhang J N, Yang J, Zhang X D. Nat. Commun., 2022, 13: 4744.

doi: 10.1038/s41467-022-32411-z    
[20]
Manea F, Houillon F B, Pasquato L, Scrimin P. Angew. Chem. Int. Ed., 2004, 43(45): 6165.

doi: 10.1002/anie.v43:45     URL    
[21]
Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nat. Nanotechnol., 2007, 2(9): 577.

doi: 10.1038/nnano.2007.260    
[22]
Gao L Z, Liang M M, Wen T, Wei H, Zhang Y, Fan K L, Jiang B, Qu X G, Gu N, Pang D W, Xu H Y, Yan X Y. China Terminology, 2020, 22(06): 21.
(高利增, 梁敏敏, 温涛, 魏辉, 张宇, 范克龙, 江冰, 曲晓刚, 顾宁, 庞代文, 许海燕, 阎锡蕴. 中国科技术语, 2020, 22(06): 21.)
[23]
Wei H, Wang E K. Chem. Soc. Rev., 2013, 42(14): 6060.

doi: 10.1039/c3cs35486e     URL    
[24]
Gao L Z, Chen L, Zhang R F, Yan X Y. Sci. Sin. Chim., 2022, 52(09): 1649.

doi: 10.1360/SSC-2022-0088     URL    
(高利增, 陈雷, 张若飞, 阎锡蕴. 中国科学:化学, 2022, 52(09): 1649.)
[25]
Fan K L, Gao L Z, Wei H, Jiang B, Wang D J, Zhang R F, He J Y, Meng X Q, Wang Z R, Fan H Z, Wen T, Duan D M, Chen L, Jiang W, Lu Y, Jiang B, Wei Y H, Li W, Yuan Y, Dong H J, Zhang L, Hong C Y, Zhang Z X, Cheng M M, Geng X, Hou T Y, Hou Y X, Li J R, Tang G H, Zhao Y, Zhao H Q, Zhang S, Xie J Y, Zhou Z J, Ren J S, Huang X L, Gao X F, Liang M M, Zhang Y, Xu H Y, Qu X G, Yan X Y. Progress in Chemistry, 2023, 35(1): 1.
(范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 化学进展, 2023, 35(01): 1.).
[26]
Cheng H J, Zhang L, He J, Guo W J, Zhou Z Y, Zhang X J, Nie S M, Wei H. Anal. Chem., 2016, 88(10): 5489.

doi: 10.1021/acs.analchem.6b00975     URL    
[27]
Liu J, Zhang W, Peng M H, Ren G Y, Guan L H, Li K, Lin Y Q. ACS Applied Materials & Interfaces., 2020, 12(26): 29631.
[28]
Wang C, Wang M C, Zhang W, Liu J, Lu M J, Li K, Lin Y Q. Anal. Chem., 2020, 92(1): 662.

doi: 10.1021/acs.analchem.9b04931     URL    
[29]
Reczek C R, Chandel N S. Annu. Rev. Cancer Biol., 2017, 1: 79.

doi: 10.1146/annurev-cancerbio-041916-065808     URL    
[30]
Kwon S, Ko H, You D G, Kataoka K, Park J H. Acc. Chem. Res., 2019, 52(7): 1771.

doi: 10.1021/acs.accounts.9b00136     URL    
[31]
Aguilera-Márquez J D R, de Dios-Figueroa G T, Reza-Saldivar E E, Camacho-Villegas T A, Canales-Aguirre A A, Lugo-Fabres P H. Neurol. Perspect., 2022, 2: S31.
[32]
Mansur A A P, Mansur H S, Carvalho S M. Catal. Today, 2022, 388/389: 187.

doi: 10.1016/j.cattod.2020.06.083     URL    
[33]
Zou Z Z, Chang H C, Li H L, Wang S M. Apoptosis, 2017, 22(11): 1321.

doi: 10.1007/s10495-017-1424-9     URL    
[34]
Liu S L, Zhang W, Chen Q Q, Hou J X, Wang J R, Zhong Y X, Wang X Y, Jiang W X, Ran H T, Guo D J. Nanoscale, 2021, 13(33): 14049.

doi: 10.1039/D1NR01449H     URL    
[35]
Mansur A A P, Carvalho S M, Oliveira L C A, Souza-Fagundes E M, Lobato Z I P, Leite M F, Mansur H S. Pharmaceutics, 2022, 14(10): 2223.

doi: 10.3390/pharmaceutics14102223     URL    
[36]
Fan K L, Xi J Q, Fan L, Wang P X, Zhu C H, Tang Y, Xu X D, Liang M M, Jiang B, Yan X Y, Gao L Z. Nat. Commun., 2018, 9: 1440.

doi: 10.1038/s41467-018-03903-8    
[37]
Muhammad P, Hanif S, Li J, Guller A, Rehman F U, Ismail M, Zhang D, Yan X, Fan K, Shi B. Nano Today, 2022, 45:101530.

doi: 10.1016/j.nantod.2022.101530     URL    
[38]
Wang S R, Wang Z Y, Li Z Y, Zhang X G, Zhang H T, Zhang T, Meng X X, Sheng F G, Hou Y L. Sci. Adv., 2022, 8(21): eabn3883.

doi: 10.1126/sciadv.abn3883     URL    
[39]
Zhu X F, Chen X, Huo D L, Cen J Q, Jia Z, Liu Y A, Liu J. Biomaterials Science., 2021, 9(15): 5330.

doi: 10.1039/D1BM00667C     URL    
[40]
Voth B, Nagasawa D T, Pelargos P E, Chung L K, Ung N, Gopen Q, Tenn S, Kamei D T, Yang I. Journal Of Clinical Neuroscience., 2015, 22(7): 1071.

doi: 10.1016/j.jocn.2015.02.002     URL    
[41]
Daniels T R, Delgado T, Helguera G, Penichet M L. Clin. Immunol., 2006, 121(2): 159.

doi: 10.1016/j.clim.2006.06.006     pmid: 16920030
[42]
Weerathunge P, Pooja D, Singh M, Kulhari H, Mayes E L H, Bansal V, Ramanathan R. Sens. Actuat. B Chem., 2019, 297: 126737.

doi: 10.1016/j.snb.2019.126737     URL    
[43]
Kip Ç, Akbay E, Gökçal B, Savaş B O, Ali Onur M, Tuncel A. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 598: 124812.

doi: 10.1016/j.colsurfa.2020.124812     URL    
[44]
Chen Q S, Liu Y B, Liu J B, Liu J W. Chem. Eur. J., 2020, 26(70): 16659.

doi: 10.1002/chem.v26.70     URL    
[45]
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. JAD, 2023, 221064.
[46]
Ren C X, Li D D, Zhou Q X, Hu X G. Biomaterials, 2020, 232: 119752.

doi: 10.1016/j.biomaterials.2019.119752     URL    
[47]
Gong Y C, Huang A L, Guo X, Jia Z, Chen X, Zhu X F, Xia Y, Liu J, Xu Y, Qin X Y. Chem. Eng. J., 2021, 418: 129345.

doi: 10.1016/j.cej.2021.129345     URL    
[48]
Jia Z, Yuan X Y, Wei J A, Guo X, Gong Y C, Li J, Zhou H, Zhang L, Liu J. ACS Appl. Mater. Interfaces, 2021, 13(42): 49602.

doi: 10.1021/acsami.1c06687     URL    
[49]
Bai Z T, Ge K Z, Fu J J, Yu D H, Hua Z Y, Xue S L, Li Z, Sheng W W, Wu X N, Gao F F, Geng D Q, Gao F L. Chem. Eng. J., 2023, 465: 142955.

doi: 10.1016/j.cej.2023.142955     URL    
[50]
Isaev N K, Stelmashook E V, Genrikhs E E. Rev. Neurosci., 2020, 31(3): 233.

doi: 10.1515/revneuro-2019-0052     URL    
[51]
Du C J, Feng W, Dai X Y, Wang J H, Geng D Y, Li X D, Chen Y, Zhang J. Small, 2022, 18(39): 2203031.

doi: 10.1002/smll.v18.39     URL    
[52]
Lyu Z Y, Ding S C, Zhang N, Zhou Y, Cheng N, Wang M Y, Xu M J, Feng Z X, Niu X H, Cheng Y, Zhang C, Du D, Lin Y H. Research, 2020, 2020: 4724505.
[53]
Padilla-Godínez F J, Ruiz-Ortega L I, Guerra-Crespo M. Cells, 2022, 11(21): 3445.

doi: 10.3390/cells11213445     URL    
[54]
Singh N, Savanur M A, Srivastava S, D'Silva P, Mugesh G. Angewandte Chemie Int. Ed., 2017, 56(45): 14267.

doi: 10.1002/anie.v56.45     URL    
[55]
Wang W, Zheng J Y, Zhou H, Liu Q, Jia L, Zhang X M, Ge D T, Shi W, Sun Y N. ACS Appl. Mater. Interfaces, 2022, 14(29): 32901.

doi: 10.1021/acsami.2c06981     URL    
[56]
Li L H, Lu Y, Xu X Y, Yang X F, Chen L L, Jiang C M, Wang Y, Hu W Y, Wei X M, Yang Z M. Adv. Healthcare Mater., 2021, 10(13): 2100316.

doi: 10.1002/adhm.v10.13     URL    
[57]
Zhu Z Q, Gong L B, Miao X Y, Chen C Y, Su S. Biosensors, 2022, 12(5): 260.

doi: 10.3390/bios12050260     URL    
[58]
Xia Z H, Gao M M, Sheng P, Shen M M, Zhao L, Gao L Z, Yan B C. Int. J. Mol. Sci., 2022, 23(12): 6463.

doi: 10.3390/ijms23126463     URL    
[59]
Yu D Q, Ma M M, Liu Z W, Pi Z F, Du X B, Ren J S, Qu X G. Biomaterials, 2020, 255: 120160.

doi: 10.1016/j.biomaterials.2020.120160     URL    
[60]
Wang C, Ren G Y, Yuan B B, Zhang W, Lu M J, Liu J, Li K, Lin Y Q. Anal. Chem., 2020, 92(11): 7822.

doi: 10.1021/acs.analchem.0c01028     URL    
[61]
Abdul-Muneer P M, Chandra N, Haorah J. Mol. Neurobiol., 2015, 51(3): 966.

doi: 10.1007/s12035-014-8752-3     pmid: 24865512
[62]
Bains M, Hall E D. Biochim. Biophys. Acta BBA Mol. Basis Dis., 2012, 1822(5): 675.
[63]
Mu X Y, He H, Wang J Y, Long W, Li Q F, Liu H L, Gao Y L, Ouyang L F, Ren Q J, Sun S, Wang J Y, Yang J, Liu Q, Sun Y M, Liu C L, Zhang X D, Hu W P. Nano Lett., 2019, 19(7): 4527.

doi: 10.1021/acs.nanolett.9b01333     URL    
[64]
Mu X Y, Wang J Y, He H, Li Q F, Yang B, Wang J H, Liu H L, Gao Y L, Ouyang L, Sun S, Ren Q J, Shi X J, Hao W T, Fei Q M, Yang J, Li L L, Vest R, Wyss-Coray T, Luo J, Zhang X D. Sci. Adv., 2021, 7(46): eabk1210.

doi: 10.1126/sciadv.abk1210     URL    
[65]
Yan R J, Sun S, Yang J, Long W, Wang J Y, Mu X Y, Li Q F, Hao W T, Zhang S F, Liu H L, Gao Y L, Ouyang L F, Chen J C, Liu S J, Zhang X D, Ming D. ACS Nano, 2019, 13(10): 11552.

doi: 10.1021/acsnano.9b05075     URL    
[66]
Zhang S F, Liu Y, Sun S, Wang J Y, Li Q F, Yan R J, Gao Y L, Liu H L, Liu S J, Hao W T, Dai H T, Liu C L, Sun Y M, Long W, Mu X Y, Zhang X D. Theranostics, 2021, 11(6): 2806.

doi: 10.7150/thno.51912     URL    
[67]
He H, Shi X J, Wang J Y, Wang X J, Wang Q, Yu D Y, Ge B S, Zhang X D, Huang F. ACS Appl. Mater. Interfaces, 2020, 12(1): 209.

doi: 10.1021/acsami.9b17509     URL    
[68]
Xi J Q, Zhang R F, Wang L M, Xu W, Liang Q, Li J Y, Jiang J, Yang Y L, Yan X Y, Fan K L, Gao L Z. Adv. Funct. Mater., 2021, 31(9): 2007130.

doi: 10.1002/adfm.v31.9     URL    
[69]
Liu Y S, Wang X J, Li X Z, Qiao S S, Huang G D, Hermann D M, Doeppner T R, Zeng M L, Liu W, Xu G L, Ren L J, Zhang Y, Liu W L, Casals E, Li W P, Wang Y C. ACS Appl. Mater. Interfaces, 2021, 13(39): 46213.

doi: 10.1021/acsami.1c06449     URL    
[70]
Huang Z X, Qian K, Chen J, Qi Y, Yifeng E, Liang J, Zhao L. Acta Biomater., 2022, 144: 142.

doi: 10.1016/j.actbio.2022.03.018     URL    
[71]
Huang G N, Zang J K, He L Z, Zhu H L, Huang J R, Yuan Z W, Chen T F, Xu A D. ACS Nano, 2022, 16(1): 431.

doi: 10.1021/acsnano.1c07205     URL    
[72]
Tian R Z, Ma H Y, Ye W, Li Y J, Wang S P, Zhang Z R, Liu S D, Zang M S, Hou J X, Xu J Y, Luo Q, Sun H C, Bai F Q, Yang Y, Liu J Q. Adv. Funct. Mater., 2022, 32(36): 2204025.

doi: 10.1002/adfm.v32.36     URL    
[73]
Yan B C, Cao J W, Liu J J, Gu Y H, Xu Z B, Li D D, Gao L Z. ACS Biomater. Sci. Eng., 2021, 7(1): 299.

doi: 10.1021/acsbiomaterials.0c01312     URL    
[74]
Feng L S, Dou C R, Xia Y G, Li B H, Zhao M Y, Yu P, Zheng Y Y, El-Toni A M, Atta N F, Galal A, Cheng Y S, Cai X J, Wang Y, Zhang F. ACS Nano, 2021, 15(2): 2263.

doi: 10.1021/acsnano.0c07973     URL    
[75]
Zhao Q Q, Du W X, Zhou L L, Wu J R, Zhang X X, Wei X E, Wang S J, Huang Y, Li Y H. Pharmaceutics, 2022, 14(6): 1122.

doi: 10.3390/pharmaceutics14061122     URL    
[76]
Zhao S, Duan H X, Yang Y L, Yan X Y, Fan K L. Nano Lett., 2019, 19(12): 8887.

doi: 10.1021/acs.nanolett.9b03774     URL    
[77]
Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V. Int. J. Pharm., 2016, 513(1/2): 504.
[78]
Stafstrom C E, Carmant L. Cold Spring Harbor Perspectives In Medicine., 2015, 5(6): 022426.
[79]
Wang N, Zhang M R, Ma Y P, Liu S Y, Liu Q Q, Liao Y H, Ding F, Tian X M. Journal Of Nanoparticle Research., 2021, 23(12): 266.

doi: 10.1007/s11051-021-05381-4    
[1] 罗文浩, 袁睿, 孙金元, 周连群, 罗小河, 罗阳. 金属有机框架纳米酶在临床检测中的应用[J]. 化学进展, 2023, 35(9): 1389-1398.
[2] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[3] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[4] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[5] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[6] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[7] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[8] 李高, 李艳梅. 截短与修饰的β-淀粉样蛋白与阿尔茨海默病[J]. 化学进展, 2020, 32(1): 14-22.
[9] 夏也, 苏喜, 陈李, 李顺波, 徐溢. 用于细胞检测的微电极传感器设计及传感分析[J]. 化学进展, 2019, 31(8): 1129-1135.
[10] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[11] 李海东, 樊江莉, 彭孝军. 识别次氯酸的荧光探针[J]. 化学进展, 2017, 29(1): 17-35.
[12] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[13] 郑伟, 谢琼, 陈良康, 陈建兴, 仇缀百. 双位点作用的乙酰胆碱酯酶抑制剂[J]. 化学进展, 2013, 25(11): 1973-1980.
[14] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[15] 陈平, 姜亮, 刘琼*, 杨思林, 宋云, 倪嘉缵. 硒蛋白M及其与重大疾病的关系[J]. 化学进展, 2013, 25(04): 479-487.
阅读次数
全文


摘要

纳米酶在脑疾病治疗中的应用