English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 145-158 DOI: 10.7536/PC230506 前一篇   

• 综述 •

碳化硅基材料在电磁波吸收领域的研究进展

夏元佳, 陈国兵*(), 赵爽, 费志方, 张震, 杨自春*()   

  1. 海军工程大学动力工程学院 武汉 430032
  • 收稿日期:2023-05-10 修回日期:2023-09-20 出版日期:2024-01-24 发布日期:2023-12-10
  • 作者简介:

    杨自春 海军工程大学动力工程学院教授、博士研究生导师。获国家科技进步奖二等奖1项,军队科技进步奖一等奖3项、二等奖2项,先后入选教育部“新世纪优秀人才支持计划”,“新世纪百千万人才工程”国家级人选,军队高层次科技创新人才工程学科领军人才培养对象等。近年来在Chem. Eng. J., Compos. Part B-Eng.等期刊发表研究论文100余篇,主要研究方向为舰船高温复合材料。

  • 基金资助:
    国家自然科学基金项目(51802347); 湖北省自然科学基金项目(2022CFB939)

Research Progress on Electromagnetic Wave Absorption of Silicon Carbide-Based Materials

Yuanjia Xia, Guobin Chen(), Shuang Zhao, Zhifang Fei, Zhen Zhang, Zichun Yang()   

  1. School of Power Engineering, Naval University of Engineering, Wuhan 430032, China
  • Received:2023-05-10 Revised:2023-09-20 Online:2024-01-24 Published:2023-12-10
  • Contact: * e-mail: zichunyang12a@126.com (Zichun Yang); chenguob@163.com (Guobin Chen)
  • Supported by:
    National Natural Science Foundation of China(51802347); Natural Science Foundation of Hubei Provincial(2022CFB939)

研究高性能电磁波吸收材料对提升武器装备隐身性能和解决电磁污染问题具有重大意义。碳化硅(SiC)材料具有良好的耐高温、抗腐蚀和化学稳定性,在电磁波吸收领域展现出良好的应用前景,然而本征SiC材料的吸波性能较弱,如何提升其吸波性能是一个重要的研究课题。本文从SiC材料吸波机理出发,首先分析总结了不同形貌SiC基吸波材料(核壳结构、气凝胶结构、纤维结构、中空结构、MOFs结构等)的研究现状,并详细介绍了SiC与碳化硅纤维、碳材料、磁性物质等复合材料在吸波领域的研究进展,同时综述了特殊类型SiC基吸波材料(SiC基高温吸波材料、SiC基吸波超材料、SiC基多功能吸波材料)的发展现状,最后展望了其未来的发展方向。

The research of high-performance electromagnetic wave-absorbing materials (WAM) is of great significance to enhance the stealth performance of weapons and equipment and solve the electromagnetic pollution problem. Silicon carbide (SiC) materials have good resistance to high temperature, corrosion and chemical stability, and show good application prospects in the field of electromagnetic wave absorption. However, the intrinsic properties of SiC materials are weak, and how to improve their wave-absorbing properties is an important research topic. Based on the electromagnetic wave-absorbing mechanism of SiC materials, firstly, the research status of SiC-based WAM with different morphologies (core-shell structure, aerogel structure, fibrous structure, hollow structure, MOFs structure, etc.) is analyzed and summarized. In addition, the research progress of composites of SiC with silicon carbide fibres, carbon materials and magnetic substances in the field of wave absorption is introduced in detail. The development status of special types of SiC-based WAM (SiC-based high-temperature WAM, SiC-based wave absorbing metamaterials, and SiC-based multifunctional WAM) is also reviewed. Finally, the future development direction of SiC-based WAM is prospected.

Contents

1 Introduction

2 Absorbing mechanism of dielectric absorbing materials

2.1 Evaluation mechanism of absorbing properties of materials

2.2 Absorbing mechanism of dielectric absorbing materials

2.3 Properties of intrinsic SiC materials

3 Research status of SiC-based absorbing materials with different morphologies

3.1 Fibrous structure

3.2 Hollow structure

3.3 Core-shell structure

3.4 MOFs structure

3.5 Porous aerogel structure

4 Research status of SiC matrix composite wave absorbing material

4.1 SiC fiber (SiCf) reinforced SiC wave absorbing material

4.2 SiC/ magnetic composite wave absorbing material

4.3 SiC/C composite wave absorbing material

4.4 SiC-based multielement composite wave absorbing material

5 Special type SiC-based wave-absorbing material

5.1 SiC-based wave-absorbing metamaterial

5.2 SiC-based high temperature wave absorbing material

5.3 Multifunctional SiC-based wave absorbing material

6 Conclusion and outlook

()
图1 不同类型SiC的堆叠序列图[12]
Fig. 1 Stacking sequence diagram of different types of SiC[12]
表1 不同微观形貌SiC基吸波材料的吸波性能表
Table 1 The absorbing properties of SiC based absorbing
图2 SiC纳米线制备工艺及其机理图:(a) 柔性碳化硅纳米线膜的制备工艺;(b) 碳化硅纳米线吸波机理图[36]
Fig. 2 Preparation technology, mechanism, morphology and properties of SiC nanowires. (a) Preparation process of flexible silicon carbide nanowire membrane; (b) diagram of the absorption mechanism of silicon carbide nanowires[36]
图3 中空球形粒子微波损耗机理图[42]
Fig. 3 Microwave loss mechanism diagram of hollow spherical particles[42]
图4 Ni/NPs包覆的空心碳化硅球吸波机理图[47]
Fig. 4 Diagram of wave absorption mechanism of hollow silicon carbide spheres coated with Ni/NPs[47]
图5 基于SiCNMs的MOFs结构的制备示意图(a)与微观形貌图(b)[50]
Fig. 5 Preparation diagram (a) and microstructure diagram (b) of MOFs structure based on SiCNMs[50]
图6 SiN/SiC分层气凝胶的制备及其示意图[58]
Fig. 6 Preparation of SiN/SiC multilayered aerogels and their schematics[58]
图7 SiCNWs/PyC-SiCf/SiC复合材料的制备、形貌及其吸波机理图:(a) 制备示意图;(b) 微观形貌图;(c) 吸波机理图[64]
Fig. 7 Preparation, morphology and absorption mechanism of SiCNWs/PyC-SiCf/SiC composites. (a) Preparation of schematic diagrams; (b) microscopic topography drawings; (c) diagram of absorption mechanism[64]
图8 SiCNW/GA-S样品的实物图及其性能图:(a) 实物图;(b) 力学性能图;(c) 疏水角;(d) 吸波性能图[70]
Fig. 8 Physical diagram and performance diagram of SiCNW/ GA-S sample. (a) Physical drawings; (b) mechanical property diagrams; (c) hydrophobic angle; (d) absorption performance graph[70]
表2 不同材料复合类型SiC基吸波材料的吸波性能表
Table 2 The absorbing performance table of SiC-based absorbing materials of different composite types
图9 (a) CFMM结构设计示意图;(b) 电磁场模拟图;(c) 实物图;(d) 吸波性能仿真与实测对比图[80]
Fig. 9 (a) Schematic diagram of the structural design of CFMM; (b) electromagnetic field simulation diagrams; (c) physical drawings; (d) absorption performance simulation and measured comparison chart[80]
[1]
Bian P F, Zhan B G, Gao P, Yu Q J, Yang Y G, Hong L, Zhang W L. Constr. Build. Mater., 2023, 364: 129903.

doi: 10.1016/j.conbuildmat.2022.129903     URL    
[2]
Xie Y, Guo Y, Cheng T, Zhao L, Wang T, Meng A, Zhang M, Li Z. Chem. Eng. J., 2023, 457: 141205.

doi: 10.1016/j.cej.2022.141205     URL    
[3]
Sun C, Li Q, Jia Z, Wu G, Yin P. Chem. Eng. J., 2023, 454: 140277.

doi: 10.1016/j.cej.2022.140277     URL    
[4]
Zhang Y H, Li Y, Liu H J, Zhang L, Zhang Y, Xu C C, Gong C H. Mater. Today Phys., 2023, 31: 100966.
[5]
Luo Z, Feng S, Li Y, Xu G, Fang G, Wang S, Zhu C, Liu C. Adv. Eng. Mater., 2023, 25(1): 2200976

doi: 10.1002/adem.v25.1     URL    
[6]
Meriakri V, Parckhomenko M, Von Gratowski S, Bhowmik R N, Panneer Muthuselvam I. J. Phys.: Conf. Ser., 2010, 200(8): 082024.
[7]
He J, Deng L, Liu S, Yan S, Lou H, Li Y, He L, Huang S. J. Magn. Magn. Mater., 2017, 444: 49.

doi: 10.1016/j.jmmm.2017.07.097     URL    
[8]
Xie X B, Wang B L, Wang Y K, Ni C, Sun X Q, Du W. Chem. Eng. J., 2022, 428: 131160.

doi: 10.1016/j.cej.2021.131160     URL    
[9]
Xu H, Yin X, Zhu M, Li M, Zhang H, Wei H, Zhang L, Cheng L. Carbon, 2019, 142: 346.

doi: 10.1016/j.carbon.2018.10.056     URL    
[10]
Qiang R, Du Y, Wang Y, Wang N, Tian C, Ma J, Xu P, Han X. Carbon, 2016, 98: 599.

doi: 10.1016/j.carbon.2015.11.054     URL    
[11]
Tang J H, Ma L, Huo Q S, Yan J, Tian N, Xu F F. Polym. Compos., 2015, 36(10): 1799.

doi: 10.1002/pc.v36.10     URL    
[12]
Shen Z, Chen J, Li B, Li G, Zhang Z, Hou X. J. Alloy. Compd., 2020, 815: 152388.

doi: 10.1016/j.jallcom.2019.152388     URL    
[13]
Wang F, Gu W, Chen J, Wu Y, Zhou M, Tang S, Cao X, Zhang P, Ji G. Nano Res., 2022, 15(4): 3720.

doi: 10.1007/s12274-021-3955-1    
[14]
Liu J, Cao W Q, Jin H B, Yuan J, Zhang D, Cao M. J. Mater. Chem. C, 2015, 3(18): 4670.

doi: 10.1039/C5TC00426H     URL    
[15]
Wu R B, Zhou K, Yue C Y, Wei J, Pan Y. Prog. Mater. Sci., 2015, 72: 1.

doi: 10.1016/j.pmatsci.2015.01.003     URL    
[16]
Casady J B, Johnson R W. Solid State Electron., 1996, 39(10): 1409.

doi: 10.1016/0038-1101(96)00045-7     URL    
[17]
Lv X Y, Ye F, Cheng L F, Zhang L T. J. Mater. Sci. Technol., 2022, 109: 94.
[18]
Peng C H, Chen P S, Chang C C. Ceram. Int., 2014, 40(1): 47.

doi: 10.1016/j.ceramint.2013.05.101     URL    
[19]
Liang C Y. Doctoral Dissertation of Harbin Institute of Technology, 2020.
(梁彩云. 哈尔滨工业大学博士论文, 2020.)
[20]
Deng W, Li T, Li H, Niu R, Dang A, Cheng Y, Wu H. Carbon, 2023, 202: 103.

doi: 10.1016/j.carbon.2022.10.081     URL    
[21]
Wen Q B, Feng Y, Yu Z J, Peng D L, Nicoloso N, Ionescu E, Riedel R. J. Am. Ceram. Soc., 2016, 99(8): 2655.

doi: 10.1111/jace.2016.99.issue-8     URL    
[22]
Zhong Z X, Zhang B, Ye J, Ren Y H, Ye F. J. Alloys Compd., 2022, 927: 167046.
[23]
Su K, Dou Q, Wang Y, Yin S, Li Q, Yang J, Alexandrov I V, Solovyev P V. Ceram. Int., 2023, 49(1): 450.

doi: 10.1016/j.ceramint.2022.09.011     URL    
[24]
Ma J, Li W, Fan Y, Yang J, Yang Q, Wang J, Lou W, Zhou W, Naoyuki Nomura, Wang L, Jiang W. ACS Appl. Mater., 2019, 11(49): 46386.

doi: 10.1021/acsami.9b17849     URL    
[25]
Xu D W, Yang S, Chen P, Yu Q, Xiong X H, Wang J. Carbon, 2019, 146: 301.

doi: 10.1016/j.carbon.2019.02.005     URL    
[26]
Gu W, Tan J, Chen J, Zhang Z, Zhao Y, Yu J, Ji G. ACS Appl. Mater., 2020, 12(25): 28727.

doi: 10.1021/acsami.0c09202     URL    
[27]
Suo Q T, Xu B C, Wang J J. Rare Metal Materials and Engineering, 2019, 48(11): 3714.
(索庆涛, 许宝才, 王建江. 稀有金属材料与工程, 2019, 48(11): 3714.).
[28]
Acher O, Dubourg S. Phys. Rev. B, 2008, 77(10): 104440.

doi: 10.1103/PhysRevB.77.104440     URL    
[29]
Zhang Z, Zhao S, Chen G B, Li K F, Fei Z F, Yang Z C. Progress in Chemistry, 2021, 33(09): 1511.
(张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 化学进展, 2021, 33(09): 1511.).
[30]
Backes W H, Bobbert P A, van Haeringen W. Phys. Rev. B, 1994, 49(11): 7564.

pmid: 10009498
[31]
Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Chen Q, Du X, Zheng L. ACS Appl. Mater., 2017, 9(49): 43072.

doi: 10.1021/acsami.7b13634     URL    
[32]
Chen J H, Liu W N, Yang T, Li B, Su J D, Hou X M, Chou K C. Cryst. Growth Des., 2014, 14(9): 4624.

doi: 10.1021/cg500723y     URL    
[33]
Dhage S, Lee H C, Hassan M S, Akhtar M S, Kim C Y, Sohn J M, Kin K J, Shin H S, Yang O B. Mater. Lett., 2009, 63(2): 174.

doi: 10.1016/j.matlet.2008.09.056     URL    
[34]
Gao Z, Ma Z, Liu Q, Zhang Z, Wang Y, Liu S, Liu L, Liu Y. Mater. Today Commun., 2023, 106591.
[35]
Tian H, Liu H T, Cheng H F. Ceram. Int., 2014, 40(7): 9009.

doi: 10.1016/j.ceramint.2014.01.113     URL    
[36]
Li X, Wei J, Chen B, Qiao M. Ceram. Int., 2021, 47(12): 17615.

doi: 10.1016/j.ceramint.2021.03.080     URL    
[37]
Liu X G. Doctoral Dissertation of National University of Defense Technology, 2010.
(刘旭光. 国防科学技术大学博士论文, 2010.).
[38]
Yi H, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Qi C, Du X, Zhao C, Zheng L. ACS Appl. Mater., 2018, 10(35): 29876.

doi: 10.1021/acsami.8b07980     URL    
[39]
Gao H, Luo F, Wen Q, Duan S, Zhou W, Zhu D. Ceram. Int., 2018, 44(6): 6010.

doi: 10.1016/j.ceramint.2017.12.193     URL    
[40]
Gao H, Luo F, Wen Q, Qing Y, Zhou W. Ceram. Int., 2019, 45(9): 11625.

doi: 10.1016/j.ceramint.2019.03.034     URL    
[41]
Xiao T, Kuang J, Pu H, Zheng Q, Lu Y, Liu W, Cao W. J. Alloy. Compd., 2021, 862: 158032.

doi: 10.1016/j.jallcom.2020.158032     URL    
[42]
Zhou J, Wei B, Yao Z, Lin H, Tan R, Chen W, Guo X. J. Alloy. Compd., 2020, 819: 153021.

doi: 10.1016/j.jallcom.2019.153021     URL    
[43]
Ye X, Chen Z, Li M, Wang T, Cao W, Zhang J, Zhou Q, Liu H, Cui S. J. Alloy. Compd., 2020, 817: 153276.

doi: 10.1016/j.jallcom.2019.153276     URL    
[44]
Wang W C, Liu G, Wang L Y, Ge C Q, Wang W H, Hu L J, Yang X, Wang Z A. Rare Metal Materials and Engineering, 2022, 51(10): 3743.
(王伟超, 刘顾, 汪刘应, 葛超群, 王文豪, 胡灵杰, 杨鑫, 王子昂. 稀有金属材料与工程, 2022, 51(10): 3743.).
[45]
Zhong B, Sai T Q, Xia L, Yu Y L, Wen G W. Mater. Des., 2017, 121: 185.

doi: 10.1016/j.matdes.2017.02.058     URL    
[46]
Xiang Z, Wang Y, Yin X, He Q. Chem. Eng. J, 2023, 451: 138742.

doi: 10.1016/j.cej.2022.138742     URL    
[47]
Wei B, Zhou J T, Yao Z J, Ali Haidry A, Qian K, Lin H Y, Guo X L, Chen W J. Appl. Surf. Sci., 2020, 508: 145261.

doi: 10.1016/j.apsusc.2020.145261     URL    
[48]
Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Acc. Chem. Res., 2016, 49 (3): 483.

doi: 10.1021/acs.accounts.5b00530     URL    
[49]
Xu X Q. Doctoral Dissertation of Harbin Institute of Technology, 2021.
(徐雪青. 哈尔滨工业大学博士论文, 2021.).
[50]
Zhang K, Wu F, Xie A, Sun M, Dong W. ACS Appl. Mater, 2017, 9(38): 33041.

doi: 10.1021/acsami.7b11592     URL    
[51]
Yang R, Yuan J, Yu C, Yan K, Wu X. J. Alloy. Compd., 2020, 816: 152519.

doi: 10.1016/j.jallcom.2019.152519     URL    
[52]
Suwanmethanond V, Goo E, Liu P K T, Johnston G, Sahimi M, Tsotsis T T. Ind. Eng. Chem. Res., 2000, 39(9): 3264.

doi: 10.1021/ie0000156     URL    
[53]
Konstantinov A O, Harris C I, Janzén E. Appl. Phys. Lett., 1994, 65(21): 2699.

doi: 10.1063/1.112610     URL    
[54]
Wang Z, Zhao H, Dai D, Hao H, Wang Z,. Ceram. Int, 2022, 48(18): 26416.

doi: 10.1016/j.ceramint.2022.05.332     URL    
[55]
Liang C Y, Wang Z J. Chem. Eng. J., 2019, 373: 598.

doi: 10.1016/j.cej.2019.05.076     URL    
[56]
Su L, Wang H, Niu M, Fan X, Ma M, Shi Z, Guo S. ACS Nano, 2018, 12(4): 3103.

doi: 10.1021/acsnano.7b08577     URL    
[57]
Cai Z, Su L, Wang H, Niu M, Gao H, Lu D, Li M. ACS Appl. Mater. Interfaces, 2020, 12(7): 8555.

doi: 10.1021/acsami.9b20636     URL    
[58]
Cai Z, Su L, Wang H, Niu M, Tao L, Lu D, Xu L, Li M, Gao H. ACS Appl. Mater. Interfaces, 2021, 13(14): 16704.

doi: 10.1021/acsami.1c02906     URL    
[59]
Dai D, Lan X, Wang Z. Compos. B. Eng., 2023, 248: 110376.

doi: 10.1016/j.compositesb.2022.110376     URL    
[60]
Ding D, Luo F, Shi Y, Chen J. J. Eng. Fiber. Fabr., 2014, 9(2): 155892501400900212.
[61]
Ding D H, Wang J, Xiao G Q. J Chin Ceram Soc, 2019, 47(1): 132.
(丁冬海, 王晶, 肖国庆. 硅酸盐学报, 2019, 47(1): 132.
[62]
Han T, Luo R, Cui G, Wang L. Ceram. Int., 2019, 45(6): 7797.

doi: 10.1016/j.ceramint.2019.01.085     URL    
[63]
Mu Y, Zhou W, Hu Y, Ding D, Luo F, Qing Y. J. Alloy. Compd., 2015, 637: 261.

doi: 10.1016/j.jallcom.2015.03.031     URL    
[64]
Huang B, Wang Z, Hu H, Tang X, Huang X, Yue J, Wang Y. Ceram. Int., 2020, 46(7): 9303.

doi: 10.1016/j.ceramint.2019.12.185     URL    
[65]
Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z, Chen Q, Wang P, Zheng L. ACS Appl. Mater., 2017, 9(8): 7265.

doi: 10.1021/acsami.6b15721     URL    
[66]
Wang H, Wu L, Jiao J, Zhou J, Xu Y, Zhang H, Jiang Z, Shen B, Wang Z. J. Mater. Chem. A, 2015, 3(12): 6517.

doi: 10.1039/C5TA00303B     URL    
[67]
Li Z J, Shi G M, Zhao Q. J. Mater. Sci.: Mater. Electron., 2017, 28: 5887.

doi: 10.1007/s10854-016-6262-y     URL    
[68]
Du B, Qian J, Hu P, He C, Cai M, Wang X, Shui A. Carbon, 2020, 157: 788.

doi: 10.1016/j.carbon.2019.10.029     URL    
[69]
Zhang Y N, Zhao Y J, Chen Q, Hou Y, Zhang Q, Cheng L F, Zheng L X. Ceram. Int., 2021, 47(6): 8123.

doi: 10.1016/j.ceramint.2020.11.167     URL    
[70]
Cheng Y, Tan M, Hu P, Zhang X, Sun B, Yan L, Zhou S, Han W. Appl. Surf. Sci., 2018, 448: 138.

doi: 10.1016/j.apsusc.2018.04.132     URL    
[71]
Chen Z, Wu Z, Su J, Li J, Gao B, Fu J, Zhang X, Huo K, Chu P K. Surf. Coat. Technol., 2021, 406: 126641.

doi: 10.1016/j.surfcoat.2020.126641     URL    
[72]
Zhang M, Li Z, Wang T, Ding S, Song G, Zhao J, Meng A, Yu H, Li Q. Chem. Eng. J., 2019, 362: 619.

doi: 10.1016/j.cej.2019.01.039    
[73]
Ma L, Hamidinejad M, Liang C Y, Zhao B, Habibpour S, Yu A P, Filleter T, Park C B. Carbon, 2021, 179: 408.

doi: 10.1016/j.carbon.2021.04.063     URL    
[74]
Cui T J, Smith D R, Liu R. Metamaterials:Theory, Design, and Applications, Springer, 2010.
[75]
Pendry J B. Science, 2004, 306(5700): 1353.

pmid: 15550665
[76]
Lee S H, Park C M, Seo Y M, Kim C K. Phys. Rev. B, 2010, 81(24): 241102.

doi: 10.1103/PhysRevB.81.241102     URL    
[77]
Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B, Kong J A, Chen M. Phys. Rev. Lett., 2009, 103(19): 194801.

doi: 10.1103/PhysRevLett.103.194801     URL    
[78]
Zhang Z. Doctoral Dissertation of Southeast University, 2019.
(张琤. 东南大学博士论文, 2019).
[79]
Mei H, Yang W, Zhao X, Yao L, Yao Y, Chen C, Cheng L. Mater. Des., 2021, 197: 109271.

doi: 10.1016/j.matdes.2020.109271     URL    
[80]
Li W, Lin L, Li C, Wang Y, Zhang J. Results Phys., 2019, 12: 278.

doi: 10.1016/j.rinp.2018.11.036     URL    
[81]
Li W, Li C, Lin L, Wang Y, Zhang J. J. Alloy. Compd., 2019, 781: 883.

doi: 10.1016/j.jallcom.2018.12.010     URL    
[82]
Han T, Luo R, Cui G, Wang L. J. Eur. Ceram. Soc., 2019, 39(5): 1743.

doi: 10.1016/j.jeurceramsoc.2019.01.018     URL    
[83]
Qing Y, Mu Y, Zhou Y, Lou F, Zhu D, Zhuo W. J. Eur. Ceram. Soc., 2014, 34(10): 2229.

doi: 10.1016/j.jeurceramsoc.2014.02.007     URL    
[84]
Zhou W, Yin R, Long L, Luo H, Hu W, Ding Y, Li Y. Ceram. Int., 2018, 44(11): 12301.

doi: 10.1016/j.ceramint.2018.04.017     URL    
[85]
Li M, Yin X, Zheng G, Chen M, Tao M, Cheng L, Zhang L. J. Mater. Sci., 2015, 50: 1478.

doi: 10.1007/s10853-014-8709-y     URL    
[86]
Zhou Q. Doctoral Dissertation of Northwestern Polytechnical University, 2019.
(周倩. 西北工业大学博士论文, 2019.).
[87]
Wang X X, Cao W Q, Cao M S, Yuan J. Adv. Mater., 2020, 32(36): 2002112.

doi: 10.1002/adma.v32.36     URL    
[88]
Liu J, Wei X, Gao L, Tao J, Xu L, Peng G, Jin H, Wang Y, Yao Z, Zhou J. J. Eur. Ceram. Soc., 2022, 43(4): 1237.

doi: 10.1016/j.jeurceramsoc.2022.11.040     URL    
[89]
Song L, Fan B, Chen Y, Wang H, Li H, Zhang R. Ceram. Int., 2022, 48(17): 25140.

doi: 10.1016/j.ceramint.2022.05.174     URL    
[90]
Song L M, Zhang F, Chen Y Q, Guan L, Zhu Y Q, Chen M, Wang H L, Putra B R, Zhang R, Fan B B. Nano Micro Lett., 2022, 14(1): 152.

doi: 10.1007/s40820-022-00905-6    
[91]
Zhang B X, Wu C, Ye K C, Sun C Y, Wang Z J. Carbon, 2023, 213:118253.

doi: 10.1016/j.carbon.2023.118253     URL    
[1] 张文博, 王佳宁, 卫林峰, 金花, 鲍艳, 马建中. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076.
[2] 范金玥, 孔祥鑫, 李伟, 刘守新. 水热炭化制备手性碳点及其应用[J]. 化学进展, 2023, 35(12): 1764-1782.
[3] 付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才. 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展, 2023, 35(10): 1415-1437.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.