English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1783-1792 DOI: 10.7536/PC230501 前一篇   后一篇

• 综述 •

基于硅氧体系的织物用阻燃、疏水双功能涂层

李鑫超1, 夏长林2, 陈明军1,*(), 汪婷1,3, 符志成1, 邓瑾妮1,*()   

  1. 1 西华大学理学院 成都 610039
    2 宜宾海丝特纤维有限责任公司 宜宾 644002
    3 湖北三峡实验室 宜昌 443000
  • 收稿日期:2023-05-04 修回日期:2023-08-03 出版日期:2023-12-24 发布日期:2023-09-10
  • 作者简介:

    陈明军 西华大学教授,四川省杰出青年基金获得者,四川省海外高层次留学人才,教务处副处长兼创新创业学院院长。研究方向主要聚焦功能分子的绿色制备,“阻燃+”功能高分子材料的制备与应用,废弃材料资源化利用。发表SCI论文30余篇,H指数24;受邀在国际国内学术研讨会做学术报告10余次;主持和主研国家自然科学基金联合基金重点项目、面上项目和青年项目,四川省杰出青年基金项目等科研项目10余项;申请发明专利13项,授权6项,为企业中试生产产品2种。

    邓瑾妮 西华大学教授,入选首届四川省“天府万人计划”——天府科技菁英、四川省学术技术带头人后备人选、中国科学院“西部青年学者”人才计划、四川省杰出科技青年人才。主要研究方向为疏水自清洁功能高分子材料,在环保型防污自清洁功涂层树脂领域取得了重要研究成果,实现了织物用防水防油涂层的工业化应用。以第一作者/通讯作者发表论文20余篇;以第一发明人获授权专利5项;主持或主研国家863计划、国家自然科学基金、中国科学院“西部青年学者”项目、四川省科技支撑计划、四川省杰出科技青年基金等项目20余项。

  • 基金资助:
    四川省自然科学基金杰出青年科学基金项目(2023NSFSC1955); 宜宾市科技计划项目(2022GY001); 中国科学院“西部青年学者”项目(2022~2024); 四川省天府万人计划——天府科技精英(2019~2023); 湖北三峡实验室开放/创新基金项目(SK213005)

Fabric Coatings Based on Silicon Oxide Structure with both Flame-Retardant and Hydrophobic Properties

Xinchao Li1, Changlin Xia2, Mingjun Chen1,*(), Ting Wang1,3, Zhicheng Fu1, Jinni Deng1,*()   

  1. 1 School of Science, Xihua University,Chengdu 610039, China
    2 Yibin Hiest Fibre Limited Corporation,Yibin 644002, China
    3 Hubei Three Gorges Laboratory,Yichang 443000, China
  • Received:2023-05-04 Revised:2023-08-03 Online:2023-12-24 Published:2023-09-10
  • Contact: *e-mail: dengjinniddd@163.com(Jinni Deng);cmjchem@126.com(Mingjun Chen)
  • Supported by:
    Natural Science Foundation of Sichuan Province for Outstanding Youth(2023NSFSC1955); Science and Technology Program of Yibin(2022GY001); West Light Talent Program of the Chinese Academy of Sciences(2022~2024); Tianfu Qingcheng Plan of Sichuan Province(2019~2023); Open and Innovative Fund of Hubei Three Gorges Laboratory(SK213005)

织物的阻燃涂层在日常使用和清洁维护中,由于亲水性太强易导致阻燃性能急剧下降,因此阻燃、疏水双功能涂层现已成为织物功能涂层的研究热点。其中硅氧体系化合物由于同时具有高耐热性和低表面能,因而在阻燃和疏水涂层体系中表现优异。本文通过有机硅体系、有机硅/纳米二氧化硅杂化体系以及笼型聚倍半硅氧烷(POSS)体系在高温成炭性、低表面能、表面微纳结构以及可控多功能化等方面的优异展现,层层递进地描述了兼具优异阻燃和疏水性能的织物用涂层的最新研究进展,并探究了其阻燃和疏水性能与硅氧系化合物结构之间的构效关系。最后提出阻燃和疏水性能间的协同机理、高效性的提升以及复杂环境下涂层性能的服役稳定性等,是织物用阻燃、疏水双功能涂层的未来发展方向;并针对功能化织物材料的部分应用场景需求,提出了热点分析与展望。

The flame retardancy of coatings on fabrics would always be destroyed and drastically reduced by daily use or routine maintenance because of their hydrophility. So functional coatings with both flame retardancy and hydrophobicity have become a research focus in fabric field. Coatings of silicon oxide compound with high heat resistance and low surface energy have presented good flame retardancy and hydrophobicity. In this paper, the latest research progress about fabric coatings with both excellent flame retardant and hydrophobic properties is described progressively by organosilicon, organosilicon/nano-silicon and polyhedral oligomeric silsesquioxane (POSS) system on the aspects of char formation, low surface energy, micro-nano structure and controllable multi-functionalization. The relationship between the structure of silicon oxide compound and the properties of flame-retardancy and hydrophobicity is deeply investigated. Finally, synergetic mechanism of flame-retardancy and hydrophobicity, enhancement of functional efficiency and service stability of coatings in complex environment are put forward as the future development of fabric coatings with both flame-retardancy and hydrophobicity. According to the requirements of some application scenarios of functional fabric materials, the hot spots are analyzed and prospected.

Contents

1 Introduction

2 Research progress

2.1 Organosilicon compounds

2.2 Organosilicon/nano-silicon

2.3 Polyhedral oligomeric silsesquioxane(POSS)

3 Conclusion and outlook

()
图式1 PVS聚合物的合成[15]
Scheme 1 Synthesis of PVS[15]
图式2 nano-TiO2@PVS涂层的交联反应路线图[16]
Scheme 2 The crosslinking and reacting process of nano-TiO2@PVS coating[16]
图式3 硅氧烷网络的反应路线图[19]
Scheme 3 Reaction route of siloxane network[19]
图式4 PNPDMS的化学结构[22]
Scheme 4 Chemical formula of PNPDMS[22]
图式5 PNCTSi的化学结构[23]
Scheme 5 Chemical formula of PNCTSi[23]
图式6 SPPU聚合物的合成路线[42]
Scheme 6 Synthesis of SPPU[42]
图式7 SNPs粒子的制备路线[42]
Scheme 7 Synthesis of SNPs[42]
图式8 DOPO-SiO2粒子的制备路线[46]
Scheme 8 Synthesis ofDOPO-Si2[46]
图式9 P(GM-co-DM)的合成路线[56]
Scheme 9 Synthesis of P(GM-co-DM) [56]
图式10 OAPS的合成路线[56]
Scheme 10 Synthesis of OAPS [56]
图式11 A-POSS-PA的合成路线[57]
Scheme 11 Synthesis of A-POSS-PA[57]
表1 疏水阻燃涂层的服役稳定性研究
Table 1 Durability of hydrophobic flame retardant coating
[1]
Mohammed L, Ansari M N M, Pua G, Jawaid M, Islam M S. Int. J. Polym. Sci., 2015, 2015: 1.
[2]
Ou Y X. Practical Flame Retardant Technology. Beijing: Chemical Industry Press, 2002.
(欧育湘. 实用阻燃技术. 北京: 化学工业出版社, 2002.).
[3]
Lu L G, Chen H, Cao F, Dong X L, Tang K. Acta Chim. Sinica, 2010, 68(15): 1532.
(卢林刚, 陈淮思, 曹飞, 董希琳, 唐凯. 化学学报, 2010, 68(15): 1532.).
[4]
Wang X W, Liu J F, Yin Y G. Prog. Chem., 2010, 22(10): 1983.
(王晓伟, 刘景富, 阴永光. 化学进展, 2010, 22(10): 1983.).
[5]
Szmytke E, BrzezińskaD, Machnowski W, Kokot S. Int. J. Environ. Res. Public Health, 2022, 19(19): 12442.

doi: 10.3390/ijerph191912442     URL    
[6]
Qi L Y, Qiu S L, Xi J C, Yu B, Hu Y, Xing W Y. J. Colloid Interface Sci., 2022, 607: 2019.

doi: 10.1016/j.jcis.2021.10.021     URL    
[7]
Wang B, Xu Y J, Li P, Zhang F Q, Liu Y, Zhu P. Appl. Surf. Sci., 2020, 509: 145323.

doi: 10.1016/j.apsusc.2020.145323     URL    
[8]
Wang S, KongD Z, Chen H F, Wang Z, Lu Z. Ind. Crops Prod., 2022, 178: 114574.

doi: 10.1016/j.indcrop.2022.114574     URL    
[9]
Dong C H, Sun L, Ma X B, Lu Z, He P S, Zhu P. Polymers, 2019, 11(11): 1829.

doi: 10.3390/polym11111829     URL    
[10]
Hamdani S, Longuet C, PerrinD, Lopez-cuesta J M, Ganachaud F. Polym.Degrad. Stab., 2009, 94(4): 465.
[11]
Dobrynin M V, Pretorius C, KamaD V, Roodt A, Boyarskiy V P, Islamova R M. J. Catal., 2019, 372: 193.

doi: 10.1016/j.jcat.2019.03.004    
[12]
Soroushnia S, Bastani S, Mohseni Bozorgi M, Rostami M. Prog. Org. Coat., 2015, 85: 31.
[13]
Li Y Y, Zhang R F, Yu H, Chen G, Zhu M, Qiu B W, Zou H, Li X Y. ACS Appl. Polym. Mater., 2020, 2(2): 418.

doi: 10.1021/acsapm.9b00893     URL    
[14]
Sun J, Zou X B, Xu Z Q, Ge Z. RSC Adv., 2023, 13(18): 12023.

doi: 10.1039/D3RA01142A     URL    
[15]
ChenD Z, Chen F X, Zhang H W, Yin X Z, Zhou Y S. Cellulose, 2016, 23(1): 941.

doi: 10.1007/s10570-015-0820-y     URL    
[16]
ChenD Z, Mai Z H, Liu X, YeD Z, Zhang H W, Yin X Z, Zhou Y S, Liu M, Xu W L. Cellulose, 2018, 25(6): 3635.

doi: 10.1007/s10570-018-1790-7    
[17]
Xu J, Niu Y J, Xie Z P, Liang F, Guo F H, Wu J J. Chem. Eng. J., 2023, 451: 138566.

doi: 10.1016/j.cej.2022.138566     URL    
[18]
Qi P, Li Y C, Yao Y, Sun J, Li L, Liu J, Gu X Y, Li H F, Zhang S. Chem. Eng. J., 2023, 452: 139453.

doi: 10.1016/j.cej.2022.139453     URL    
[19]
Zhang D Q, Williams B L, Shrestha S B, Nasir Z, Becher E M, Lofink B J, Santos V H, Patel H, Peng X H, Sun L Y. J. Colloid Interface Sci., 2017, 505: 892.

doi: 10.1016/j.jcis.2017.06.087     URL    
[20]
Zhang D Q, Williams B L, Becher E M, Shrestha S B, Nasir Z, Lofink B J, Santos V H, Patel H, Peng X H, Sun L Y. Adv. Compos. Hybrid Mater., 2018, 1(1): 177.

doi: 10.1007/s42114-017-0006-1     URL    
[21]
Liu X, Shao Q Q, Cao J Q, Du Z Q, Yu WD. Cellulose, 2022, 29(1): 619.

doi: 10.1007/s10570-021-04212-y    
[22]
Chen Z H, Dong C H, Li Q, Pu Y, Lu Z. Fibers Polym., 2018, 19(4): 861.

doi: 10.1007/s12221-018-7874-z    
[23]
Wei D D, Dong C H, Chen Z H, Liu J, Li Q, Lu Z. J. Appl. Polym. Sci., 2019, 136(13): 47280.

doi: 10.1002/app.v136.13     URL    
[24]
Wenzel R N. J. Phys. Chem., 1949, 53(9): 1466.
[25]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546     URL    
[26]
Zhang W L, WangD H, Sun Z N, Song J N, Deng X. Chem. Soc. Rev., 2021, 50(6): 4031.

doi: 10.1039/D0CS00751J     URL    
[27]
Hermann S, Wessig M, KollofrathD, Gerigk M, Hagedorn K, Odendal J A, Hagner M, Drechsler M, Erler P, Fonin M, Maret G, Polarz S. Angew. Chem. Int. Ed., 2017, 56(20): 5475.

doi: 10.1002/anie.v56.20     URL    
[28]
Pan R, Cai M Y, Liu W J, Luo X, Chen C H, Zhang H J, Zhong M L. J. Mater. Chem. A, 2019, 7(30): 18050.

doi: 10.1039/C9TA04484A     URL    
[29]
Zhang X G, Liu Z J, Li Y, Wang C J, Zhu Y J, Wang H Y, Wang J T. Chem. Eng. J., 2019, 371: 276.

doi: 10.1016/j.cej.2019.04.040     URL    
[30]
Rahmawan Y, Xu L B, Yang S. J. Mater. Chem. A, 2013, 1(9): 2955.

doi: 10.1039/C2TA00288D     URL    
[31]
Wang Y Q, Gao X N, Chen P, Huang Z W, Xu T, Fang Y T, Zhang Z G. Appl. Therm. Eng., 2016, 96: 699.

doi: 10.1016/j.applthermaleng.2015.11.106     URL    
[32]
Zhou X, Wang J, He L X, Qiu S L, Pan R M. Compos. Commun., 2023, 38: 101504.

doi: 10.1016/j.coco.2023.101504     URL    
[33]
Zhu K Y, Jiang Z L, Xu X T, Zhang Y, Zhu M, Wang J H, Ren A. RSC Adv., 2022, 12(1): 168.

doi: 10.1039/D1RA07410E     URL    
[34]
Carcouët C C M C, Esteves A C C, Hendrix M M R M, van Benthem R A T M, de With G. Adv. Funct. Mater., 2014, 24(36): 5745.

doi: 10.1002/adfm.v24.36     URL    
[35]
YiD L, Xu C L, Tang RD, Zhang X H, Caruso F, Wang Y J. Angew. Chem. Int. Ed., 2016, 55(29): 8375.

doi: 10.1002/anie.v55.29     URL    
[36]
Zhang M, Wang C Y. Carbohydr. Polym., 2013, 96(2): 396.

doi: 10.1016/j.carbpol.2013.04.025     URL    
[37]
He L, Chen T, Zhang Y, Hu L R, Wang T, Han R, He J L, Luo W, Liu Z G, Deng J N, Chen M J. Compos. B Eng., 2022, 230: 109553.

doi: 10.1016/j.compositesb.2021.109553     URL    
[38]
He L, Chen T, Wang T, Zhao H B, Deng J N, Li T T, Fu Z C, Dong Q X, Chen M J. Compos. B Eng., 2023, 253: 110539.

doi: 10.1016/j.compositesb.2023.110539     URL    
[39]
Cui Z L, Drioli E, Lee Y M. Prog. Polym. Sci., 2014, 39(1): 164.

doi: 10.1016/j.progpolymsci.2013.07.008     URL    
[40]
Lin D M, Zeng X R, Li H Q, Lai X J. Cellulose, 2018, 25(5): 3135.

doi: 10.1007/s10570-018-1748-9    
[41]
Wang F Y, Guo Z G. J. Colloid Interface Sci., 2019, 547: 153.

doi: 10.1016/j.jcis.2019.03.095     URL    
[42]
Liu X, Chen J L, Gu L X, Nguyen L T, Cao J Q, Liu H L, Du Z Q, Yu W D. Text. Res. J., 2022, 92(15/16): 2873.

doi: 10.1177/00405175211022628     URL    
[43]
Song F, Zhao Q, Zhu T Y, Bo C Y, Zhang M, Hu L H, Zhu X B, Jia P Y, Zhou Y H. Mater.Des., 2022, 221: 110925.
[44]
Ma L L, Liu H, Wen X, Szymańska K, Mijowska E, Hao C C, Tang T, Lei Q Q. Compos. B Eng., 2022, 243: 110176.

doi: 10.1016/j.compositesb.2022.110176     URL    
[45]
Wang T, Xu J, Zhan Y J, He L, Deng J N, Fu Z C, Zhao H B, Chen M J. ACS Sustain. Chem. Eng., 2023, 11(12): 4838.

doi: 10.1021/acssuschemeng.3c00028     URL    
[46]
Chen S P, Li H Q, Lai X J, Zhang S F, Zeng X R. Prog. Org. Coat., 2021, 159: 106446.
[47]
Fu J, Yang F C, Chen G P, Zhang G F, Huang C, Guo Z G. New J. Chem., 2019, 43(25): 10183.

doi: 10.1039/C9NJ02240F     URL    
[48]
Owens G J, Singh R K, Foroutan F, Alqaysi M, Han C M, Mahapatra C, Kim H W, Knowles J C. Prog. Mater. Sci., 2016, 77: 1.

doi: 10.1016/j.pmatsci.2015.12.001     URL    
[49]
LinD M, Zeng X R, Li H Q, Lai X J, Wu T Y. J. Colloid Interface Sci., 2019, 533: 198.

doi: 10.1016/j.jcis.2018.08.060     URL    
[50]
Zhang W C, Camino G, Yang R J. Prog. Polym. Sci., 2017, 67: 77.

doi: 10.1016/j.progpolymsci.2016.09.011     URL    
[51]
Niu Z Q, Li G, Ma X Y, Shen S, Xin Y, Cai L F, Chen F, Zhang C S, Hou X. Compos. A Appl. Sci. Manuf., 2022, 155: 106855.

doi: 10.1016/j.compositesa.2022.106855     URL    
[52]
Carosio F, Di Pierro A, Alongi J, Fina A, Saracco G. J. Colloid Interface Sci., 2018, 510: 142.

doi: 10.1016/j.jcis.2017.09.059     URL    
[53]
Qi Z, Zhang W C, He XD, Yang R J. Compos. Sci. Technol., 2016, 127: 8.

doi: 10.1016/j.compscitech.2016.02.026     URL    
[54]
Xue C H, Fan Q Q, Guo X J, An Q F, Jia S T. Appl. Surf. Sci., 2019, 465: 241.

doi: 10.1016/j.apsusc.2018.09.156     URL    
[55]
Chen S S, Li X, Li Y, Sun J Q. ACS Nano, 2015, 9(4): 4070.

doi: 10.1021/acsnano.5b00121     URL    
[56]
Chen T, Hong J, Peng C H, Chen G R, Yuan C H, Xu Y T, Zeng B R, Dai L Z. Carbohydr. Polym., 2019, 208: 14.

doi: 10.1016/j.carbpol.2018.12.023     URL    
[57]
Guo W W, Wang X, Huang J L, Zhou Y F, Cai W, Wang J L, Song L, Hu Y. Chem. Eng. J., 2020, 398: 125661.

doi: 10.1016/j.cej.2020.125661     URL    
[58]
Zhuo Y Z, Xiao S B, Amirfazli A, He J Y, Zhang Z L. Chem. Eng. J., 2021, 405: 127088.

doi: 10.1016/j.cej.2020.127088     URL    
[59]
Chrusciel J J, Lesniak E. Prog. Polym. Sci., 2015, 41: 67.

doi: 10.1016/j.progpolymsci.2014.08.001     URL    
[60]
Qi P, Wang S H, Wang W J, Sun J, Yuan H F, Zhang S. Int. J. Biol. Macromol., 2022, 205: 261.

doi: 10.1016/j.ijbiomac.2022.02.062     URL    
[61]
Zhang C Y, Xie H, Du Y, Li X L, Zhou W L, Wu T, Qu J P. Adv. Funct. Mater., 2023, 33(14): 2213398.

doi: 10.1002/adfm.v33.14     URL    
[62]
He J L, Luo W, Wang T, He L, Deng J N, Fu Z C, Grunlan J C, Chen M J. ACS Appl. Mater. Interfaces, 2022, 14(48): 54225.

doi: 10.1021/acsami.2c16343     URL    
[63]
Ran G W, Liu XD, Guo J, Sun J, Li H F, Gu X Y, Zhang S. Compos. B Eng., 2019, 173: 106772.

doi: 10.1016/j.compositesb.2019.04.033     URL    
[64]
Liang F W, Xu Y, Chen S, Zhu Y L, Huang Y X, Fei B, Guo W W. ACS Appl. Mater. Interfaces, 2022, 14(50): 56027.

doi: 10.1021/acsami.2c14709     URL    
[65]
Gu J J, Yan X F, QiD M, Xie R Y, Yang X M, Li Y B, Li J W. Cellulose, 2023, 30(1): 591.

doi: 10.1007/s10570-022-04892-0    
[66]
Zhang B, Meng Y, Han J. Fibers Polym., 2018, 19(4): 821.

doi: 10.1007/s12221-018-7916-6    
[67]
Li S N, Zhong L, Huang S, WangD F, Zhang F X, Zhang G X. Cellulose, 2019, 26 (10): 6333.

doi: 10.1007/s10570-019-02503-z    
[68]
Liu L X, Pan Y, Zhao Y Y, Cai W, Gui Z, Hu Y, Wang X. Cellulose, 2020, 27(10): 6011.

doi: 10.1007/s10570-020-03148-z    
[69]
Wang F, Li J Y, Pi J, Song F, Luo Y Q, Wang X L, Wang Y Z. Chem. Eng. J., 2021, 421: 127793.

doi: 10.1016/j.cej.2020.127793     URL    
[70]
Liu C, Fang Y F, Miao X M, Pei Y B, Yan Y, Xiao W J, Wu L B. Sep. Purif. Technol., 2019, 229: 115801.

doi: 10.1016/j.seppur.2019.115801     URL    
[71]
Dong Y Q, Bai W B, Zhang W, Lin Y C, Jian R K. Int. J. Biol. Macromol., 2023, 235: 123782.

doi: 10.1016/j.ijbiomac.2023.123782     URL    
[72]
Wang X Y, Liu Z, Liu X F, Su Y, Wang J, Fan T T, Ning X, Ramakrishn S, Long Y Z. Carbon, 2022, 193: 77.

doi: 10.1016/j.carbon.2022.03.028     URL    
[73]
Lv L Z, Zhao W J, Zhong X M, Fu H Q. ACS Appl. Mater. Interfaces, 2020, 12(40): 45296.

doi: 10.1021/acsami.0c13229     URL    
[74]
Tsai M T, Chang S W, Chen Y J, Chen H L, Lan P H, ChenD C, Ko F H, Lo Y C, Wang H C, WanD H. Nano Today, 2023, 48: 101745.

doi: 10.1016/j.nantod.2022.101745     URL    
[75]
Wang S H, Li J S, Wang W J, Wang X G, Li H F, Sun J, Fei B, Gu X Y, Zhang S. Compos. A Appl. Sci. Manuf., 2021, 140: 106170.

doi: 10.1016/j.compositesa.2020.106170     URL    
[76]
Li S W, Yu L Y, Xiong J H, Xiong Y, Bi S G, Quan H. Polymers, 2022, 14(23): 5314.

doi: 10.3390/polym14235314     URL    
[77]
Zhang Z C, YangD, Yang H F, Li Y Q, Lu S R, Cai R, Tan W H. Nano Lett., 2021, 21(5): 2104.

doi: 10.1021/acs.nanolett.0c04789     URL    
[78]
Wu Q, Gong L X, Li Y, Cao C F, Tang L C, Wu L B, Zhao L, Zhang GD, Li S N, Gao J F, Li Y J, Mai Y W. ACS Nano, 2018, 12(1): 416.

doi: 10.1021/acsnano.7b06590     URL    
[79]
Mao M, Yu K X, Cao C F, Gong L X, Zhang GD, Zhao L, Song P G, Gao J F, Tang L C. Chem. Eng. J., 2022, 427: 131615.

doi: 10.1016/j.cej.2021.131615     URL    
[80]
Guo K Y, Wu Q, Mao M, Chen H, Zhang GD, Zhao L, Gao J F, Song P G, Tang L C. Compos. B Eng., 2020, 193: 108017.

doi: 10.1016/j.compositesb.2020.108017     URL    
[81]
Liu L, Ma Z W, Zhu M H, Liu L N, Dai J F, Shi Y Q, Gao J F, Dinh T, Nguyen T, Tang L C, Song P G. J. Mater. Sci. Technol., 2023, 132: 59.

doi: 10.1016/j.jmst.2022.05.036     URL    
[1] 张赛男, 吴翠霞, 贺军辉, 王明显, 覃双芝. 用于光调控的材料及微纳结构的研究和应用[J]. 化学进展, 2023, 35(8): 1136-1153.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[4] 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 微纳结构柔性压力传感器的制备及应用[J]. 化学进展, 2019, 31(6): 800-810.
[5] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[6] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.