English
新闻公告
More
化学进展 2024, Vol. 36 Issue (1): 120-131 DOI: 10.7536/PC230423 前一篇   后一篇

• 综述 •

新型光纤生物传感器的构建及在食品污染物检测中的应用

黄家麟1, 秦垚华2, 唐盛1,*(), 孔德昭2, 刘畅2,*()   

  1. 1 江苏科技大学环境与化学工程学院 镇江 212003
    2 江苏科技大学粮食学院 镇江 212003
  • 收稿日期:2023-04-24 修回日期:2023-08-30 出版日期:2024-01-24 发布日期:2023-12-20
  • 作者简介:

    唐盛 博士,教授,博士生导师,入选江苏省“双创博士”、“青蓝工程”优秀青年骨干教师等,主要研究方向为样品前处理及色谱分析方法学。近年来主持国家自然科学基金面上项目、青年基金等10余项,在Adv. Funct. Mater.Anal. Chem.J. Hazard. Mater.Biosens. Bioelectron.等期刊发表一作/通讯SCI论文60余篇,授权国家发明专利10项,获江苏省分析测试协会科学技术奖一等奖1项、二等奖2项。入选2022、2023全球Top 2%顶尖科学家年度影响力榜单。担任Chin. Chem. Lett.J. Chromatogr. A等期刊编委。

    刘畅 博士,讲师,硕士生导师,江苏省“双创博士”,主要研究方向为生物传感器及食品有害物快速检测。近年来在Anal. Chem.Food Chem.Anal. Chim. Acta等期刊发表一作/通讯SCI论文10余篇,授权国家发明专利1项,获江苏省分析测试协会科学技术奖一等奖1项。

  • 基金资助:
    国家自然科学基金(22276080); 江苏省双创博士项目(1184902001)

Construction and Application in Food Contaminants Detection of Novel Optical Fiber Biosensors

Jialin Huang1, Yaohua Qin2, Sheng Tang1(), Dezhao Kong2, Chang Liu2()   

  1. 1 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
    2 School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received:2023-04-24 Revised:2023-08-30 Online:2024-01-24 Published:2023-12-20
  • Contact: * e-mail: tangsheng.nju@gmail.com (Sheng Tang); liuchang01890@just.edu.cn (Chang Liu)
  • Supported by:
    National Natural Science Foundation of China(22276080); Shuangchuang Ph.D Award of Jiangsu Province(1184902001)

食品安全与人们的生活质量息息相关,简便、灵敏及智能化的食品污染物检测方法是食品安全和健康管理的重要保障。传统的分析方法存在检测过程耗时长、成本较高、操作复杂等局限性。基于光与流体相互作用所构建的光纤生物传感器具有信号灵敏、检测快速、实时响应等特点,是近年来兴起的具有多样化功能和高灵敏性的先进光学传感方法,能够实现对食品中各类污染物地快速、精准检测。本文总结了各类新型光纤生物传感器的基本原理、分类及研究现状,综述了其在食品中真菌毒素、重金属离子、抗生素、农药残留物等各类污染物检测方面的应用进展,并展望了这种新型生物传感策略的发展趋势。

Food safety is closely related to people’s quality of life. The establishment of simple, sensitive and intelligent detection methods for food contaminants is an important guarantee for food safety and health management. Nevertheless, traditional analysis methods have certain limitations such as time-consuming detection process, high cost, and complicated operation. Optical fiber biosensors, which rely on the interaction between light and fluids, have the characteristics of good signal sensitivity, rapid detection and real-time response. They have recently emerged as advanced optical sensing methods with diverse functions and high sensitivity, and can realize rapid and accurate detection of various pollutants in food. In this review, we summarized the basic principles, classification and research status of various novel optical fiber biosensors. The applications in the detection of various pollutants such as mycotoxins, heavy metal ions, antibiotics, and pesticide residues in food samples were introduced. Furthermore, the development trend of this novel sensing strategy was also briefly discussed.

Contents

1 Introduction

2 Optical fiber biosensor

2.1 Composition of optical fiber biosensor

2.2 Basic principle of optical fiber biosensor

2.3 Classification of optical fiber biosensor

3 Application of optical fiber biosensors in detection of food contaminants

3.1 Mycotoxin

3.2 Heavy metal ion

3.3 Antibiotic

3.4 Pesticide residue

3.5 Pathogen

4 Conclusion and prospect

()
图1 (a) 光纤传感器的基本结构;(b) 不同结构的光纤[20]
Fig. 1 (a) Basic structure of optical fiber sensor; (b) different structures of optical fiber[20]. Copyright 2021, Multidisciplinary Digital Publishing Institute
图2 光纤传感设备检测过氧化氢原理图[29]
Fig. 2 Schematic diagram of an optical fiber sensing device for detecting H2O2[29]. Copyright 2021, Elsevier
图3 双抗体夹心免疫传感器检测人免疫球蛋白G示意图[33]
Fig. 3 Schematic diagram of double antibody sandwich immunosensor for detecting human-immunoglobulin G[33]. Copyright 2021, Multidisciplinary Digital Publishing Institute
图4 无酶扩增偶联CRISPR-Cas13a检测SARS-CoV-2[35]
Fig. 4 SARS-CoV-2 detection with enzyme-free amplification coupled CRISPR-Cas13a[35]. Copyright 2021, Elsevier
图5 (a)基于细菌的光纤传感器检测水中重金属离子示意图;(b)实验装置示意图[39]
Fig. 5 (a) Schematic of the bacteria based fiber-optic sensor for monitoring heavy metal in water; (b) schematic of the experimental setup[39]. Copyright 2019, Elsevier
图6 LSPR光纤生物传感器检测玉米赤霉烯酮示意图[19]
Fig. 6 Schematic diagram of the optical fiber-based LSPR biosensors for detecting zearalenone[19]. Copyright 2021, Elsevier
图7 基于FRET同时检测AFM1和OTA的双色适配体传感器示意图[48]
Fig. 7 Schematic illustration of FRET-based dual-color aptasensor for simultaneous detection of AFM1 and OTA[48]. Copyright 2018, Springer Vienna
图8 便携式倏逝波光流控生物传感器检测Hg2+示意图[49]
Fig. 8 Schematic diagram of portable evanescent wave optofluidic biosensor for detecting Hg2+[49]. Copyright 2021, Elsevier
图9 可调谐检测范围的光纤介导免疫传感器用于多重检测兽药残留[57]
Fig. 9 Optical fiber-mediated immunosensor with a tunable detection range for multiplexed analysis of veterinary drug residues[57]. Copyright 2019, American Chemical Society
图10 用于农药固相提取和检测的功能性等离子体光纤传感器的制备示意图[61]
Fig. 10 Schematic of the preparation of functional plasmonic optical-fiber sensor for pesticides solid-phase extraction and detection[61]. Copyright 2020, Elsevier
图11 基于光纤探针的量子点免疫荧光生物传感器检测金黄色葡萄球菌[67]
Fig. 11 Optical fiber probe-based quantum dots immunofluorescence biosensors in the detection of staphylococcus aureus[67]. Copyright 2021, Frontiers Media S.A.
[1]
Yao Y, Hu T, Song C, Liu C, Kong D Z, Huang C, Zhu J, Shen W, Shi H W, Tang S. Anal. Chim. Acta, 2021, 1187: 339169.

doi: 10.1016/j.aca.2021.339169     URL    
[2]
Yan C, Teng J, Liu F Y, Yao B B, Xu Z L, Yao L, Chen W. Microchem. J., 2020, 159: 105414.

doi: 10.1016/j.microc.2020.105414     URL    
[3]
Feng Y, Zhang W J, Liu Y W, Xue J M, Zhang S Q, Li Z J. Molecules, 2018, 23(8):1953.

doi: 10.3390/molecules23081953     URL    
[4]
Wang W J, Fu M, Zhang Q D, Zhen Y R, Liu J J, Xiang S N, Michal J J, Jiang Z H, Zhou X, Liu B. Food Chem., 2021, 341: 128170.

doi: 10.1016/j.foodchem.2020.128170     URL    
[5]
Al-Dalali S, Li C, Xu B C. Food Chem., 2022, 376: 131881.

doi: 10.1016/j.foodchem.2021.131881     URL    
[6]
Jia Y X, Zhao S Q, Li D S, Yang J L, Yang L. Food Contr., 2023, 144: 109361.

doi: 10.1016/j.foodcont.2022.109361     URL    
[7]
Allsop T, Neal R. Sensors, 2019, 19(22): 4874.

doi: 10.3390/s19224874     URL    
[8]
Kadhum Hisham H. Am. J. Remote. Sens., 2018, 6(1): 1.
[9]
Al Mahmud R, Sagor R H, Khan M Z M. Opt. Laser Technol., 2023, 159: 108939.

doi: 10.1016/j.optlastec.2022.108939     URL    
[10]
Caucheteur C, Guo T, Albert J. Anal. Bioanal. Chem., 2015, 407(14): 3883.

doi: 10.1007/s00216-014-8411-6     URL    
[11]
Nag P, Sadani K, Mohapatra S, Mukherji S, Mukherji S,. Anal. Chem., 2021, 93(4): 2299.

doi: 10.1021/acs.analchem.0c04169     URL    
[12]
Xu Y, Luo Z W, Chen J M, Huang Z J, Wang X, An H F, Duan Y X. Anal. Chem., 2018, 90(22): 13640.

doi: 10.1021/acs.analchem.8b03905     URL    
[13]
Sai V V R, Kundu T, Mukherji S. Biosens. Bioelectron., 2009, 24(9): 2804.

doi: 10.1016/j.bios.2009.02.007     pmid: 19285853
[14]
Zakaria R, Kam W, Ong Y S, Yusoff S F A Z, Ahmad H, Mohammed W S. J. Mod. Opt., 2017, 64(14): 1443.

doi: 10.1080/09500340.2017.1293858     URL    
[15]
Gasior K, Martynkien T, Wojcik G, Mergo P, Urbanczyk W. Opto Electron. Rev., 2017, 25(1): R1.

doi: 10.1016/j.opelre.2017.05.001     URL    
[16]
Li H T, Huang Y Y, Hou G H, Xiao A X, Chen P W, Liang H, Huang Y G, Zhao X T, Liang L L, Feng X H, Guan B O. Sci. Adv., 2019, 5(12): eaax4659.

doi: 10.1126/sciadv.aax4659     URL    
[17]
Jia H, Zhang A, Yang Y Q, Cui Y Q, Xu J R, Jiang H W, Tao S C, Zhang D W, Zeng H P, Hou Z Y, Feng J J. Lab Chip, 2021, 21(12): 2398.

doi: 10.1039/D0LC01231A     URL    
[18]
Wang M, Yang F, Dai S X, Cao Z F, Su J X, Ding S J, Zhang P Q. J. Light. Technol., 2021, 39(14): 4828.

doi: 10.1109/JLT.2021.3078146     URL    
[19]
Xu Y C, Xiong M, Yan H. Sens. Actuat. B Chem., 2021, 336: 129752.

doi: 10.1016/j.snb.2021.129752     URL    
[20]
Soares M S, Vidal M, Santos N F, Costa F M, Marques C, Pereira S O, Leitão C. Biosensors, 2021, 11(9): 305.

doi: 10.3390/bios11090305     URL    
[21]
Li L K, Zhang Y N, Zheng W L, Lv R Q, Zhao Y. Opt. Lett., 2023, 48(4): 952.

doi: 10.1364/OL.480724     URL    
[22]
Wang Q, Jiang X, Niu L Y, Fan X C. Opt. Lasers Eng., 2020, 128: 105997.

doi: 10.1016/j.optlaseng.2019.105997     URL    
[23]
Kant R, Tabassum R, Gupta B D. Sens. Actuat. B Chem., 2017, 242: 810.

doi: 10.1016/j.snb.2016.09.178     URL    
[24]
Huang Q, Zhu W J, Wang Y, Deng Z, Li Z, Peng J K, Lyu D J, Lewis E, Yang M H. Sens. Actuators B, 2020, 321: 128480.

doi: 10.1016/j.snb.2020.128480     URL    
[25]
Singh R, Kumar S, Liu F Z, Shuang C, Zhang B Y, Jha R, Kaushik B K. Biosens. Bioelectron., 2020, 168: 112557.

doi: 10.1016/j.bios.2020.112557     URL    
[26]
Zhou J R, Qi Q Q, Wang C, Qian Y F, Liu G M, Wang Y B, Fu L L. Biosens. Bioelectron., 2019, 142: 111449.

doi: 10.1016/j.bios.2019.111449     URL    
[27]
Fang S Y, Song D, Zhuo Y X, Chen Y, Zhu A N, Long F. Biosens. Bioelectron., 2021, 185: 113288.

doi: 10.1016/j.bios.2021.113288     URL    
[28]
Liang G L, Luo Z W, Liu K P, Wang Y M, Dai J X, Duan Y X. Crit. Rev. Anal. Chem., 2016, 46(3): 213.

doi: 10.1021/ac60338a012     URL    
[29]
Semwal V, Gupta B D. Sens. Actuat. B Chem., 2021, 329: 129062.

doi: 10.1016/j.snb.2020.129062     URL    
[30]
Wang Y, Zhu G, Li M Y, Singh R, Marques C, Min R, Kaushik B K, Zhang B Y, Jha R, Kumar S. IEEE T Nanobioscie, 2021, 20(3): 377.
[31]
Chaudhari P P, Chau L K, Tseng Y T, Huang C J, Chen Y L. Mikrochim. Acta, 2020, 187(7): 396.

doi: 10.1007/s00604-020-04381-w     pmid: 32564163
[32]
Kim H M, Jeong D H, Lee H Y, Park J H, Lee S K. Sci. Rep., 2021, 11(1): 15985.

doi: 10.1038/s41598-021-95375-y    
[33]
Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G. Nanomaterials, 2021, 11(8):2137.

doi: 10.3390/nano11082137     URL    
[34]
Kim H M, Lee H Y, Park J H, Lee S K. ACS Sens., 2022, 7(5): 1451.

doi: 10.1021/acssensors.2c00154     URL    
[35]
Yang Y H, Liu J C, Zhou X H. Biosens. Bioelectron., 2021, 190: 113418.

doi: 10.1016/j.bios.2021.113418     URL    
[36]
Janik M, Hamidi S V, Koba M, Perreault J, Walsh R, Bock W J, Smietana M. Lab Chip, 2021, 21(2): 397.

doi: 10.1039/D0LC01069C     URL    
[37]
Tseng Y T, Li W Y, Yu Y W, Chiang C Y, Liu S Q, Chau L K, Lai N S, Chou C C. Sensors, 2020, 20(11):3137.

doi: 10.3390/s20113137     URL    
[38]
Ngo L T, Wang W K, Tseng Y T, Chang T C, Kuo P L, Chau L K, Huang T T. Anal. Bioanal. Chem., 2021, 413(12): 3329.

doi: 10.1007/s00216-021-03271-1    
[39]
Halkare P, Punjabi N, Wangchuk J, Nair A, Kondabagil K, Mukherji S. Sens. Actuat. B Chem., 2019, 281: 643.

doi: 10.1016/j.snb.2018.10.119     URL    
[40]
Futra D, Heng L E, Ahmad A, Surif S, Ling T. Sensors, 2015, 15(6): 12668.

doi: 10.3390/s150612668     pmid: 26029952
[41]
Zajic J, Ripp S, Trogl J, Kuncova G, Pospisilova M. Sensors, 2020, 20(11):3237.

doi: 10.3390/s20113237     URL    
[42]
Loyez M, DeRosa M C, Caucheteur C, Wattiez R. Biosens. Bioelectron., 2022, 196: 113694.

doi: 10.1016/j.bios.2021.113694     URL    
[43]
Xu B, Xiang X Y, Ding L Y, Luo Z H, Zhao J, Huang J, Li H J, Jiang X D. IEEE Sens. J., 2023, 23(7): 6832.

doi: 10.1109/JSEN.2022.3225086     URL    
[44]
Narsaiah K, Jha S N, Bhardwaj R, Sharma R, Kumar R. J. Food Sci. Technol., 2012, 49(4): 383.
[45]
Ganesan A R, Mohan K, Karthick Rajan D, Pillay A A, Palanisami T, Sathishkumar P, Conterno L. Food Chem., 2022, 378: 131978.

doi: 10.1016/j.foodchem.2021.131978     URL    
[46]
Chen H Y, Zhang L, Hu Y, Zhou C S, Lan W, Fu H Y, She Y B. Sens. Actuators B, 2021, 329: 129135.

doi: 10.1016/j.snb.2020.129135     URL    
[47]
Lee B B, Park J H, Byun J Y, Kim J H, Kim M G. Biosens. Bioelectron., 2018, 102: 504.

doi: 10.1016/j.bios.2017.11.062     URL    
[48]
Song D, Yang R, Fang S Y, Liu Y P, Long F. Microchim. Acta, 2018, 185(11): 508.

doi: 10.1007/s00604-018-3046-5    
[49]
Zhou Y, Wang H L, Song D, Li Z G, Han S T, Long F, Zhu A N. Anal. Chim. Acta, 2021, 1155: 338351.

doi: 10.1016/j.aca.2021.338351     URL    
[50]
Han S T, Zhou X H, Tang Y F, He M, Zhang X Y, Shi H C, Xiang Y. Biosens. Bioelectron., 2016, 80: 265.

doi: 10.1016/j.bios.2016.01.070     URL    
[51]
Zhang J J, Cheng F F, Li J J, Zhu J J, Lu Y. Nano Today, 2016, 11(3): 309.

doi: 10.1016/j.nantod.2016.05.010     URL    
[52]
Sadani K, Nag P, Mukherji S. Biosens. Bioelectron., 2019, 134: 90.

doi: S0956-5663(19)30250-7     pmid: 30959393
[53]
Verma R, Gupta B D. Food Chem., 2015, 166: 568.

doi: S0308-8146(14)00931-5     pmid: 25053095
[54]
Zhou C, Zou H M, Sun C J, Li Y X. Food Chem., 2021, 361: 130109.

doi: 10.1016/j.foodchem.2021.130109     URL    
[55]
Khan M Z H. Crit. Rev. Anal. Chem., 2022, 52(4): 780.

doi: 10.1080/10408347.2020.1828027     URL    
[56]
Shrivastav A M, Usha S P, Gupta B D. Biosens. Bioelectron., 2017, 90: 516.

doi: S0956-5663(16)31058-2     pmid: 27825873
[57]
Nie R B, Xu X X, Chen Y P, Yang L. ACS Sens., 2019, 4(7): 1864.

doi: 10.1021/acssensors.9b00653     URL    
[58]
Tang Y F, Gu C M, Wang C, Song B D, Zhou X H, Lou X H, He M. Biosens. Bioelectron., 2018, 102: 646.

doi: 10.1016/j.bios.2017.12.006     URL    
[59]
Zhu Q, Liu L H, Wang R Y, Zhou X H. J. Hazard. Mater., 2021, 403: 123941.
[60]
Carvalho F P. Food Energy Secur., 2017, 6(2): 48.

doi: 10.1002/fes3.2017.6.issue-2     URL    
[61]
Miliutina E, Guselnikova O, Burtsev V, Elashnikov R, Postnikov P, Svorcik V, Lyutakov O. Talanta, 2020, 208: 120480.

doi: 10.1016/j.talanta.2019.120480     URL    
[62]
Long F, Zhu A N, Shi H C, Sheng J W, Zhao Z. Chemosphere, 2015, 120: 615.

doi: 10.1016/j.chemosphere.2014.09.072     URL    
[63]
Qu L L, Ying Y L, Yu R J, Long Y T. Mikrochim. Acta, 2021, 188(6): 201.

doi: 10.1007/s00604-021-04864-4    
[64]
Heredia N, García S. Anim. Nutr., 2018, 4(3): 250.

doi: 10.1016/j.aninu.2018.04.006     pmid: 30175252
[65]
Franz C M A P, den Besten H M W, Böhnlein C, Gareis M, Zwietering M H, Fusco V. Trends Food Sci. Technol., 2018, 81: 155.

doi: 10.1016/j.tifs.2018.09.019     URL    
[66]
Zhang R Y, Belwal T, Li L, Lin X Y, Xu Y Q, Luo Z S. Compr. Rev. Food Sci. Food Saf., 2020, 19(4): 1465.

doi: 10.1111/crf3.v19.4     URL    
[67]
Cui J W, Zhou M J, Li Y, Liang Z X, Li Y Q, Yu L, Liu Y, Liang Y, Chen L G, Yang C X. Front. Cell. Infect. Microbiol., 2021, 11: 665241.

doi: 10.3389/fcimb.2021.665241     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[3] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[6] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[7] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[8] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[9] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[10] 董世彪, 焦雄, 赵荣涛, 许金坤, 宋宏彬, 郝荣章. DNA四面体结构纳米材料及其应用[J]. 化学进展, 2015, 27(9): 1191-1197.
[11] 宋英攀, 冯苗, 詹红兵*. 石墨烯的边界效应在电化学生物传感器中的应用[J]. 化学进展, 2013, 25(05): 698-706.
[12] 李晶, 杨晓英*. 新型碳纳米材料——石墨烯及其衍生物在生物传感器中的应用[J]. 化学进展, 2013, 25(0203): 380-396.
[13] 闻艳丽, 林美华, 裴昊, 鲁娜, 樊春海*. 基于电化学技术的microRNA生物传感器[J]. 化学进展, 2012, (9): 1656-1664.
[14] 宋英攀, 冯苗, 詹红兵*. 石墨烯纳米复合材料在电化学生物传感器中的应用[J]. 化学进展, 2012, (9): 1665-1673.
[15] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.