English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1764-1782 DOI: 10.7536/PC230422 前一篇   后一篇

• 综述 •

水热炭化制备手性碳点及其应用

范金玥, 孔祥鑫, 李伟, 刘守新*()   

  1. 生物质材料科学与技术教育部重点实验室 东北林业大学 哈尔滨 150040
  • 收稿日期:2023-04-24 修回日期:2023-08-23 出版日期:2023-12-24 发布日期:2023-09-01
  • 基金资助:
    国家自然科学基金项目(32371808); 国家自然科学基金项目(31890773); 国家自然科学基金项目(31971601)

Preparation and Applications of Chiral Carbon Dots Prepared via Hydrothermal Carbonization Method

Jinyue Fan, Xiangxin Kong, Wei Li, Shouxin Liu*()   

  1. Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University,Harbin 150040,China
  • Received:2023-04-24 Revised:2023-08-23 Online:2023-12-24 Published:2023-09-01
  • Contact: *e-mail:liushouxin@126.com
  • Supported by:
    National Natural Science Foundation of China(32371808); National Natural Science Foundation of China(31890773); National Natural Science Foundation of China(31971601)

手性碳点(Chiral carbon dots, CCDs) 具有碳点独特的光电性质同时兼具手性特征,是一种具有较好发展前景的新兴纳米炭材料。水热炭化法制备CCDs包括基于手性传递策略的一步法和手性继承策略两步法,具有手性结构容易控制、光学性质可调、环境友好、水溶性优异的优点,在生物医学、传感、不对称催化、光电材料及复合材料领域中具有较好的应用效果,是目前应用最广泛的制备方法。本文综述了水热炭化制备CCDs的实验条件(原料种类、水热条件)对其手性特征、物理化学结构、光学性质和电学性质的影响,对CCDs应用进行了概述,对其未来发展进行了展望。

As an emerging carbon nanomaterial, chiral carbon dots (CCDs) have the unique photoelectric properties of carbon dots and chiral characteristics, which have good development prospects. The preparation of CCDs by hydrothermal carbonization includes a one-step method based on the chiral transfer strategy and a two-step method based on the chiral inheritance strategy, which exhibited the advantages of easy control of chiral structure, adjustable optical properties, environmental friendliness and excellent water solubility. It has good application effects in the fields of biomedicine, sensing, asymmetric catalysis, optoelectronic materials and composites, and is the most widely used preparation method at present. In this paper, the effects of experimental conditions (source types, hydrothermal conditions) on the chiral characteristics, physical chemical structure, optical properties and electrical properties of CCDs prepared by hydrothermal carbonization are reviewed. The applications of chiral carbon dots are summarized and their future developments are prospected.

Contents

1 Introduction

2 Preparation of chiral carbon dots by hydrothermal carbonization

2.1 One-step method based on chiral transfer strategy

2.2 Two-step method based on chiral inheritance strategy

3 Effect of preparation factors on the properties of chiral carbon dots

3.1 Effect of carbon source

3.2 Effect of chiral ligands

3.3 Effect of other source

3.4 Effect of hydrothermal carbonization temperature

3.5 Effect of hydrothermal carbonization time

4 Structural characteristics of chiral carbon dots prepared by hydrothermal carbonization

4.1 Chiral characteristics

4.2 Physical structure

4.3 Chemical structure

4.4 Optical property

4.5 Electrical property

5 Applications of chiral carbon dots prepared by hydrothermal carbonization

5.1 Biomedical

5.2 Sensing

5.3 Asymmetric catalysis

5.4 Photoelectric material

5.5 Composites

6 Conclusion and outlook

()
图1 (A) 以柠檬酸和L-/D-半胱氨酸一步法制备CCDs[46];(B) 以L-/D-半胱氨酸为手性源和碳源合成CCDs[29];(C)以L-/D-色氨酸为手性源和碳源合成CCDs[31];(D) 全彩色CPL发射的CCDs-CsPbX3的制备[59]
Fig. 1 (A) Preparation of CCDs via one-step method of citric acid and L-/D-cysteine[46]; (B) Synthesis of CCDs using L-/D-Cysteine as chiral source and carbon source[29];(C)Synthesis of CCDs using L-/D-Tryptophon as chiral source and carbon source[31];(D) Schematic of the preparation procedure for full-color CPL CCDs-CsPbX3[59]
表1 基于手性传递策略的一步法合成CCDs
Table 1 One-step method based on chiral transfer strategy
Method Chiral source Carbon source Other source T(℃) t(h) EM(nm) ref
One-step method L-/D-glutamine Citric acid 140 16 450 45
L-/D-cysteine Citric acid 180 1 46
L-/D-cysteine NaOH 120 16 460 29
L-aspartic acid Citric acid NaOH 200 4 420 30
L-cysteine Citric acid 160 6 453 47
L-cysteine
L-glutathione
L-phenylglycine
L-tryptophan
Citric acid+
ethylenediamine
190 8 450 48
L-/D-tryptophan NaOH 120 16 476 31,67
L-/D-tryptophan o-Phenylenediamine HCl+Ethanol
-H2SO4
160 7 441
546
604
32
L-/D-cysteine Urea 180 1 450 49
L-/D-glutamic acid Citric acid 180 4 454/418 50
D-proline Citric acid 180 2 420 51
L-/D-alanine Citric acid 160 4 400 66
L-cysteine m-Phenylenediamine 200 2 510 52
L-ascorbic acid
L-cysteine+L-ascorbic acid
Ethylenediamine
Ethylenediamine
100
140
2
4
484
420
67
L-cysteine Neutral red Ethanol 140 8 601/604 75
L-/D-tryptophan OTD H2SO4 160 8 69
L-/D-glutamic acid Citric acid NaOH 180 10 407 34
D-(-)-fructose Vine teas NADES 160 3 445 35
L-/D-cysteine Citric acid 180 1.5 442 54
L-glutathione Ethylenediamine 200 6 390 57
L-/D-lysine Jeffamine® ED-900 Ethylene glycol 170 3 400~600 37
L-/D-lysine Jeffamine® ED-900 Ethylene glycol 170 2 400~600 38
L-/D-cysteine NaOH 60 24 510 39
L-/D-cysteine 80 48 55
L-/D-glutamic Citric acid Polyethyleneimine 160 1 450 41
L-/D-cysteine NaOH 120 16 460 42
L-/D-cysteine Citric acid 160 6 445 58
L-/D-serine 140 8 475 59
L-/D-cysteine
L-/D-glutathione
L-/D-threonine
Citric acid 180 1.5 432
425
430
60
L-tyrosine o-phenylenediamine H2SO4 160 7 627 43
图2 两步法合成CCD[9]
Fig. 2 Synthesis of CCD by two-step method[9]
表2 基于手性继承策略的两步法合成CCDs
Table 2 Two-step method based on chiral inheritance strategy
图3 (A) (ⅰ) 碳点的制备; (ⅱ) 两步法合成CCDs; (ⅲ) 一步法合成CCDs[49]; (B) 产物的粒径分布[49]
Fig. 3 (A) (i) Preparation of carbon dots; (ii) synthesis of CCDs by two-step method; (iii) synthesis of CCDs by one-step method[49]. (B) Particle size distribution of the products[49]
图4 (A) 以藤茶和NADES为原料合成CCDs[37];(B) 以柠檬酸和乙二胺与(ⅰ) L-半胱氨酸,(ⅱ) L-谷胱甘肽,(ⅲ) L-苯基甘氨酸,(ⅳ) 色氨酸四种手性前驱体为原料水热炭化合成CCDs[49]
Fig. 4 (A) CCDs synthesized from vine tea and NADES as raw materials[37] (B) CCDs were synthesized by hydrothermal carbonization of citric acid and ethylenediamine with four chiral precursors of (ⅰ) L-cysteine, (ⅱ) L-glutathione, (ⅲ) L-phenylglycine, and (ⅳ) tryptophan[49]
图5 (A~C) 以L-/D-半胱氨酸为原料合成CCDs的TEM图和尺寸分布图[29,40,42];(D) 多色CCDs的制备[32]
Fig. 5 (A~C) TEM image and size distribution histograms of CCDs prepared by L-/D-cysteine[29,40,42]. (D) The preparation procedure for multicolor-emitting chiral carbon dots[32]. (Reprinted with permission from ref 42; Copyright (2023) American Chemical Society)
图6 (A) 不同温度下制备CCDs的CD光谱和glum光谱[67]; (B) 不同反应时间制备CCDs的CD光谱[51]; (C,D) 不同反应温度和时间制备CCDs的glum光谱[60]
Fig. 6 (A) CD and glum spectra of CCDs prepared at different reaction temperatures[67]. (B) CD spectra of CCDs were prepared at different reaction times[51]. (C,D) glum spectra of CCDs prepared at different reaction temperatures and times[60]
图7 (A) L-/D-谷氨酸原料和谷氨酸基CCDs的圆二色谱[50]. (B) L-色氨酸合成L-CDs机理[31]
Fig. 7 Circular dichroism of (A) L-/D-glutamic acid raw material and glutamic acid based CCDs[50]. (B) Mechanism of L-CDs synthesis from L-Tryptophan[31]
图8 (A) 以L-/D-半胱氨酸为原料合成CCDs的HRTEM图[29];(B) 不同方法制备的CCDs的FTIR图[49]
Fig. 8 (A) HRTEM image of CCDs prepared by L-/D-cysteine[29]. (B) FTIR spectra of CCDs samples prepared by different methods[49]
图9 (A) 用L-CDs标记的HeLa细胞的激光共聚焦图像[75]; (B1) 没有CCDs;(B2) 有L-CDs存在的和(B3) 有D-CDs存在下PrP(106~126)的形态[37]
Fig. 9 (A) Laser confocal images of HeLa cells labelled with L-CDs[75]. Morphology of PrP (106~126) (A1) without CCDs, in the presence of (B2) L-CDs and (B3) D-CDs[37]
图10 (ⅰ) CCDs和(ⅱ) 手性纳米疫苗的制备以及(ⅲ) 应用过程[34]
Fig. 10 (ⅰ) CCDs and (ⅱ) chiral nanovaccines and (ⅲ) application process[34].Reprinted with permission from ref 34; Copyright 2022 American Chemical Society
图11 不同浓度CCDs培养5天后绿豆植物的数码照片[54]
Fig. 11 Digital photograph of mung bean plants after 5 days of incubation with different concentrations of CCD[54]
图12 (A) 紫外光照射下加入不同浓度的L-/D-Lys后CCDs水溶液和将CCDs嵌入纳米纸的颜色变化[9]; (B) 基于CCDs在On-Off-On模式下测定Sn2+和L-Lys纳米探针的制备[30]; (C) CCDs对异亮氨酸对映体的识别[47]
Fig. 12 (A) Color change of CCDs aqueous solution and CCDs embedded in nanopaper after adding L-/D-Lys of different concentrations under UV irradiation[9]. (B) Fabricating CCDs-based nanoprobes for assaying Sn2+ and L-Lys in On-Off-On mode[30]. (C) Chiral recognition method based on CCDs towards isoleucine enantiomers[47]
图13 (A) L-/D-谷氨酸基CCDs的合成过程以及L-/D-Glu-CDs@Cu2+对GAT响应的荧光光谱和CD光谱[50]; (B) CCDs的合成方法与对赖氨酸对映体的识别[35]
Fig. 13 (A) Synthesis process of L-/D-Glu-CDs and the response of L-/D-Glu-CDs@Cu2+ to GAT in fluorescence spectra and CD spectra[50]. (B) Synthesis of CCDs and identification of lysine enantiomers[35]
图14 CCDs荧光探针检测精氨酸[57]
Fig. 14 Detection of arginine by CCDs fluorescence probe[57]
图15 (A) 发光手性向列相CDs/CNC薄膜的制备[53];(B) CPL膜在白光和紫外光照射下的照片[56]
Fig. 15 (A)Scheme showing the fabrication of luminescent chiral nematic CDs/CNC films[53]. (B) The photograph of CPL film under white and ultraviolet light[56]
图16 (A) 制备好的L-CDs-CsPbX3在紫外光下(上)和日光下(下)的照片[59];(B) CCDs诱导卟啉形成手性材料[40]
Fig. 16 (A) Photos of the as-prepared L-CDs-CsPbX3 in UV light (upper) and daylight (bottom), respectively[59]. (B) CCDs induce porphyrin formation chiral materials[40]
图17 (A) 将CCDs封装在ZIF-8纳米颗粒中用于识别叶酸和硝基呋喃酮[58];(B) 手性双发射复合材料荧光素/CCDs@ZIF-8用于苯二胺(PD)异构体及其氧化产物的高灵敏度鉴别 (2-MIM: 2-甲基咪唑)[82]
Fig. 17 (A) CCDs encapsulated in ZIF-8 nanoparticles for turn-on recognition of chiral folic acid and nitrofurazone[58]. (B) Chiral dual-emission composite material fluorescein/CCDs@ZIF-8 for highly sensitive discrimination of phenylenediamine (PD) isomers and their oxidized product (2-MIM: 2-methylimidazole)[82]
[1]
Zhou C Q, Ren Y Y, Han J, Gong X X, Wei Z X, Xie J, Guo R. J. Am. Chem. Soc., 2018, 140(30): 9417.

doi: 10.1021/jacs.7b12178     URL    
[2]
Zhou C Q, Ren Y Y, Han J, Xu Q Q, Guo R. ACS Nano, 2019, 13(3): 3534.

doi: 10.1021/acsnano.8b09784     URL    
[3]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Nature, 2018, 556(7701): 360.

doi: 10.1038/s41586-018-0034-1    
[4]
Duan Y Y, Han L, Zhang J L, Asahina S, Huang Z H, Shi L, Wang B, Cao Y Y, Yao Y, Ma L G, Wang C, Dukor R K, Sun L, Jiang C, Tang Z Y, Nafie L A, Che S N. Angew. Chem. Int. Ed., 2015, 54(50): 15170.

doi: 10.1002/anie.v54.50     URL    
[5]
Qian Y W, Duan Y Y, Che S N. Adv. Opt. Mater., 2017, 5(16): 1601013.

doi: 10.1002/adom.v5.16     URL    
[6]
Schaaff T G, Whetten R L. J. Phys. Chem. B, 2000, 104(12): 2630.

doi: 10.1021/jp993691y     URL    
[7]
Ngamdee K, Puangmali T, Tuntulani T, Ngeontae W. Anal. Chim. Acta, 2015, 898: 93.

doi: 10.1016/j.aca.2015.09.038     URL    
[8]
Gao F, Ma S Y, Xiao X C, Hu Y, ZhaoD, He Z K. Talanta, 2017, 163: 102.

doi: 10.1016/j.talanta.2016.10.091     URL    
[9]
Copur F, Bekar N, Zor E, Alpaydin S, Bingol H. Sens. Actuat. B Chem., 2019, 279: 305.

doi: 10.1016/j.snb.2018.10.026     URL    
[10]
Zhao S J, Lan M H, Zhu X Y, Xue H T, Ng T W, Meng X M, Lee C S, Wang P F, Zhang W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054.

doi: 10.1021/acsami.5b03228     URL    
[11]
Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362.

doi: 10.1039/C4CS00269E     URL    
[12]
Liu J, Liu Y, Liu N Y, Han Y Z, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z H. Science, 2015, 347(6225): 970.

doi: 10.1126/science.aaa3145     URL    
[13]
TangD, Liu J, Wu X Y, Liu R H, Han X, Han Y Z, Huang H, Liu Y, Kang Z H. ACS Appl. Mater. Interfaces, 2014, 6(10): 7918.

doi: 10.1021/am501256x     URL    
[14]
Liu M M, Chen W. Nanoscale, 2013, 5(24): 12558.

doi: 10.1039/c3nr04054b     URL    
[15]
Zhang Y L, Ran Q, Wang Q, Liu Y, Hanisch C, Reineke S, Fan J, Liao L S. Adv. Mater., 2019, 31: SI.
[16]
Li H T, Liu R H, Lian S Y, Liu Y, Huang H, Kang Z H. Nanoscale, 2013, 5(8): 3289.

doi: 10.1039/c3nr00092c     URL    
[17]
Zhu Y R, Ji X B, Pan C C, Sun Q Q, Song W X, Fang L B, Chen Q Y, Banks C E. Energy Environ. Sci., 2013, 6(12): 3665.

doi: 10.1039/c3ee41776j     URL    
[18]
Vazquez-Nakagawa M, Rodriguez-Perez L, Herranz M A, Martin N. ChemInform, 2016, 47(9): 665.
[19]
Suzuki N, Wang Y C, Elvati P, Qu Z B, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng J H, Lee J, Violi A, Kotov N A. ACS Nano, 2016, 10(2): 1744.

doi: 10.1021/acsnano.5b06369     URL    
[20]
Li R S, Gao P F, Zhang H Z, Zheng L L, Li C M, Wang J, Li Y F, Liu F, Li N, Huang C Z. Chem. Sci., 2017, 8: 6829.

doi: 10.1039/C7SC01316G     URL    
[21]
Yuan M K, Guo Y J, Wei J J, Li J Z, Long T F, Liu ZD. RSC Adv., 2017, 7(79): 49931.

doi: 10.1039/C7RA09271G     URL    
[22]
Zhang M L, Ma Y R, Wang H B, Wang B, Zhou Y J, Liu Y, Shao M W, Huang H, Lu F, Kang Z H. ACS Appl. Mater. Interfaces, 2021, 13(4): 5877.

doi: 10.1021/acsami.0c21949     URL    
[23]
Rao X Y, Yuan M K, Jiang H, Li L, Liu ZD. New J. Chem., 2019, 43(35): 13735.

doi: 10.1039/C9NJ03434J     URL    
[24]
Zhang M L, Wang H B, Wang B, Ma Y R, Huang H, Liu Y, Shao M W, Yao B W, Kang Z H. Small, 2019, 15(48): 1901512.

doi: 10.1002/smll.v15.48     URL    
[25]
Hu L L, Li H, Liu C A, Song Y X, Zhang M L, Huang H, Liu Y, Kang Z H. Nanoscale, 2018, 10(5): 2333.

doi: 10.1039/C7NR08335A     URL    
[26]
Arshad F, Sk M P. New J. Chem., 2019, 43(33): 13240.

doi: 10.1039/c9nj03009c    
[27]
Vulugundam G, Misra S K, Ostadhossein F, Schwartz-Duval A S, Daza E A, PanD. Chem. Commun., 2016, 52(47): 7513.

doi: 10.1039/C6CC02525K     URL    
[28]
Ostadhossein F, Vulugundam G, Misra S K, Srivastava I, PanD. Bioconjugate Chem., 2018, 29(11): 3913.

doi: 10.1021/acs.bioconjchem.8b00736     pmid: 30352502
[29]
Hu L L, Sun Y, Zhou Y J, Bai L, Zhang Y L, Han M M, Huang H, Liu Y, Kang Z H. Inorg. Chem. Front., 2017, 4(6): 946.

doi: 10.1039/C7QI00118E     URL    
[30]
Gao P L, Xie Z G, Zheng M. Sensor. Actuat. B-Chem., 2020, 319.
[31]
Wei Y Y, Chen L, Wang J L, Liu X G, Yang Y Z, Yu S P. RSC Adv., 2019, 9(6): 3208.

doi: 10.1039/C8RA09649J     URL    
[32]
Ru Y, Sui L Z, Song H Q, Liu X J, Tang Z Y, Zang S Q, Yang B, Lu S Y. Angew. Chem. Int. Ed., 2021, 60(25): 14091.

doi: 10.1002/anie.v60.25     URL    
[33]
Zhao J Q, Li L, Li F, Liu H L, Li Z, Wang Y. Nanoscale, 2020, 12(24): 12748.

doi: 10.1039/D0NR02655G     URL    
[34]
Liu H X, Xie Z G, Zheng M. ACS Appl. Mater. Interfaces, 2022, 14(35): 39858.

doi: 10.1021/acsami.2c11596     URL    
[35]
Wang M, Li C H, Zhou M L, Xia Z N, Huang Y K. Green Chem., 2022, 24(17): 6696.

doi: 10.1039/D2GC01949C     URL    
[36]
Zheng H Z, Ju B, Wang X J, Wang W H, Li M J, Tang Z Y, Zhang S X A, Xu Y. Adv. Opt. Mater., 2018, 6: 1801246.

doi: 10.1002/adom.v6.23     URL    
[37]
Arad E, Bhunia S K, Jopp J, Kolusheva S, Rapaport H, Jelinek R. Adv. Ther., 2018, 1(4): 1800006.
[38]
Malishev R, Arad E, Bhunia S K, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R. Chem. Commun., 2018, 54(56): 7762.

doi: 10.1039/C8CC03235A     URL    
[39]
Li F, Li Y Y, Yang X, Han X X, Jiao Y, Wei T T, YangD Y, Xu H P, Nie G J. Angew. Chem. Int. Ed., 2018, 57(9): 2377.

doi: 10.1002/anie.v57.9     URL    
[40]
Liu X W, Lu J Y, Chen J Q, Zhang M T, Chen Y Y, Xing F F, Feng L Y. Front. Chem., 2020, 8: 670.

doi: 10.3389/fchem.2020.00670     URL    
[41]
ZhaoD, Xu M Y, Dai K, Liu H, Jiao Y, Xiao X C. Mater. Chem. Phys., 2023, 295: 127144.

doi: 10.1016/j.matchemphys.2022.127144     URL    
[42]
Yang Y Z, Wang Q, Li G J, Guo W J, Yang Z J, Liu H, Deng X Y. ACS Appl. Mater. Interfaces, 2023, 15(2): 2617.

doi: 10.1021/acsami.2c17975     URL    
[43]
Hallaji Z, Bagheri Z, Ranjbar B. ACS Appl. Nano Mater., 2023, 6(5): 3202.

doi: 10.1021/acsanm.2c04466     URL    
[44]
Wang L M, Li L C, Wang B Z, Wu J, Liu Y P, Liu E S, Zhang H Q, Zhang B H, Xing G C, Li Q L, Tang Z K, Deng C X, Qu S N. Small, 2023, 19(31): 2206667.

doi: 10.1002/smll.v19.31     URL    
[45]
Ma W Y, Wang B L, Yang Y G, Li J Y. Chin. Chem. Lett., 2021, 32(12): 3916.

doi: 10.1016/j.cclet.2021.05.021     URL    
[46]
Zhang Y L, Hu L L, Sun Y, Zhu C, Li R S, Liu N Y, Huang H, Liu Y, Huang C Z, Kang Z H. RSC Adv., 2016, 6(65): 59956.

doi: 10.1039/C6RA12420H     URL    
[47]
Hou XD, Song J Y, Wu Q, Lv H T. Anal. Chim. Acta, 2021, 1184: 339012.

doi: 10.1016/j.aca.2021.339012     URL    
[48]
Das A, Kundelev E V, Vedernikova A A, Cherevkov S A, DanilovD V, Koroleva A V, Zhizhin E V, Tsypkin A N, Litvin A P, Baranov A V, Fedorov A V, Ushakova E V, Rogach A L. Light Sci. Appl., 2022, 11: 92.

doi: 10.1038/s41377-022-00778-9    
[49]
Das A, Arefina I A, DanilovD V, Koroleva A V, Zhizhin E V, Parfenov P S, Kuznetsova V A, Ismagilov A O, Litvin A P, Fedorov A V, Ushakova E V, Rogach A L. Nanoscale, 2021, 13(17): 8058.

doi: 10.1039/D1NR01693H     URL    
[50]
Chen A L, Li R J, Zhong Y J, Deng Q F, Yin X H, Li H Y, Kong L, Yang R. Sens. Actuat. B Chem., 2022, 359: 131602.

doi: 10.1016/j.snb.2022.131602     URL    
[51]
Liu S, He Y, Liu Y, Wang S B, Jian Y J, Li B X, Xu C L. Chem. Commun., 2021, 57(30): 3680.

doi: 10.1039/D1CC00755F     URL    
[52]
Wei Y Y, Chen L, Zhao S B, Liu X G, Yang Y Z, Du J L, Li Q, Yu S P. Front. Mater. Sci., 2021, 15(2): 253.

doi: 10.1007/s11706-021-0544-x    
[53]
Lizundia E, Nguyen TD, Vilas J L, Hamad W Y, MacLachlan M J. Mater. Chem. Front., 2017, 1(5): 979.

doi: 10.1039/C6QM00225K     URL    
[54]
Zhang M L, Hu L L, Wang H B, Song Y X, Liu Y, Li H, Shao M W, Huang H, Kang Z H. Nanoscale, 2018, 10(26): 12734.

doi: 10.1039/C8NR01644E     URL    
[55]
Li F, Li S, Guo X C, Dong Y H, Yao C, Liu Y P, Song Y G, Tan X L, Gao L Z, YangD Y. Angew. Chem. Int. Ed., 2020, 59(27): 11087.

doi: 10.1002/anie.v59.27     URL    
[56]
Xu M C, Li G Y, Li W, An B, Sun J M, Chen Z J, Yu H P, Li J, Yang G, Liu S X. Angew. Chem. Int. Ed., 2022, 61(18): e202117042.
[57]
Zeng X Q, Zhang L, Yang JD, Guo Y, Huang Y M, Yuan H Y, Xie Y S. New J. Chem., 2017, 41(24): 15216.

doi: 10.1039/C7NJ03320F     URL    
[58]
Liu J Y, Geng Y H, Wang T T, Ding B, Qiao Y H, Huo J Z, Ding B,. ACS Appl. Nano Mater., 2023, 6(1): 398.

doi: 10.1021/acsanm.2c04528     URL    
[59]
Ru Y, Zhang B W, Yong X, Sui L Z, Yu J K, Song H Q, Lu S Y. Adv. Mater., 2023, 35(5): 2207265.

doi: 10.1002/adma.v35.5     URL    
[60]
Maniappan S, Reddy K L, Kumar J. Chem. Sci., 2023, 14(3): 491.

doi: 10.1039/d2sc05794h     pmid: 36741532
[61]
Fan X G, Jiang L, Liu Y, Sun W, Qin Y X, Liao L, Qin A M. Opt. Mater., 2023, 137: 113620.

doi: 10.1016/j.optmat.2023.113620     URL    
[62]
Wei Y Y, Chen L, Wang J L, Yu S P, Liu X G, Yang Y Z. Progress in Chemistry, 2020, 32 (04): 381.
(卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32 (04): 381.).
[63]
Niu X H, Yan S M, Zhao R, Han S, Cao K J, Li H X, Wang K J. Mikrochim. Acta., 2023, 190: 61.

doi: 10.1007/s00604-022-05629-3    
[64]
Askari F, Rahdar A, Trant J F. Sens. Bio Sens. Res., 2019, 22: 100251.
[65]
Ru Y, Ai L, Jia T T, Liu X J, Lu S Y, Tang Z Y, Yang B. Nano Today, 2020, 34: 100953.

doi: 10.1016/j.nantod.2020.100953     URL    
[66]
Liu S. MasteralDissertation of Shaanxi Normal University, 2020.
(刘爽. 陕西师范大学硕士论文, 2020.).
[67]
Wei Y Y. DoctoralDissertation of Taiyuan University of Technology, 2021.
(卫迎迎. 太原理工大学博士论文, 2021.).
[68]
Zhao J Q. MasteralDissertation of Jilin University, 2021.
(赵佳奇. 吉林大学博士论文, 2021.).
[69]
Wu B Y. MasteralDissertation of Lanzhou University, 2022.
(吴冰燕. 兰州大学硕士论文, 2022.).
[70]
An B, Xu M C, Ma C H, Luo S, Li W, Liu S X. Acta Polymerica Sinica, 2022, 53 (3): 211.
(安邦, 徐明聪, 马春慧, 罗沙, 李伟, 刘守新. 高分子学报, 2022, 53(3) : 211.).
[71]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800.

doi: 10.1002/anie.v52.30     URL    
[72]
Liu Y S, Li W, Wu P, Liu S X. Progress in Chemistry, 2018, 30 (4): 349.
(刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30 (4): 349.).

doi: 10.7536/PC170808    
[73]
Zhou L L, ZhengD X, Wu p, Zhu Y Q, Zhu L L. Acs. Appl. Mater. Interfaces., 2020, 3: 946.
[74]
Zhao L, Zhou H X, Zhou Q H, Peng C, Cheng T Y, Liu G H. Sens. Actuat. B Chem., 2020, 320: 128383.

doi: 10.1016/j.snb.2020.128383     URL    
[75]
Wei Y Y, Chen L, Zhang X, Du J L, Li Q, Luo J, Liu X G, Yang Y Z, Yu S P, Gao YD. Biomater. Sci., 2022, 10(15): 4345.

doi: 10.1039/D2BM00429A     URL    
[76]
Döring A, Ushakova E, Rogach A L. Light Sci. Appl., 2022, 11: 75.

doi: 10.1038/s41377-022-00764-1    
[77]
McConney M E, Rumi M, Godman N P, Tohgha U N, Bunning T J. Adv. Opt. Mater., 2019, 7(16): 1900429.

doi: 10.1002/adom.v7.16     URL    
[78]
Gollapelli B, Suguru Pathinti R, Vallamkondu J. ACS Appl. Nano Mater., 2022, 5(8): 11912.

doi: 10.1021/acsanm.2c02933     URL    
[79]
Visheratina A, Hesami L, Wilson A K, Baalbaki N, Noginova N, Noginov M A, Kotov N A. Chirality, 2022, 34(12): 1489.

doi: 10.1002/chir.v34.12     URL    
[80]
Pei S P, Zhang J, Gao M P, WuD Q, Yang Y X, Liu R L. J. Colloid Interface Sci., 2015, 439: 129.

doi: 10.1016/j.jcis.2014.10.030     URL    
[81]
Yan X T, Zhao H J, Zhang K, Zhang Z W, Chen Y Y, Feng L Y. ChemPlusChem, 2023, 88(1): e202200428.
[82]
Liu J Y, Wang T T, Li Y, Liu Y Y, Ding B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2023, 294: 122545.
[1] 夏元佳, 陈国兵, 赵爽, 费志方, 张震, 杨自春. 碳化硅基材料在电磁波吸收领域的研究进展[J]. 化学进展, 2024, 36(1): 145-158.
[2] 黄家麟, 秦垚华, 唐盛, 孔德昭, 刘畅. 新型光纤生物传感器的构建及在食品污染物检测中的应用[J]. 化学进展, 2024, 36(1): 120-131.
[3] 陈超, 王古月, 田莹, 孔正阳, 李凤龙, 朱锦, 应邬彬. 自愈合聚氨酯的研究进展及其在柔性传感领域的应用[J]. 化学进展, 2023, 35(9): 1275-1293.
[4] 刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾. 手性等离子体核壳纳米结构的设计及应用[J]. 化学进展, 2023, 35(8): 1168-1176.
[5] 张文博, 王佳宁, 卫林峰, 金花, 鲍艳, 马建中. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076.
[6] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[7] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[8] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[9] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[10] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[11] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[12] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[13] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[14] 付宛宜, 李雨航, 杨志超, 张延扬, 张孝林, 刘子尧, 潘丙才. 毫纳结构复合材料的制备、协同效应及其深度水处理应用[J]. 化学进展, 2023, 35(10): 1415-1437.
[15] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
阅读次数
全文


摘要

水热炭化制备手性碳点及其应用