English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1847-1863 DOI: 10.7536/PC230418 前一篇   后一篇

• 综述 •

锂金属电池电解液的理论计算模拟研究

黄铭浩, 王跃达, 侯倩, 项宏发*()   

  1. 合肥工业大学材料科学与工程学院 合肥 230009
  • 收稿日期:2023-04-15 修回日期:2023-08-23 出版日期:2023-12-24 发布日期:2023-09-10
  • 作者简介:

    项宏发 高分子化学与物理专业博士,合肥工业大学材料科学与工程学院教授。主要研究方向为锂/钠电池关键材料,主持国家自然科学基金项目4项,省部级校级项目和境内外企业委托项目30余项,以第一或通讯作者发表高水平论文120余篇,申请发明专利30余件,以第一发明人授权发明专利12件。

  • 基金资助:
    国家自然科学基金项目(52072105)

Theoretical Calculation and Computational Simulation on Electrolyte for Lithium Metal Battery

Minghao Huang, Yueda Wang, Qian Hou, Hongfa Xiang*()   

  1. School of Materials Science and Engineering, Hefei University of Technology,Hefei 230009, China
  • Received:2023-04-15 Revised:2023-08-23 Online:2023-12-24 Published:2023-09-10
  • Contact: *e-mail: hfxiang@hfut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52072105)

锂金属电池电解液的调控对锂枝晶生长抑制具有重要意义。传统的电解液设计思路主要依赖经验直觉与实验试错,较少借助计算模拟方法以高通量筛选电解液配方。理论计算模拟手段能够建立电解液微观特征与宏观性质之间的联系,从原子尺度上指导电解液设计、预测电解液性能,在电解液研究领域发挥了重要作用。本文综述了锂金属电池电解液在理论计算模拟方面的相关进展。首先,介绍了电解液研究中量子化学计算和分子动力学模拟的基本原理与计算方法;其次,总结了这两种计算模拟手段在电解液组分静态化学性质、电解液体相和电极-电解液界面的微观结构与性质研究中的应用,如配位络合物中的结合能,电解液组分的氧化还原稳定性、静电势,体相电解液的溶剂化结构、离子电导率、介电常数,电极-电解液界面的微观结构、性质与化学反应;最后,讨论了理论计算模拟面临的挑战及未来的发展方向,为锂金属电池电解液的计算模拟提供了新的研究思路。

The regulation of electrolytes for the lithium-metal battery is of great significance in suppressing the growth of lithium dendrites. The traditional approaches mainly rely on empirical intuition and experimental trial and error, but less on computational simulation methods for high-throughput screen electrolyte formulations. Theoretical calculation and computational simulation can establish the relationship between the microscopic characteristics and macroscopic properties of electrolytes, guide electrolyte design, and predict electrolyte performance at the atomic scale, which play an indispensable role in the field of electrolyte research. This review aims to summarize the relevant progress of lithium-metal battery electrolytes in theoretical calculation and computational simulation. Firstly, the basic principles and calculating methods of quantum chemical calculation and molecular dynamics simulation for electrolyte research are introduced. Secondly, the application of the two simulation methods in the study involving the static chemical properties of electrolyte components, microstructure and properties of bulk electrolyte and electrode electrolyte interface are summarized, including binding energy in coordination complex, oxidation-reduction stability, electrostatic potential of electrolyte components, solvation structure, ionic conductivity, dielectric constant of bulk electrolyte, microstructure, properties and chemical reactions at the electrode electrolyte interface. Finally, the challenges and the way forward faced by theoretical calculation and computational simulation are discussed, providing new research ideas for the computational simulation of lithium-metal battery electrolytes.

Contents

1 Introduction

2 Methods of theoretical calculation

2.1 Calculation of quantum chemistry based on density functional theory theory

2.2 Molecular dynamics simulation

3 Static chemical properties of electrolyte components

3.1 Binding energy in coordination complex

3.2 Oxidation-reduction stability of electrolyte component

3.3 Electrostatic potential of electrolyte component

4 Microstructure and properties of bulk electrolyte and electrode electrolyte interface

4.1 Solvation structure of bulk electrolyte

4.2 Ionic conductivity of bulk electrolyte

4.3 Dielectric constant of bulk electrolyte

4.4 Microstructure and properties of electrode electrolyte interface

4.5 Reaction of anode electrolyte interface

5 Conclusion and outlook

()
图1 (a) 室温(左)和低温(右)电解液中的基本相互作用及其结构-功能关系示意图[41];(b) 不同配位数下,DME和DMM与Li+的结合能[44];(c) 1 mol/L LiFSIDME电解液(左)和1 mol/L LiFSIDMM电解液(右)中Li金属表面Li+脱溶过程示意图[44]
Fig. 1 (a) Schematic of fundamental interaction in room-temperature (left) and low-temperature (right) electrolytes, respectively, and related structure-function relationship[41]. Copyright 2023, John Wiley and Sons. (b) The plot of binding energies of Li+ solvated byDME andDMM as a function of coordination number[44]. (c) Schematic diagram of the Li+ desolvation process at Li metal surface in 1 mol/L LiFSIDME (left) and 1 mol/L LiFSIDMM (right) electrolyte[44]. Copyright 2022, John Wiley and Sons
表1 常见碳酸酯溶剂的前线轨道能量[47]
Table 1 Frontier orbital energy of carbonate solvents[47]
图2 在(a, b) 稀释和(c) 高浓度LiTFSA AN溶液上的量子力学DFT-MD模拟中,使用的模拟盒子和预测的态密度(PDOS)。所示结构是平衡轨迹的快照。对于稀溶液,考虑了LiTFSI盐的两种情况。PDOS剖面中的插图是传导带最低能级边缘的放大图[49]
Fig. 2 Supercells used and projected density of states (PDOS) obtained in quantum mechanicalDFT-MD simulations on (a and b) dilute and (c) super-concentrated LiTFSA AN solutions. The illustrated structures are the snapshots in equilibrium trajectories. For a dilute solution, both situations of LiTFSI salt were considered. Insets in the PDOS profiles are magnified figures of the lowest energy-level edge of the conduction band[49]. Copyright 2014, American Chemical Society
图3 (a) 不同溶剂HOMO和LUMO能级的比较;(b) TTE、TFMB、BZTF稀释的高浓度电解液的SEI形成示意图[54]
Fig. 3 (a) Comparison of the HOMO and LUMO energy levels for different solvents. (b) Schematic diagram of SEI formation in high concentration electrolytes diluted with TTE, TFMB and BZTF[54]. Copyright 2022, American Chemical Society
图4 (a)DME和DTDL的分子结构和静电势[60];(b) SCCE和CCE电解液中代表性溶剂化结构的静电势;(c) SCCE电解液中SEI形成示意图[61]
Fig. 4 (a) Molecular structures and electrostatic potential ofDME andDTDL[60]. Copyright 2022, Springer Nature. (b) Electrostatic potential of representative solvation structures in SCCE and CCE electrolytes. (c) Schematic diagram of the formed SEI in SCCE electrolyte[61]. Copyright 2020, John Wiley and Sons
图5 (a) Li+与不同阴离子中N原子之间的径向分布函数;(b~d) 35 m LiFSI、LiFTFSI、LiTFSI水系电解液代表性溶剂化结构的MD模拟快照[65]
Fig. 5 (a) Radial distribution function between Li+ and N atom in different anion. (b~d) MD simulation snapshots of representative solvation structures in 35 m LiFSI, LiFTFSI, LiTFSI aqueous electrolytes[65]. Copyright 2020, American Chemical Society
图6 (a) 不同浓度电解液的MD模拟快照[79];(b) 不同电解液的AIMD模拟快照[85]
Fig. 6 (a) MD simulation snapshots of electrolytes in different concentrations[79]. Copyright 2016, Springer Nature. (b) AIMD simulation snapshots of different electrolytes[85]. Copyright 2020, American Chemical Society
图7 (a) 离子电导率与盐浓度的关系[87];(b) 不同温度下(-15~60℃)电解液离子电导率的实验测试值和理论计算值[88]
Fig. 7 (a) The relationship between ionic conductivity and salt concentration[87]. Copyright 2018, American Chemical Society. (b) Experimental and theoretical values of ionic conductivity of electrolyte at different temperatures (-15~60℃)[88]. Copyright 2022, Elsevier
图8 (a) 温度对溶剂介电常数的影响;(b) 具有强分子间相互作用的混合溶剂的介电常数;(c) 具有弱分子间相互作用的混合溶剂的介电常数;(d) 浓度对电解液介电常数的影响[32]
Fig. 8 (a) Effects of temperature on the dielectric constant of solvents;(b) dielectric constant of mixed solvents with strong intermolecular forces;(c) dielectric constant of mixed solvents with weak intermolecular forces;(d) effects of concentration on the dielectric constant of electrolytes[32]. Copyright 2021, John Wiley and Sons
图9 (a) 1 mol/L LiFSIDME和(b) 1 mol/L LiFSI/LiNO3DME在0.5 V的正极表面内亥姆霍兹界面区局部结构[92],在213 K下,(c) 1 mol/L LiFSIDOL/DME和(d) 1 mol/L LiFSIDEE中Li+的去溶剂化过程示意图[93]
Fig. 9 Local structure of inner-Helmholtz interfacial regions at cathode surface in (a) 1 mol/L LiFSIDME and (b) 1 mol/L LiFSI/LiNO3DME at 0.5 V[92]. Copyright 2022, Springer Nature. Visualized Li+ desolvation process at 213 K in (c) 1 mol/L LiFSIDOL/DME and (d) 1 mol/L LiFSIDEE[93]. Copyright 2022, American Chemical Society
图10 TFSI-和FSI-阴离子在Li(001)表面的分解机理[95]
Fig. 10 Decomposition mechanisms of TFSI- and FSI- anions on the Li(001) surface[95]. Copyright 2020, American Chemical Society
[1]
Masias A, Marcicki J, Paxton W A. ACS Energy Lett., 2021, 6(2): 621.

doi: 10.1021/acsenergylett.0c02584     URL    
[2]
Shen X, Zhang X Q, Ding F, Huang J Q, Xu R, Chen X, Yan C, Su F Y, Chen C M, Liu X J, Zhang Q. Energy Mater. Adv., 2021, 2021: 1205324.
[3]
Liu J, Bao Z N, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q Y, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Stanley Whittingham M, Xiao J, Xu W, Yang J H, Yang X Q, Zhang J G. Nat. Energy, 2019, 4(3): 180.

doi: 10.1038/s41560-019-0338-x    
[4]
Kim S, Park G, Lee S J, Seo S, Ryu K, Kim C H, Choi J W. Adv. Mater., 2023, 35: 2206625.

doi: 10.1002/adma.v35.43     URL    
[5]
Li Z Z, Peng M Q, Zhou X L, Shin K, Tunmee S, Zhang X M, Xie CD, Saitoh H, Zheng Y P, Zhou Z M, Tang Y B. Adv. Mater., 2021, 33(37): 2100793.

doi: 10.1002/adma.v33.37     URL    
[6]
Ding J F, Xu R, Yan C, Xiao Y, Liang Y R, Yuan H, Huang J Q. Chin. Chem. Lett., 2020, 31(9): 2339.

doi: 10.1016/j.cclet.2020.03.015     URL    
[7]
Shen X, Cheng X B, Shi P, Huang J Q, Zhang X Q, Yan C, Li T, Zhang Q. J. Energy Chem., 2019, 37: 29.

doi: 10.1016/j.jechem.2018.11.016    
[8]
Zhang X Q, Chen X, Cheng X B, Li B Q, Shen X, Yan C, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(19): 5179.

doi: 10.1002/anie.v57.19     URL    
[9]
Zheng X Y, Huang L Q, Ye X L, Zhang J X, Min F Y, Luo W, Huang Y H. Chem, 2021, 7(9): 2312.

doi: 10.1016/j.chempr.2021.02.025     URL    
[10]
Piao Z H, Gao R H, Liu Y Q, Zhou G M, Cheng H M. Adv. Mater., 2023, 35(15): 2206009.
[11]
Chen X, Zhang X Q, Li H R, Zhang Q. Batter. Supercaps, 2019, 2(2): 112.

doi: 10.1002/batt.v2.2     URL    
[12]
Chen X, Yao N, Zeng B S, Zhang Q. Fundam. Res., 2021, 1(4): 393.

doi: 10.1016/j.fmre.2021.06.011     URL    
[13]
Ming J, Cao Z, Wahyudi W, Li M L, Kumar P, Wu Y Q, Hwang J Y, Hedhili M N, Cavallo L, Sun Y K, Li L J. ACS Energy Lett., 2018, 3(2): 335.

doi: 10.1021/acsenergylett.7b01177     URL    
[14]
Zhou L, Cao Z, Zhang J, Sun Q J, Wu Y Q, Wahyudi W, Hwang J Y, Wang L M, Cavallo L, Sun Y K, Alshareef H N, Ming J. Nano Lett., 2020, 20(5): 3247.

doi: 10.1021/acs.nanolett.9b05355     pmid: 32319776
[15]
Zhang J, Cao Z, Zhou L, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. ACS Energy Lett., 2020, 5(8): 2651.

doi: 10.1021/acsenergylett.0c01401     URL    
[16]
Camacho-Forero L E, Balbuena P B. Phys. Chem. Chem. Phys., 2017, 19(45): 30861.

doi: 10.1039/c7cp06485c     pmid: 29135003
[17]
Angarita-Gomez S, Balbuena P B. Mater. Adv., 2022, 3(15): 6352.

doi: 10.1039/D2MA00541G     URL    
[18]
Schrödinger E. Ann. Phys., 1926, 384(4): 361.

doi: 10.1002/andp.v384:4     URL    
[19]
Born M, Oppenheimer R. Ann.Der Physik, 1927, 389(20): 457.
[20]
Thomas L H. Math. Proc. Camb. Phil. Soc., 1927, 23(5): 542.
[21]
Hohenberg P, Kohn W. Phys. Rev., 1964, 136(3B): B864.

doi: 10.1103/PhysRev.136.B864     URL    
[22]
Kohn W, Sham L J. Phys. Rev., 1965, 140(4A): A1133.

doi: 10.1103/PhysRev.140.A1133     URL    
[23]
Perdew J P, Zunger A. Phys. Rev. B, 1981, 23(10): 5048.

doi: 10.1103/PhysRevB.23.5048     URL    
[24]
LangrethD C, Perdew J P. Phys. Rev. B, 1980, 21(12): 5469.

doi: 10.1103/PhysRevB.21.5469     URL    
[25]
Zhao Y, Lynch B J, TruhlarD G. J. Phys. Chem. A, 2004, 108(21): 4786.

doi: 10.1021/jp049253v     URL    
[26]
Yao N, Chen X, Fu Z H, Zhang Q. Chem. Rev., 2022, 122(12): 10970.

doi: 10.1021/acs.chemrev.1c00904     URL    
[27]
Cornell WD, Cieplak P, Bayly C I, Gould I R, Merz K M, FergusonD M, SpellmeyerD C, Fox T, Caldwell J W, Kollman P A. J. Am. Chem. Soc., 1995, 117(19): 5179.

doi: 10.1021/ja00124a002     URL    
[28]
Wang J M, Wolf R M, Caldwell J W, Kollman P A, CaseD A. J. Comput. Chem., 2005, 26(1): 114.

doi: 10.1002/jcc.v26:1     URL    
[29]
Jorgensen W L, MaxwellD S, Tirado-Rives J. J. Am. Chem. Soc., 1996, 118(45): 11225.

doi: 10.1021/ja9621760     URL    
[30]
Oostenbrink C, Villa A, Mark A E, Van Gunsteren W F. J. Comput. Chem., 2004, 25(13): 1656.

doi: 10.1002/jcc.20090     pmid: 15264259
[31]
vanDuin A C T, Dasgupta S, Lorant F, Goddard W A. J. Phys. Chem. A, 2001, 105(41): 9396.

doi: 10.1021/jp004368u     URL    
[32]
Yao N, Chen X, Shen X, Zhang R, Fu Z H, Ma X X, Zhang X Q, Li B Q, Zhang Q. Angew. Chem., 2021, 133(39): 21643.

doi: 10.1002/ange.v133.39     URL    
[33]
Wang F, Cheng J. Chem. Sci., 2022, 13(39): 11570.

doi: 10.1039/D2SC04025E     URL    
[34]
Wang F, Sun Y, Cheng J. J. Am. Chem. Soc., 2023, 145(7): 4056.

doi: 10.1021/jacs.2c11793     URL    
[35]
Bursch M, Mewes J M, Hansen A, Grimme S. Angew. Chem. Int. Ed., 2022, 61(42): e202205735.
[36]
Tian Z N, Zou Y G, Liu G, Wang Y Z, Yin J, Ming J, Alshareef H N. Adv. Sci., 2022, 9(22): 2201207.

doi: 10.1002/advs.v9.22     URL    
[37]
Senent M L, Wilson S. Int. J. Quantum Chem., 2001, 82(6): 282.

doi: 10.1002/qua.v82:6     URL    
[38]
Yan C, Yao Y X, Chen X, Cheng X B, Zhang X Q, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(43): 14055.

doi: 10.1002/anie.v57.43     URL    
[39]
Liu J P, Yuan B T, He ND, Dong L W, ChenD J, Zhong S J, Ji Y P, Han J C, Yang C H, Liu Y P, He WD. Energy Environ. Sci., 2023, 16(3): 1024.

doi: 10.1039/D2EE02411J     URL    
[40]
Zhang N, Deng T, Zhang S Q, Wang C H, Chen L X, Wang C S, Fan X L. Adv. Mater., 2022, 34(15): 2107899.

doi: 10.1002/adma.v34.15     URL    
[41]
Hou R L, Guo S H, Zhou H S. Adv. Energy Mater., 2023, 2300053.
[42]
Shakourian-Fard M, Kamath G, Sankaranarayanan S K R S. ChemPhysChem, 2016, 17(18): 2916.

doi: 10.1002/cphc.201600338     pmid: 27257715
[43]
Wu Z C, Li R H, Zhang S Q lv L, Deng T, Zhang H, Zhang R X, Liu J J, Ding S H, Fan L W, Chen L X, Fan X L. Chem, 2023, 9(3): 650.

doi: 10.1016/j.chempr.2022.10.027     URL    
[44]
Ma T, Ni Y X, Wang Q R, Zhang W J, Jin S, Zheng S B, Yang X, Hou Y P, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(39): e202207927.
[45]
Rakhi R, Suresh C H. J. Comput. Chem., 2017, 38(26): 2232.

doi: 10.1002/jcc.v38.26     URL    
[46]
WangD, He T T, Wang A P, Guo K, Avdeev M, Ouyang C Y, Chen L Q, Shi S Q. Adv. Funct. Mater., 2023, 33(11): 2212342.

doi: 10.1002/adfm.v33.11     URL    
[47]
Wu F, Zhou H, Bai Y, Wang H L, Wu C. ACS Appl. Mater. Interfaces, 2015, 7(27): 15098.

doi: 10.1021/acsami.5b04477     URL    
[48]
Zhang J, Cao Z, Zhou L, Liu G, Park G T, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. ACS Energy Lett., 2020, 5(8): 2651.

doi: 10.1021/acsenergylett.0c01401     URL    
[49]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.

doi: 10.1021/ja412807w     pmid: 24654781
[50]
Wang Z X, Sun Z H, Shi Y, Qi F L, Gao X N, Yang H C, Cheng H M, Li F. Adv. Energy Mater., 2021, 11(28): 2170112.

doi: 10.1002/aenm.v11.28     URL    
[51]
Deng L, Yu FD, Sun G, Xia Y, Jiang Y S, Zheng Y Q, Sun M Y, Que L F, Zhao L, Wang Z B. Angew. Chem. Int. Ed., 2022, 61(48): e202213416.
[52]
Zhang W N, Guo Y Q, Yang T, Wang Y H, Kong X R, Liao X B, Zhao Y. Energy Storage Mater., 2022, 51: 317.
[53]
Kim S, Park S O, Lee M Y, Lee J A, Kristanto I, Lee T K, HwangD, Kim J, Wi T U, Lee H W, Kwak S K, Choi N S. Energy Storage Mater., 2022, 45: 1.
[54]
Zhu C N, Sun C C, Li R H, Weng S T, Fan L W, Wang X F, Chen L X, Noked M, Fan X L. ACS Energy Lett., 2022, 7(4): 1338.

doi: 10.1021/acsenergylett.2c00232     URL    
[55]
Zhang J, Lu T. Phys. Chem. Chem. Phys., 2021, 23(36): 20323.

doi: 10.1039/d1cp02805g     pmid: 34486612
[56]
Liu X W, Shen X H, Luo L B, Zhong F P, Ai X P, Yang H X, Cao Y L. ACS Energy Lett., 2021, 6(12): 4282.

doi: 10.1021/acsenergylett.1c02194     URL    
[57]
WuD X, He J, Liu JD, Wu M G, Qi S H, Wang H P, Huang JD, Li F, TangD L, Ma J M. Adv. Energy Mater., 2022, 12(18): 2200337.

doi: 10.1002/aenm.v12.18     URL    
[58]
Zhang H K, Li R H, Chen L, Fan Y Z, Zhang H, Zhang R X, Zheng L, Zhang J B, Ding S H, Wu Y J, Ma B C, Zhang S Q, Deng T, Chen L X, Shen Y B, Fan X L. Angew. Chem. Int. Ed., 2023, 62(11): e202218970.
[59]
Zou Y G, Ma Z, Liu G, Li Q, YinD M, Shi X J, Cao Z, Tian Z N, Kim H, Guo Y J, Sun C S, Cavallo L, Wang L M, Alshareef H N, Sun Y K, Ming J. Angew. Chem. Int. Ed., 2023, 62(8): e202216189.
[60]
Zhao Y, Zhou T H, Ashirov T, El Kazzi M, Cancellieri C, Jeurgens L P H, Choi J W, Coskun A. Nat. Commun., 2022, 13: 2575.

doi: 10.1038/s41467-022-29199-3     pmid: 35523785
[61]
Zhang WD, Shen Z Y, Li S Y, Fan L, Wang X Y, Chen F, Zang X X, Wu T, Ma F Y, Lu Y Y. Adv. Funct. Mater., 2020, 30(39): 2003800.

doi: 10.1002/adfm.v30.39     URL    
[62]
Zhao Q, Huang W W, Luo Z Q, Liu L J, Lu Y, Li Y X, Li L, Hu J Y, Ma H, Chen J. Sci. Adv., 2018, 4(3): eaao1761.
[63]
Karimi N, Zarrabeitia M, Mariani A, GattiD, Varzi A, Passerini S. Adv. Energy Mater., 2021, 11(4): 2003521.

doi: 10.1002/aenm.v11.4     URL    
[64]
Popov I, Sacci R L, Sanders N C, Matsumoto R A, Thompson M W, Osti N C, Kobayashi T, Tyagi M, Mamontov E, Pruski M, Cummings P T, Sokolov A P. J. Phys. Chem. C, 2020, 124(16): 8457.

doi: 10.1021/acs.jpcc.9b10807     URL    
[65]
ReberD, Takenaka N, Kühnel R S, Yamada A, Battaglia C. J. Phys. Chem. Lett., 2020, 11(12): 4720.

doi: 10.1021/acs.jpclett.0c00806     URL    
[66]
Lytle T K, Muralidharan A, Yethiraj A. J. Phys. Chem. B, 2021, 125(17): 4447.

doi: 10.1021/acs.jpcb.1c01660     URL    
[67]
Piao N, Liu S F, Zhang B, Ji X, Fan X L, Wang L, Wang P F, Jin T, Liou S C, Yang H C, Jiang J J, Xu K, Schroeder M A, He X M, Wang C S. ACS Energy Lett., 2021, 6(5): 1839.

doi: 10.1021/acsenergylett.1c00365     URL    
[68]
Zhang S M, Yang G J, Liu Z P, Li X Y, Wang X F, Chen R J, Wu F, Wang Z X, Chen L Q. Nano Lett., 2021, 21(7): 3310.

doi: 10.1021/acs.nanolett.1c00848     URL    
[69]
Shi J K, Xu C, Lai J W, Li Z L, Zhang Y P, Liu Y, Ding K, Cai Y P, Shang R, Zheng Q F. Angew. Chem. Int. Ed., 2023, 62(13): e202218151.
[70]
Zheng J H, Wang Y, Wang J C, Yuan HD, Liu Y J, Liu T F, Luo J M, Nai J W, Tao X Y. ACS Appl. Mater. Interfaces, 2022, 14(43): 48762.

doi: 10.1021/acsami.2c14770     URL    
[71]
Yu Z A, Wang H S, Kong X, Huang W, Tsao Y, MackanicD G, Wang K C, Wang X C, Huang W X, Choudhury S, Zheng Y, Amanchukwu C V, Hung S T, Ma Y T, Lomeli E G, Qin J, Cui Y, Bao Z N. Nat. Energy, 2020, 5(7): 526.

doi: 10.1038/s41560-020-0634-5    
[72]
Yu Z A, Rudnicki P E, Zhang Z W, Huang Z J, Celik H, Oyakhire S T, Chen Y L, Kong X, Kim S C, Xiao X, Wang H S, Zheng Y, Kamat G A, Kim M S, Bent S F, Qin J, Cui Y, Bao Z N. Nat. Energy, 2022, 7(1): 94.

doi: 10.1038/s41560-021-00962-y    
[73]
Giffin G A. Nat. Commun., 2022, 13: 5250.

doi: 10.1038/s41467-022-32794-z    
[74]
Yu Z, Balsara N P, Borodin O, Gewirth A A, Hahn N T, Maginn E J, Persson K A, Srinivasan V, Toney M F, Xu K, Zavadil K R, Curtiss L A, Cheng L. ACS Energy Lett., 2022, 7(1): 461.

doi: 10.1021/acsenergylett.1c02391     URL    
[75]
Lin S S, Hua H M, Lai P B, Zhao J B. Adv. Energy Mater., 2021, 11(36): 2101775.

doi: 10.1002/aenm.v11.36     URL    
[76]
Liu Q Q, Liu Y, Chen Z R, Ma Q, Hong Y R, Wang J H, Xu Y F, Zhao W, Hu Z K, Hong X, Wang J W, Fan X L, Wu H B. Adv. Funct. Mater., 2023, 33(6): 2209725.

doi: 10.1002/adfm.v33.6     URL    
[77]
Wu F X, Chu F L, Ferrero G A, Sevilla M, Fuertes A B, Borodin O, Yu Y, Yushin G. Nano Lett., 2020, 20(7): 5391.

doi: 10.1021/acs.nanolett.0c01778     URL    
[78]
Hu J T, Ji Y C, Zheng G R, Huang W Y, Lin Y, Yang L Y, Pan F. Aggregate, 2022, 3(1): e153.

doi: 10.1002/agt2.v3.1     URL    
[79]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.

doi: 10.1038/ncomms12032    
[80]
Fan X L, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J J, Xu K, Wang C S. Chem, 2018, 4(1): 174.

doi: 10.1016/j.chempr.2017.10.017     URL    
[81]
Hwang S, KimD H, Shin J H, Jang J E, Ahn K H, Lee C, Lee H. J. Phys. Chem. C, 2018, 122(34): 19438.

doi: 10.1021/acs.jpcc.8b06035     URL    
[82]
Ren XD, Chen S R, Lee H, MeiD H, Engelhard M H, Burton SD, Zhao W G, Zheng J M, Li Q Y, Ding M S, Schroeder M, Alvarado J, Xu K, Meng Y S, Liu J, Zhang J G, Xu W. Chem, 2018, 4(8): 1877.

doi: 10.1016/j.chempr.2018.05.002     URL    
[83]
Zheng Y, Soto F A, Ponce V, Seminario J M, Cao X, Zhang J G, Balbuena P B. J. Mater. Chem. A, 2019, 7(43): 25047.

doi: 10.1039/c9ta08935g    
[84]
Kamphaus E P, Balbuena P B. J. Phys. Chem. C, 2021, 125(37): 20157.

doi: 10.1021/acs.jpcc.1c04559     URL    
[85]
Perez Beltran S, Cao X, Zhang J G, Balbuena P B. Chem. Mater., 2020, 32(14): 5973.

doi: 10.1021/acs.chemmater.0c00987     URL    
[86]
Sun N N, Li R H, Zhao Y, Zhang H K, Chen J H, Xu J T, Li ZD, Fan X L, Yao X Y, Peng Z. Adv. Energy Mater., 2022, 12(42): 2200621.

doi: 10.1002/aenm.v12.42     URL    
[87]
Ravikumar B, Mynam M, Rai B. J. Phys. Chem. C, 2018, 122(15): 8173.

doi: 10.1021/acs.jpcc.8b02072     URL    
[88]
Wang YD, Zheng H, Hong L, Jiang F Y, Liu Y C, Feng X Y, Zhou R L, Sun Y, Xiang H F. Chem. Eng. J., 2022, 445: 136802.

doi: 10.1016/j.cej.2022.136802     URL    
[89]
Wheatle B K, Keith J R, Mogurampelly S, Lynd N A, Ganesan V. ACS Macro Lett., 2017, 6(12): 1362.

doi: 10.1021/acsmacrolett.7b00810     pmid: 35650818
[90]
Neumann M, Steinhauser O. Chem. Phys. Lett., 1984, 106(6): 563.

doi: 10.1016/0009-2614(84)85384-1     URL    
[91]
Yan C, Xu R, Xiao Y, Ding J F, Xu L, Li B Q, Huang J Q. Adv. Funct. Mater., 2020, 30(23): 1909887.

doi: 10.1002/adfm.v30.23     URL    
[92]
Zhang W L, Lu Y, Wan L, Zhou P, Xia Y C, Yan S S, Chen X X, Zhou H Y, Dong H, Liu K. Nat. Commun., 2022, 13: 2029.

doi: 10.1038/s41467-022-29761-z    
[93]
Holoubek J, Baskin A, Lawson J W, Khemchandani H, Pascal T A, Liu P, Chen Z. J. Phys. Chem. Lett., 2022, 13(20): 4426.

doi: 10.1021/acs.jpclett.2c00770     pmid: 35549480
[94]
Gomez-Ballesteros J L, Balbuena P B. J. Phys. Chem. Lett., 2017, 8(14): 3404.

doi: 10.1021/acs.jpclett.7b01183     pmid: 28686447
[95]
Clarke-Hannaford J, Breedon M, Rüther T, Spencer M J S. ACS Appl. Energy Mater., 2020, 3(6): 5497.

doi: 10.1021/acsaem.0c00482     URL    
[1] 玉笛声, 刘昌林, 林雪, 盛利志, 江丽丽. 快充型锂离子电池电极材料与电解液结构调控及设计[J]. 化学进展, 2024, 36(1): 132-144.
[2] 任启蒙, 王青磊, 李因文, 宋学省, 上官雪慧, 李法强. 锂电池高电压电解液[J]. 化学进展, 2023, 35(7): 1077-1096.
[3] 谢志莹, 郑新华, 王明明, 于海洲, 仇晓燕, 陈维. 水系锌离子电池[J]. 化学进展, 2023, 35(11): 1701-1726.
[4] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[5] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[10] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[14] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[15] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.