English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1895-1910 DOI: 10.7536/PC230417 前一篇   

• 综述 •

高热沉碳氢喷气燃料吸热反应研究进展

房振全1, 姜书根2, 张兴华1,*(), 张琦1, 陈伦刚1, 刘建国1, 马隆龙1   

  1. 1 东南大学能源与环境学院 能源热转换及其过程测控教育部重点实验室(东南大学) 南京 210096
    2 南京五洲制冷集团有限公司 南京 211100
  • 收稿日期:2023-04-14 修回日期:2023-08-30 出版日期:2023-12-24 发布日期:2023-11-30
  • 作者简介:

    张兴华 东南大学能源与环境学院教授、博导。主要从事生物质烃类燃料领域的应用基础研究与工程化验证研究。近年主持中科院先导专项课题、国家重点研发课题及国家自然科学基金项目10余项。在Appl. EnergyFuelEnergy等专业期刊发表SCI论文60余篇,他引2000余次。先后入选为中国科学院青年创新促进会会员、广东省“珠江人才计划”本土创新团队核心成员及广东省特支计划-科技创新青年拔尖人才。获广东省自然科学一等奖1项,广东省技术发明一等奖1项。

  • 基金资助:
    国家重点研发计划课题(2022YFB4201803); 国家自然科学基金重点项目(52236010); 国家自然科学基金重点项目(52376173)

Endothermic Reaction of High Heat Sink Hydrocarbon Jet Fuel

Zhenquan Fang1, Shugen Jiang2, Xinghua Zhang1,*(), Qi Zhang1, Lungang Chen1, Jianguo Liu1, Longlong Ma1   

  1. 1 Southeast University, School of Energy and Environment, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education (Southeast University),Nanjing 210009, China
    2 Nanjing Wuzhou Refrigeration Group Co., Ltd,Nanjing 211100, China
  • Received:2023-04-14 Revised:2023-08-30 Online:2023-12-24 Published:2023-11-30
  • Contact: *e-mail: zhangxh@seu.edu.cn.
  • Supported by:
    National Key R&D Program of China(2022YFB4201803); Key Program of the National Natural Science Foundation of China(52236010); Key Program of the National Natural Science Foundation of China(52376173)

高超音速飞行器是空天领域的重要发展方向,是国家整体科技实力的重要标志。吸热型碳氢燃料为兼具冷却与推进功能,需要具备高热沉、高密度、高热值、高热安定性、低冰点、低结焦和低成本的“四高三低”的基本特征。本文总结了吸热型碳氢燃料吸热反应研究进展,重点关注热裂解、催化裂解和催化蒸汽重整对于热沉的影响,分析了温度、压力和停留时间等热解条件对热沉的影响,考察了燃料组成、分子结构与热裂解间的关联规律,总结了分子筛、纳米颗粒和引发剂对吸热型碳氢燃料催化裂解行为和热沉的影响特性,并对吸热反应过程中的结焦及抑制技术进行了总结,结合发展现状提出了吸热型碳氢燃料未来的研究方向。

Hypersonic vehicle is not only the significant development direction in the field of air and space, but also the important symbol of the overall scientific and technological strength of a country. In order to combine cooling and propulsion functions, endothermic hydrocarbon fuel need to possess the basic characteristics of high heat sink, high density, high calorific value, high thermal stability, low freezing point, low coking and low cost. In this paper, the research progress of endothermic reactions of endothermic hydrocarbon fuels was summarized. This paper focusing on the effects of thermal cracking, catalytic cracking and catalytic steam reforming on heat sink. Firstly, the effects of pyrolysis conditions such as temperature, pressure and residence time on heat sink were analyzed. And then, the correlation between fuel composition, molecular structure and thermal cracking, and the effects of molecular sieves, nanoparticles and initiators on the catalytic cracking behavior and heat sink of endothermic hydrocarbon fuels were summarized. Furthermore, the influence of molecular sieve, nanoparticles and initiator on the catalytic cracking behavior and heat sink of endothermic hydrocarbon fuels, and the coking and inhibition technology in the process of endothermic reaction is summarized. Finally, the future research directions of endothermic hydrocarbon fuels are proposed in the light of the current development.

Contents

1 Introduction

2 Effect of thermal cracking on heat sink

2.1 Pyrolysis conditions

2.2 Fuel composition

3 Effect of catalytic cracking on heat sink

3.1 Molecular sieve

3.2 Nanoparticles

3.3 Initiator

4 Effect of catalytic steam reforming on heat sink

5 Comprehensive comparison of heat absorption technology

6 Coking and inhibition technology

7 Conclusion and outlook

()
图1 高超声速飞行器及其发动机冷却的总体示意图[5]
Fig. 1 Overall schematic representation of the hypersonic vehicle with its cooled engine[5]. Copyright 2021, American Chemical Society
图2 所需热沉与马赫数的关系[4]
Fig. 2 Heat sink required as a function of Mach number[4]. Copyright 2019, Elsevier.
图3 热解产物中烯烃/烷烃的浓度比[26]
Fig. 3 Concentration ratio of alkenes/alkanes in pyrolysis products[26]. Copyright 2014, American Chemical Society.
图4 烃类在700℃、3.0 MPa下热解的HSI-分子结构关系[43]
Fig. 4 HSI-molecular structure relationship of hydrocarbons pyrolysis at 700℃ and 3.0 MPa[43]. Copyright 2020, Elsevier.
图5 超支化聚酰胺-胺包裹Pt NPs对十氢萘裂解的影响[98]
Fig. 5 Effect of Pt NPs encapsulated by hyperbranched polyamide-amine on the cracking of decalin[98]. Copyright 2019, American Chemical Society
图6 十六烷基超支化聚乙烯亚胺对JP-10裂解的影响[125]
Fig. 6 Effect of hexadecyl hyperbranched polyethyleneimine on the pyrolysis of JP-10[125]. Copyright 2019, Elsevier
图7 棕榈酰基超支化聚甘油的合成示意图[129]
Fig. 7 Synthesis scheme of palmitoyl hyperbranched polyglycerol[129]. Copyright 2015, Elsevier
表1 吸热技术综合对比
Table 1 Comprehensive comparison of heat absorption technology
[1]
Yang Y Z, Yang J L, FangD N. Appl. Math. Mech., 2008, 29(1): 51.

doi: 10.1007/s10483-008-0107-1     URL    
[2]
Liu Z H, Bi Q C, Feng J T. Fuel, 2015, 158: 388.

doi: 10.1016/j.fuel.2015.05.068     URL    
[3]
Wang J X, Li Y Z, Liu XD, Shen C Q, Zhang H S, Xiong K. Chin. J. Aeronaut., 2021, 34(2): 1.
[4]
Sreekireddy P, Reddy T K K, Selvaraj P, Reddy V M, Lee B J. Appl. Therm. Eng., 2019, 147: 231.

doi: 10.1016/j.applthermaleng.2018.10.078    
[5]
Dinda S, Vuchuru K, Konda S, Uttaravalli A N. ACS Omega, 2021, 6(40): 26741.

doi: 10.1021/acsomega.1c04218     URL    
[6]
Zhang R, Jiang J, Yang Y, Le J, Zhang X. International Space Planes & Hypersonic Systems & Technologies Conference, 2012.
[7]
SobelD R, Spadaccini L J. J. Eng. Gas Turbines Power, 1997, 119(2): 344.

doi: 10.1115/1.2815581     URL    
[8]
Hubesch R, Mazur M, Selvakannan P R, Föger K, Lee A F, Wilson K, Bhargava S. Sustain. Energy Fuels, 2022, 6(7): 1664.

doi: 10.1039/D1SE01999F     URL    
[9]
Fortin T J, Bruno T J. Energy Fuels, 2013, 27(5): 2506.

doi: 10.1021/ef400193d     URL    
[10]
He F, Mi Z T, Sun H Y. Prog. Chem., 2006, 18(7/8): 1041.
(贺芳, 米镇涛, 孙海云. 化学进展, 2006, 18(7/8): 1041.).
[11]
PetleyD H, Jones S C. J. Aircr., 1992, 29(3): 384.

doi: 10.2514/3.46173     URL    
[12]
Rahimi N, Karimzadeh R. Appl. Catal. A Gen., 2011, 398(1/2): 1.

doi: 10.1016/j.apcata.2011.03.009     URL    
[13]
Wu X, YeD F, Jin SD, He G J, Guo Y S, Fang W J. Fuel, 2019, 255: 115782.

doi: 10.1016/j.fuel.2019.115782     URL    
[14]
Hui S P, Zhong B J. J. Energy Res. Technol., 2021, 144(3): 032309.

doi: 10.1115/1.4053068     URL    
[15]
Hou L Y, Dong N, SunD P. Fuel, 2013, 103: 1132.

doi: 10.1016/j.fuel.2012.09.021     URL    
[16]
Zhong F Q, Fan X J, Yu G, Li J G, Sung C J. J. Thermophys. Heat Transf., 2011, 25(3): 450.

doi: 10.2514/1.51399     URL    
[17]
Edwards T. Pet. Chem., 1996, 41: 481.
[18]
Li Y, Jin B T, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2021, 155: 105084.

doi: 10.1016/j.jaap.2021.105084     URL    
[19]
Chakraborty J P, KunzruD. J. Anal. Appl. Pyrol., 2009, 86(1): 44.

doi: 10.1016/j.jaap.2009.04.001     URL    
[20]
Jin B T, Jing K, Liu J, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2017, 125: 117.

doi: 10.1016/j.jaap.2017.04.010     URL    
[21]
Wang Y S, Cheng Y X, Li M H, Jiang P X, Zhu Y H. Fuel, 2021, 306: 121737.

doi: 10.1016/j.fuel.2021.121737     URL    
[22]
Ward T A, Ervin J S, Striebich R C, Zabarnick S. J. Propuls. Power, 2004, 20(3): 394.

doi: 10.2514/1.10380     URL    
[23]
Dardas Z, Süer M G, Ma Y H, Moser W R. J. Catal., 1996, 162(2): 327.

doi: 10.1006/jcat.1996.0290     URL    
[24]
Wang Z, Guo Y S, Lin R S. J. Anal. Appl. Pyrol., 2009, 85(1/2): 534.

doi: 10.1016/j.jaap.2009.01.009     URL    
[25]
Xing Y, Xie W J, Fang W J, Guo Y S, Lin R S. Energy Fuels, 2009, 23(8): 4021.

doi: 10.1021/ef9003297     URL    
[26]
Jia Z J, Huang H Y, Zhou W X, Qi F, Zeng M R. Energy Fuels, 2014, 28(9): 6019.

doi: 10.1021/ef5009314     URL    
[27]
Zhou W X, Jia Z J, Qin J, Bao W, Yu B. Chem. Eng. J., 2014, 243: 127.

doi: 10.1016/j.cej.2013.12.081     URL    
[28]
Billingsley M, Edwards T, Shafer L, Bruno T. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2010.
[29]
Lovestead T M, Bruno T J. Energy Fuels, 2009, 23(7): 3637.

doi: 10.1021/ef900096q     URL    
[30]
DeBlase A F, Bruening C R, Lewis W K, Bunker C E. Energy Fuels, 2019, 33(11): 10861.

doi: 10.1021/acs.energyfuels.9b02799     URL    
[31]
MacDonald M E, Ren W, Zhu Y Y, DavidsonD F, Hanson R K. Fuel, 2013, 103: 1060.

doi: 10.1016/j.fuel.2012.09.068     URL    
[32]
Edwards T, DeWitt M, Shafer L, BrooksD, Huang H, Bagley S, Ona J, Wornat J. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Canberra, Australia. Reston, Virigina: AIAA, 2006, 7973.
[33]
Edwards T. 48th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, 2012.
[34]
Yu J, Eser S. Fuel, 2000, 79(7): 759.

doi: 10.1016/S0016-2361(99)00199-4     URL    
[35]
Gascoin N, Gillard P, Abraham A. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2010.
[36]
Liu C, Qiu S Y, Huang H M, Guo P, Huo E G. Materials Reports, 2019, 33(08): 1251.
(刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 材料导报, 2019, 33(08): 1251.).
[37]
Li G N, Li C Y, Wang W N, Shen W, Lyu J, Wang W L. J. Fuel Chem. Technol., 2013, 41(9): 1136.
(李国娜, 李春迎, 王渭娜, 沈文, 吕剑, 王文亮. 燃料化学学报, 2013, 41(9): 1136.).
[38]
Commodo M, Fabris I, Groth C P T, Gülder Ö L. Energy Fuels, 2011, 25(5): 2142.

doi: 10.1021/ef2002102     URL    
[39]
Ben Amara A, Kaoubi S, Starck L. Fuel, 2016, 173: 98.

doi: 10.1016/j.fuel.2016.01.040     URL    
[40]
Jiang R P, Liu G Z, He X Y, Yang C H, Wang L, Zhang X W, Mi Z T. J. Anal. Appl. Pyrol., 2011, 92(2): 292.

doi: 10.1016/j.jaap.2011.07.001     URL    
[41]
SunD A, Du Y M, Zhang J W, Jiao Y, Li Y, Wang Z X, Li C Y, Feng H, Lu J. Fuel, 2017, 194: 266.

doi: 10.1016/j.fuel.2016.12.090     URL    
[42]
Konda S, Vuchuru K, Nalabala M, Dinda S. J. Supercrit. Fluids, 2022, 191: 105757.

doi: 10.1016/j.supflu.2022.105757     URL    
[43]
Liu Y J, Gong S Y, Wang H Y, Wang L, Zhang X W, Liu G Z. J. Anal. Appl. Pyrol., 2020, 149: 104864.

doi: 10.1016/j.jaap.2020.104864     URL    
[44]
Yue L, Li G Q, He G J, Guo Y S, Xu L, Fang W J. Chem. Eng. J., 2016, 283: 1216.

doi: 10.1016/j.cej.2015.08.081     URL    
[45]
Li G Q, Zhang C F, Wei H, Xie H J, Guo Y S, Fang W J. Fuel, 2016, 163: 148.

doi: 10.1016/j.fuel.2015.09.052     URL    
[46]
SunD A, Li C Y, Du Y M, Kou L G, Zhang J W, Li Y, Wang Z X, Li J W, Feng H, Lu J. Fuel, 2019, 239: 659.

doi: 10.1016/j.fuel.2018.11.003     URL    
[47]
Zhang Q, Liu G Z, Wang L, Zhang X W, Li G Z. Energy Fuels, 2014, 28(7): 4431.

doi: 10.1021/ef500668q     URL    
[48]
DeWitt M J, Edwards T, Shafer L, BrooksD, Striebich R, Bagley S P, Wornat M J. Ind. Eng. Chem. Res., 2011, 50(18): 10434.

doi: 10.1021/ie200257b     URL    
[49]
Urata K, Furukawa S, Komatsu T. Appl. Catal. A Gen., 2014, 475: 335.

doi: 10.1016/j.apcata.2014.01.050     URL    
[50]
Ji Y J, Yang H H, Yan W. Catalysts, 2017, 7(12): 367.

doi: 10.3390/catal7120367     URL    
[51]
Luo J, Bhaskar B V, Yeh Y H, Gorte R J. Appl. Catal. A Gen., 2014, 478: 228.

doi: 10.1016/j.apcata.2014.04.010     URL    
[52]
Rownaghi A A, Rezaei F, Hedlund J. Chem. Eng. J., 2012, 191: 528.

doi: 10.1016/j.cej.2012.03.023     URL    
[53]
Meng F X, Liu G Z, Qu SD, Wang L, Zhang X W, Mi Z T. Ind. Eng. Chem. Res., 2010, 49(19): 8977.

doi: 10.1021/ie101158w     URL    
[54]
Qu SD, Liu G Z, Meng F, Wang L, Zhang X W. Energy Fuels, 2011, 25(7): 2808.

doi: 10.1021/ef2004706     URL    
[55]
Qiu Y, Zhao G L, Liu G Z, Wang L, Zhang X W. Ind. Eng. Chem. Res., 2014, 53(47): 18104.

doi: 10.1021/ie503335h     URL    
[56]
Mańko M, Chal R, Trens P, MinouxD, GÉrardin C, Makowski W. Microporous Mesoporous Mater., 2013, 170: 243.

doi: 10.1016/j.micromeso.2012.12.016     URL    
[57]
Meng F X, Liu G Z, Wang L, Qu SD, Zhang X W, Mi Z T. Energy Fuels, 2010, 24(5): 2848.

doi: 10.1021/ef100128a     URL    
[58]
Asadi S, Vafi L, Karimzadeh R. Microporous Mesoporous Mater., 2018, 255: 253.

doi: 10.1016/j.micromeso.2017.07.018     URL    
[59]
Ji Y J, Shi B F, Yang H H, Yan W. Appl. Catal. A Gen., 2017, 533: 90.

doi: 10.1016/j.apcata.2017.01.005     URL    
[60]
Ji Y J, Yang H H, Yan W. Fuel, 2019, 243: 155.

doi: 10.1016/j.fuel.2019.01.105     URL    
[61]
Zhao T T, Li F W, Yu H C, Ding S L, Li Z X, Huang X Y, Li X, Wei X H, Wang Z L, Lin H F. Appl. Catal. A Gen., 2019, 575: 101.

doi: 10.1016/j.apcata.2019.02.011     URL    
[62]
Kim S, Park G, Kim S K, Kim Y T, Jun K W, Kwak G. Appl. Catal. B Environ., 2018, 220: 191.

doi: 10.1016/j.apcatb.2017.08.056     URL    
[63]
Egeblad K, Christensen C H, Kustova M, Christensen C H,. Chem. Mater., 2008, 20(3): 946.

doi: 10.1021/cm702224p     URL    
[64]
Kim J C, Ryoo R, Opanasenko M V, Shamzhy M V, Čejka J. ACS Catal., 2015, 5(4): 2596.

doi: 10.1021/cs502021a     URL    
[65]
Petushkov A, Yoon S, Larsen S C. Microporous Mesoporous Mater., 2011, 137(1/3): 92.

doi: 10.1016/j.micromeso.2010.09.001     URL    
[66]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.

doi: 10.1021/ja908382n     URL    
[67]
Kim J, Kim W, Seo Y, Kim J C, Ryoo R. J. Catal., 2013, 301: 187.

doi: 10.1016/j.jcat.2013.02.015     URL    
[68]
Blasco T, Corma A, Martineztriguero J. J. Catal., 2006, 237(2): 267.

doi: 10.1016/j.jcat.2005.11.011     URL    
[69]
Song Z X, Takahashi A, Nakamura I, Fujitani T. Appl. Catal. A Gen., 2010, 384(1/2): 201.

doi: 10.1016/j.apcata.2010.06.035     URL    
[70]
Ji Y J, Yang H H, Zhang Q, Yan W. J. Solid State Chem., 2017, 251: 7.

doi: 10.1016/j.jssc.2017.03.023     URL    
[71]
Mao R L V, Le T S, Fairbairn M, Muntasar A, Xiao S, Denes G. Appl. Catal. A, 1999, 185(1): 41.

doi: 10.1016/S0926-860X(99)00132-5     URL    
[72]
Xu T, Zhang Q H, Song H, Wang Y. J. Catal., 2012, 295: 232.

doi: 10.1016/j.jcat.2012.08.014     URL    
[73]
Sang Y, Jiao Q Z, Li H S, Wu Q, Zhao Y, Sun K N. J. Nanopart. Res., 2014, 16(12): 2755.

doi: 10.1007/s11051-014-2755-x     URL    
[74]
Zhang L K, Qu SD, Wang L, Zhang X W, Liu G Z. Catal. Today, 2013, 216: 64.

doi: 10.1016/j.cattod.2013.04.016     URL    
[75]
Wang L, Diao Z H, Tian Y J, Xiong Z Q, Liu G Z. Energy Fuels, 2016, 30(9): 6977.

doi: 10.1021/acs.energyfuels.6b01160     URL    
[76]
Liu G Z, Zhao G L, Meng F X, Qu SD, Wang L, Zhang X W. Energy Fuels, 2012, 26(2): 1220.

doi: 10.1021/ef201467r     URL    
[77]
Long L, Lan Z Z, Han Z X, Qiu Y F, Zhou W X. ACS Appl. Energy Mater., 2018, 1(8): 4130.

doi: 10.1021/acsaem.8b00780     URL    
[78]
Kotrel S, Knözinger H, Gates B C. Microporous Mesoporous Mater., 2000, 35/36: 11.

doi: 10.1016/S1387-1811(99)00204-8     URL    
[79]
Buurmans I L C, Pidko E A, de Groot J M, Stavitski E, van Santen R A, Weckhuysen B M. Phys. Chem. Chem. Phys., 2010, 12(26): 7032.

doi: 10.1039/c002442b     pmid: 20473417
[80]
Mun J, Jeon H, Jeong B, Jung J. Catal. Today, 2021, 375: 537.

doi: 10.1016/j.cattod.2020.02.013     URL    
[81]
Diao Z H, RongD, Hou X, Chen Y L, Zheng P F, Liu Y Q, SunD. Energy Fuels, 2019, 33(12): 12696.

doi: 10.1021/acs.energyfuels.9b03458     URL    
[82]
Bao S G, Liu G Z, Zhang X W, Wang L, Mi Z T. Ind. Eng. Chem. Res., 2010, 49(8): 3972.

doi: 10.1021/ie901801q     URL    
[83]
Long L, Zhou W X, Qiu Y F, Lan Z Z. Energy, 2020, 192: 116540.

doi: 10.1016/j.energy.2019.116540     URL    
[84]
He L, Guo Y S, Wang B C, Lin R S. Journal of Propulsion Technology, 2003, 24(3): 278.
(何龙, 郭永胜, 王彬成, 林瑞森. 推进技术, 2003, 24(3): 278.).
[85]
Shang Q H, Xu G L, Tang N F, Wu C T, Chen S, Cong Y. Microporous Mesoporous Mater., 2019, 288: 109616.

doi: 10.1016/j.micromeso.2019.109616     URL    
[86]
Sun W J, Liu G Z, Wang L, Zhang X W. Fuel, 2015, 144: 96.

doi: 10.1016/j.fuel.2014.12.022     URL    
[87]
Yue L, Lu X X, Chi H, Guo Y S, Xu L, Fang W J, Li Y, Hu S L. Fuel, 2014, 121: 149.

doi: 10.1016/j.fuel.2013.12.052     URL    
[88]
Guo Y S, Yang Y Z, Xiao J, Fang W J. Fuel, 2014, 117: 932.

doi: 10.1016/j.fuel.2013.10.023     URL    
[89]
Guo Y S, Yang Y Z, Fang W J, Hu S L. Appl. Catal. A Gen., 2014, 469: 213.

doi: 10.1016/j.apcata.2013.09.050     URL    
[90]
LiD, Fang W J, Wang H Q, Gao C, Zhang R Y, Cai K K. Ind. Eng. Chem. Res., 2013, 52(24): 8109.

doi: 10.1021/ie303270j     URL    
[91]
Xie C L, Chen C, Yu Y, Su J, Li Y F, Somorjai G A, Yang PD. Nano Lett., 2017, 17(6): 3798.

doi: 10.1021/acs.nanolett.7b01139     URL    
[92]
Samoila P, Boutzeloit M, Salem I, UzioD, Mabilon G, Epron F, MarÉcot P, Especel C. Appl. Catal. A Gen., 2012, 415/416: 80.

doi: 10.1016/j.apcata.2011.12.003     URL    
[93]
Kim J, Park S H, Chun B H, Jeong B H, Han J S, Kim S H. Catal. Today, 2012, 185(1): 47.

doi: 10.1016/j.cattod.2011.09.020     URL    
[94]
Sharifianjazi F, Parvin N, Tahriri M. J. Non Cryst. Solids, 2017, 476: 108.

doi: 10.1016/j.jnoncrysol.2017.09.035     URL    
[95]
Xu Z K, Yue Y Y, Bao X J, Xie Z L, Zhu H B. ACS Catal., 2020, 10(1): 818.

doi: 10.1021/acscatal.9b03527     URL    
[96]
Peng R S, Li S J, Sun X B, Ren Q M, Chen L M, Fu M L, Wu J L, YeD Q. Appl. Catal. B Environ., 2018, 220: 462.

doi: 10.1016/j.apcatb.2017.07.048     URL    
[97]
Wu X, Chen X Y, Jin SD, He G J, Guo Y S, Fang W J. Energy Convers. Manag., 2019, 198: 111797.

doi: 10.1016/j.enconman.2019.111797     URL    
[98]
YeD F, Zhao L, Bai S S, Guo Y S, Fang W J. ACS Appl. Mater. Interfaces, 2019, 11(43): 40078.

doi: 10.1021/acsami.9b14285     URL    
[99]
Jiao Y, Wang J L, Zhu Q, Li X Y, Chen Y Q. Energy Fuels, 2014, 28(8): 5382.

doi: 10.1021/ef500374c     URL    
[100]
Chen Z, Chen L L, Jiang M, Gao X Y, Huang M L, Li Y X, Ren L P, Yang Y, Yang Z Z. Appl. Surf. Sci., 2020, 510: 145401.

doi: 10.1016/j.apsusc.2020.145401     URL    
[101]
Zhang J, Chen T, Jiao Y, Wang L L, Wang J L, Chen Y Q, Zhu Q, Li X Y. Appl. Surf. Sci., 2020, 507: 145113.

doi: 10.1016/j.apsusc.2019.145113     URL    
[102]
Jiao Y, Chen T, Wang L L, Yao P, Zhang J, Chen Y S, Chen Y Q, Wang J L. Ind. Eng. Chem. Res., 2020, 59(10): 4338.

doi: 10.1021/acs.iecr.9b06515     URL    
[103]
Nassreddine S, Massin L, Aouine M, Geantet C, Piccolo L. J. Catal., 2011, 278(2): 253.

doi: 10.1016/j.jcat.2010.12.008     URL    
[104]
Zhang J, Cheng M, Jiao Y, Wang L L, Wang J L, Chen Y Q, Li X Y. Appl. Surf. Sci., 2021, 559: 149950.

doi: 10.1016/j.apsusc.2021.149950     URL    
[105]
Kondoh H, Tanaka K, Nakasaka Y, Tago T, Masuda T. Fuel, 2016, 167: 288.

doi: 10.1016/j.fuel.2015.11.075     URL    
[106]
Jiao Y, Liu A K, Li C Y, Wang J L, Zhu Q, Li X Y, Chen Y Q. J. Anal. Appl. Pyrol., 2015, 111: 100.

doi: 10.1016/j.jaap.2014.12.002     URL    
[107]
Jiao Y, Li S S, Liu B, Du Y M, Wang J L, Lu J, Chen Y Q. Appl. Therm. Eng., 2015, 91: 417.

doi: 10.1016/j.applthermaleng.2015.07.085     URL    
[108]
Hou X, Qiu Y, Tian Y J, Diao Z H, Zhang X W, Liu G Z. Chem. Eng. J., 2018, 349: 297.

doi: 10.1016/j.cej.2018.05.026     URL    
[109]
Foo R, Vazhnova T, LukyanovD B, Millington P, Collier J, Rajaram R, Golunski S. Appl. Catal. B Environ., 2015, 162: 174.

doi: 10.1016/j.apcatb.2014.06.034     URL    
[110]
Shao X C, Zhang X T, Yu W G, Wu Y Y, Qin Y C, Sun Z L, Song L J. Appl. Surf. Sci., 2012, 263: 1.

doi: 10.1016/j.apsusc.2012.07.142     URL    
[111]
Camposeco R, Castillo S, Mejia-Centeno I, Navarrete J, Rodriguez-Gonzalez V. Microporous Mesoporous Mater., 2016, 236: 235.

doi: 10.1016/j.micromeso.2016.08.033     URL    
[112]
Jiao Y, Zhang H, Li S S, Guo C H, Yao P, Wang J L. Fuel, 2018, 233: 724.

doi: 10.1016/j.fuel.2018.06.011     URL    
[113]
Kenney C, Maham Y, Nelson A E. Thermochim. Acta, 2005, 434(1/2): 55.

doi: 10.1016/j.tca.2004.12.022     URL    
[114]
Blasco T, Nieto J M L. Appl. Catal. A Gen., 1997, 157(1/2): 117.

doi: 10.1016/S0926-860X(97)00029-X     URL    
[115]
Duan A J, Wan G F, Zhao Z, Xu C M, Zheng Y Y, Zhang Y, Dou T, Bao X J, Chung K. Catal. Today, 2007, 119(1/4): 13.

doi: 10.1016/j.cattod.2006.08.049     URL    
[116]
Zhang H, Wang Z Z, Li S S, Jiao Y, Wang J L, Zhu Q, Li X Y. Appl. Therm. Eng., 2017, 111: 811.

doi: 10.1016/j.applthermaleng.2016.10.006     URL    
[117]
Hong E, Sim H I, Shin C H. Chem. Eng. J., 2016, 292: 156.

doi: 10.1016/j.cej.2016.01.042     URL    
[118]
Chakraborty J P, KunzruD. J. Anal. Appl. Pyrol., 2012, 95: 48.

doi: 10.1016/j.jaap.2012.01.004     URL    
[119]
Androvič L, Bartáček J, Sedlák M. Res. Chem. Intermed., 2016, 42(6): 5133.

doi: 10.1007/s11164-015-2351-4     URL    
[120]
Wang Z, Lin R S, Fang W J, Li G, Guo Y S, Qin Z W. Energy, 2006, 31(14): 2773.

doi: 10.1016/j.energy.2005.11.023     URL    
[121]
Wang Z, Guo Y S, Lin R S. Energy Convers. Manag., 2008, 49(8): 2095.

doi: 10.1016/j.enconman.2008.02.018     URL    
[122]
WickhamD T, Engel J R, Hitch BD, Karpuk M E. J. Propuls. Power, 2001, 17(6): 1253.

doi: 10.2514/2.5872     URL    
[123]
Liu G Z, Han Y J, Wang L, Zhang X W, Mi Z T. Energy Fuels, 2008, 22(6): 3960.

doi: 10.1021/ef800323d     URL    
[124]
Russell K E. Prog. Polym. Sci., 2002, 27(6): 1007.

doi: 10.1016/S0079-6700(02)00007-2     URL    
[125]
YeD F, Mi J, Bai S S, Zhang L F, Guo Y S, Fang W J. Fuel, 2019, 254: 115667.

doi: 10.1016/j.fuel.2019.115667     URL    
[126]
Lamy C M, Sallin O, Loussert C, Chatton J Y. ACS Nano, 2012, 6(2): 1176.

doi: 10.1021/nn203822t     URL    
[127]
Jia Z J, Wang ZD, Cheng Z J, Zhou W X. Combust. Flame, 2016, 165: 246.

doi: 10.1016/j.combustflame.2015.12.010     URL    
[128]
Guo G S, Ren Y, Yu Y B, Liao Z W, Jiang B B, Yang Y, He G J, Fang W J, Wang JD, Yang Y R. Fuel, 2021, 299: 120907.

doi: 10.1016/j.fuel.2021.120907     URL    
[129]
He G J, Li G Q, Ying H, Guo Y S, Fang W J. Fuel, 2015, 161: 295.

doi: 10.1016/j.fuel.2015.08.066     URL    
[130]
He G J, Shen Y Y, Li J, Zhang L F, Guo Y S, DionysiouDD, Fang W J. Fuel, 2017, 200: 62.

doi: 10.1016/j.fuel.2017.03.047     URL    
[131]
Mi J, YeD F, Dai Y T, Xie H J, WuD, Sun H Y, Guo Y S, Fang W J. Fuel, 2020, 270: 117433.

doi: 10.1016/j.fuel.2020.117433     URL    
[132]
Craciun R, Shereck B, Gorte R J. Catal. Lett., 1998, 51(3/4): 149.

doi: 10.1023/A:1019022009310     URL    
[133]
Faur Ghenciu A. Curr. Opin. Solid State Mater. Sci., 2002, 6(5): 389.

doi: 10.1016/S1359-0286(02)00108-0     URL    
[134]
Filippi M, Bruno C. Int. J. Energ. Mater. Chem. Propuls., 2002, 5(1/6): 546.
[135]
ZhangD R, Zhang X X, Hou L Y. J. Aerosp. Power, 2018, 33(8): 1830.
(张定瑞, 张枭雄, 侯凌云. 航空动力学报, 2018, 33(8): 1830.).
[136]
Hou L Y, Dong N, Ren Z Y, Zhang B, Hu S L. Fuel Process. Technol., 2014, 128: 128.

doi: 10.1016/j.fuproc.2014.07.011     URL    
[137]
Hou L Y, Jia Z, Gong J S, Xhou Y, Piao Y. J. Propuls. Power, 2012, 28(3): 453.

doi: 10.2514/1.B34315     URL    
[138]
Zheng Q C, Xiao Z R, Xu J S, Pan L, Zhang X W, Zou J J. Fuel, 2021, 286: 119371.

doi: 10.1016/j.fuel.2020.119371     URL    
[139]
Feng Y, Liu Y N, Cao Y, Gong K Y, Liu S Y, Qin J. Energy, 2020, 193: 116738.

doi: 10.1016/j.energy.2019.116738     URL    
[140]
Feng Y, Lv Q H, Deng S Y, Liu S Y, Cao Y, Qin J. Int. J. Energy Res., 2020, 44(9): 7386.

doi: 10.1002/er.v44.9     URL    
[141]
Li F Q, Li Z Z, Jing K, Wang L, Zhang X W, Liu G Z. Energy Fuels, 2018, 32(6): 6524.

doi: 10.1021/acs.energyfuels.8b00531     URL    
[142]
Li Y, Wang J B, Xie G N, Sunden B. Chem. Eng. Sci., 2021, 244: 116806.

doi: 10.1016/j.ces.2021.116806     URL    
[143]
Liu Y Y, Chen R, Liu J, Zhang X W. Trans. Tianjin Univ., 2022, 28(3): 199.

doi: 10.1007/s12209-022-00315-0    
[144]
Cao T Y, Huang R J, Gorte R J, Vohs J M. Appl. Catal. A Gen., 2020, 590: 117372.

doi: 10.1016/j.apcata.2019.117372     URL    
[145]
Wang C, Du C P, Shang J X, Zhu Y H, Yao HD, Xu M L, Shan S Q, Han W, Du Z G, Yang Z B, LiD. J. Anal. Appl. Pyrol., 2023, 169: 105867.

doi: 10.1016/j.jaap.2023.105867     URL    
[146]
Edwards T. Combust. Sci. Technol., 2006, 178(1/3): 307.

doi: 10.1080/00102200500294346     URL    
[147]
Tomioka S, Hattori M, Onodera T, Isono T. Trans. Japan Soc. Aero. S Sci., 2023, 66(3): 83.

doi: 10.2322/tjsass.66.83     URL    
[148]
Lee T H, Mun S, Kim S H, Lee K B. J. Ind. Eng. Chem., 2021, 98: 389.

doi: 10.1016/j.jiec.2021.03.025     URL    
[149]
Sim H S, Yetter R A, Hong S, vanDuin A C T, DabbsD M, Aksay I A. Combust. Flame, 2020, 217: 212.

doi: 10.1016/j.combustflame.2020.04.002     URL    
[150]
Hou L Y, ZhangD R, Zhang X X. Fuel Process. Technol., 2017, 167: 655.

doi: 10.1016/j.fuproc.2017.08.013     URL    
[151]
Xu K K, Sun X, Meng H. Int. J. Therm. Sci., 2018, 132: 209.

doi: 10.1016/j.ijthermalsci.2018.06.008     URL    
[152]
Tian K, Tang Z C, Wang J, Ma T, Zeng M, Wang Q W. Energy, 2022, 260: 125160.

doi: 10.1016/j.energy.2022.125160     URL    
[153]
Liu S Y, Feng Y, Cao Y, Gong K Y, Zhou W X, Bao W. Int. J. Therm. Sci., 2019, 137: 199.

doi: 10.1016/j.ijthermalsci.2018.10.039     URL    
[154]
Xie W J, Fang W J, LiD, Xing Y, Guo Y S, Lin R S. Energy Fuels, 2009, 23(6): 2997.

doi: 10.1021/ef8011323     URL    
[155]
Lee T H, Kang S, Kim S H. Korean J. Chem. Eng., 2019, 57(5):611.
[156]
Wang H Y, Yang Z N, Liu J, Li G Z, Zhang X W. Fuel Process. Technol., 2020, 198: 106229.

doi: 10.1016/j.fuproc.2019.106229     URL    
[157]
Gao M Y, Hou L Y, Zhang X X, ZhangD R. Energy Fuels, 2019, 33(7): 6126.

doi: 10.1021/acs.energyfuels.9b00878     URL    
[158]
Fau G, Gascoin N, Steelant J. J. Anal. Appl. Pyrol., 2014, 108: 1.

doi: 10.1016/j.jaap.2014.05.022     URL    
[159]
Hubesch R, Mazur M, Föger K, Selvakannan P R, Bhargava S K. Chem. Commun., 2021, 57(75): 9586.

doi: 10.1039/D1CC04246G     URL    
[160]
Rahbar Shamskar F, Rezaei M, Meshkani F. Int. J. Hydrog. Energy, 2017, 42(7): 4155.

doi: 10.1016/j.ijhydene.2016.11.067     URL    
[161]
Yajun J, Honghui Y, Zhaohui L, Qincheng B. ACTA Petrol. Sin., 2021, 37(2): 447.
[162]
Tian K, Yang P, Klemeš J J, Ma T, Zeng M, Wang Q W. Aerosp. Sci. Technol., 2023, 138: 108357.

doi: 10.1016/j.ast.2023.108357     URL    
[163]
Singh R K, Patil T, PandeyD, Tekade S P, Sawarkar A N. J. Environ. Manag., 2022, 301: 113854.

doi: 10.1016/j.jenvman.2021.113854     URL    
[164]
Ji Y J, Yang H H, Liu Z H, Bi Q C. Acta Petrolei Sin. Petroleum Process. Sect., 2021, 37(5): 1114.
(姬亚军, 杨鸿辉, 刘朝晖, 毕勤成. 石油学报(石油加工), 2021, 37(5): 1114.).
[165]
SunD A, Li C Y, Du Y M, Zhang W, Lv J. Chemical Industry and Engineering Progress, 2012, 31(09): 1959.
(孙道安, 李春迎, 杜咏梅, 张伟, 吕剑. 化工进展, 2012, 31(09): 1959.).
[166]
David Hernandez A, Kaisalo N, Simell P, Scarsella M. Appl. Catal. B Environ., 2019, 258: 117977.

doi: 10.1016/j.apcatb.2019.117977     URL    
[1] 刘华敏, 马明国, 刘玉兰. 预处理技术在生物质热化学转化中的应用[J]. 化学进展, 2014, 26(01): 203-213.
[2] 马利勇 汪洋 陈丰秋 詹晓力. 烃类催化裂解制低碳烯烃催化剂*[J]. 化学进展, 2010, 22(0203): 265-269.
[3] 贺芳,米镇涛,孙海云. 提高烃类燃料热沉的研究进展[J]. 化学进展, 2006, 18(0708): 1041-1048.
[4] 李国辉,陈晖,胡杰南. 废塑料裂解制液体燃料和化学品技术开发进展[J]. 化学进展, 1996, 8(02): 162-.