English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1686-1700 DOI: 10.7536/PC230411 前一篇   后一篇

• 综述 •

直接电纺纤维海绵的制备及应用

宋一龙, 赵爽, 李昆锋, 费志方, 陈国兵, 杨自春*()   

  1. 海军工程大学动力工程学院 武汉 430033
  • 收稿日期:2023-04-10 修回日期:2023-07-16 出版日期:2023-11-24 发布日期:2023-09-11
  • 通讯作者: 杨自春
  • 基金资助:
    国家自然科学基金项目资助(51802347)

Preparation and Application of Direct Electrospun Fibrous Sponges

Song Yilong, Zhao Shuang, Li Kunfeng, Fei Zhifang, Chen Guobing, Yang Zichun()   

  1. School of Power Engineering, Naval University of Engineering,Wuhan 430033, China
  • Received:2023-04-10 Revised:2023-07-16 Online:2023-11-24 Published:2023-09-11
  • Contact: Yang Zichun
  • Supported by:
    National Natural Science Foundation of China(51802347)

静电纺丝纤维海绵是一种以一维纤维为构筑单元的蓬松三维(3D)材料,由于维度的增加,该材料具备许多比传统电纺薄膜更加突出的优点,在各领域都表现巨大的应用潜力。随着对电纺三维结构研究的深入,如何直接通过静电纺丝获取稳定的纤维海绵并提高其性能已成为当前面临的关键挑战。本文系统综述了近年来直接电纺制备纤维海绵的各种新策略,讨论了其内在机理、特点以及代表性的研究成果,总结了该材料在组织工程、环境治理、安全防护和智能设备等领域的应用现状,提出了其现阶段面临的一些挑战,展望了电纺海绵在未来的发展方向。

Electrospun fibrous sponge is a fluffy three-dimensional (3D) material based on one-dimensional fibers. The increase of dimension makes this material have many more prominent advantages than traditional electrospun films, so it has shown great application potential in various fields. With the in-depth study of the three-dimensional structure of electrospinning, it has become a current challenge to obtain stable fibrous sponges directly by electrospinning and improve their performance. In this paper, various new strategies for preparing fibrous sponges by direct electrospinning in recent years are reviewed in detail. Firstly, the mechanism, characteristics and representative research results of different methods are analyzed and summarized. Then the application status of this material in the fields of tissue engineering, environmental governance, safety protection and intelligent equipment is introduced. Finally, the future development trend of electrospinning fibrous sponge is prospected.

Contents

1 Introduction

2 Preparation process of direct electrospinning fibrous sponges

2.1 Sol-controlled self-assembly

2.2 Humidity induced phase separation

2.3 Air-assisted electrospinning

2.4 Near-field electrospinning / 3D printing

2.5 Template-assisted collection

3 Application of direct electrospinning fibrous sponges

3.1 Tissue engineering

3.2 Sound absorption and noise reduction

3.3 Fire protection and heat insulation

3.4 Filtration and separation

3.5 Sensors

4 Conclusion and outlook

()
图1 静电纺丝3D结构的(a)俯视图;(b)侧视图;(c)最终结构和(d)顶端纤维电荷分布[21,28]
Fig.1 3D electrospun structure of PS. (a) Top-view, (b) side view, (c) finished size and (d) the fibers on the top of 3D stack repel a rod with negative charges, and attract a rod with positive charges[21,28]. Copyright 2012, Elsevier
图2 (a) PS纤维海绵制备示意图;(b)交联处理过程中三甲基丙烯三(2甲基-1-丙酸氮吡啶)(TTMA)的化学反应;(c)层状波纹微结构的SEM;(d,e) PS纤维海绵立在羽毛的尖端以及PS纤维海绵的大尺寸照片[36]
Fig.2 (a) Schematic illustration for the fabrication of PSFS. (b) The chemical reaction of TTMA during the crosslink treatment process (c) SEM of the lamellar corrugated microstructure. (d,e) Photographs showing that the ultralight PSFS could stand on the tip of a feather and the large scale of PSFS[36]. Copyright 2019, American Chemical Society
图3 (a) 分步气流辅助静电纺丝[48]; (b) 纺丝装置侧视图和底部图[48];(c) 湍流辅助静电纺丝[49]
Fig.3 (a) Schematic diagram of stepped airflow-assisted electrospinning set-up[48]. (b) Side and bottom views of the spinning unit[48]. (c) Illustration of the turbulent-flow-assisted electrospinning[49]. Copyright 2022, Nature
图4 (a)3D静电纺丝过程的示意图和堆叠纤维的特写示意图;(b)在纸基材上构建的10层3D网格结构的SEM图像;(c)网格交叉区域的SEM图像;(d)整个样品的光学照片[52]
Fig.4 (a) Schematic setup of the 3D electrospinning process and a close-up schematic of stacked fibers. (b) SEM image of a 10-layer 3D grid structure on paper substrate. (c) SEM image showing the cross-over area of the grid. (d) An optical photo showing a whole grid structure[52]. Copyright 2015, American Chemical Society
图5 (a)“哑铃”收集器上的3D纳米纤维宏观结构[61]; (b)液体收集器制备3D纳米纤维结构示意图[67]; (c) 发散静电纺丝装置[62]
Fig.5 (a) Three dimension nanofibrous macrostructures on “dumbbell” collector[61]. (b) The schematic set-up for the production of 3D nanofibrous structures (bulk and aligned) using liquid vortex[67]. (c) Configuration of divergence electrospinning[62]. Copyright 2021, Springer Berlin Heidelberg
图6 (a)水凝胶辅助静电纺丝(GelES)在成型和静电纺丝两个过程的示意图;(b)多分叉三维明胶圆柱形结构和三维PCL纳米纤维宏观结构照片;(c) GelES制造的各种复杂的三维宏观结构的照片,包括波纹管状宏观结构(c-i)、微型化人类肺泡状宏观结构(c-ii)、类脑壳宏观结构(c-iii)[83]
Fig.6 (a) Schematic diagram of hydrogel-assisted electrospinning (GelES) with the two sequential processes of molding and electrospinning; (b) photographs of the multi-bifurcated 3D gelatin cylindrical structure and the 3D PCL nanofiber macrostructure; and (c) photographs of various complex 3D macroscopic configurations fabricated by GelES including the bellow-shaped tubular macrostructure, miniaturized human alveoli-like macrostructure, and brain-like shell macrostructure. Copyright 2020, American Chemical Society
图7 (a) 声能经梯度结构纤维海绵(PSFS)多层反射而耗散;(b) 类亥姆霍兹谐振器结构消耗能量;(c) 致密纤维和蓬松PSFS-10的宏观和微观结构比较;(d)等重量的PSFS和密堆积纤维的吸声性能比较;(e)不同厚度的PSFS的吸声性能;(f)商业吸声材料和PSFS的吸声性能的比较[36]
Fig.7 (a) Energy of sound is consumed by reflections multilayer in gradient structure fibrous sponge (PSFS). (b) Energy consumed by Helmholtz resonators like structure. (c) Comparison of the macro and microstructure for dense-packed fibers and fluffy PSFS-10. (d) Sound absorption performance of PSFS and dense packed fibers in a similar weight. (e) Sound absorption performance of PSFS with various thicknesses. (f) Comparison of the sound absorption performance for the commercial sound absorption materials and the prepared PSFS[36]. Copyright 2019, American Chemical Society
表1 耐火隔热纤维海绵的性能对比
Table 1 Performance comparison of electrospun fiber sponges applied in the field of fire resistance and thermal insulation
图8 ZrO2-Al2O3纳米纤维气凝胶(ZrAlNFAs)的隔热性能。(a) ZrAlNFAs的热导率; (b)室温下的热导率与气凝胶类材料的最高工作温度的关系; (c)正面经受丁烷喷灯火焰的光学照片;(d) 10 min加热过程中背面的红外图像; (e)背面中心点随时间变化的温度曲线; (f)经过10 min的耐火测试后ZrAlNFA正面和横截面的光学照片和电镜照片[87]
Fig.8 Thermal insulation properties of the ZrAlNFAs. (a) Thermal conductivities of the ZrAlNFAs. (b) Thermal conductivity at room temperature versus maximum working temperature for aerogel-like materials. (c) Optical photograph of the front side subjected to a butane blowtorch flame. (d) Infrared images of the back side during the 10 min heating process. (e) Time-dependent temperature profile of the center point on the back side. (f) Optical photograph and SEM image of front side and cross section of the ZrAlNFAs after a 10 min fire resistance test[87]. Copyright 2020, American Chemical Society
图9 双网络结构纤维海绵。(a)使用PM0.3颗粒物且气流速度为5.33 cm·s-1时的过滤效率和压降; (b) 孔径分布; (c)在不同RH下制备的双网络结构PAN纳米纤维网络的孔隙率和填充密度; (d~f) PAN纳米纤维过滤器在有无空隙下捕获空气中颗粒的过程示意图;(d'~f')气流在5.33 cm·s-1的面速度下通过这三个过滤器时的压力场模型[42]
Fig.9 Dual-Network structured fibrous sponges. (a) The filtration efficiency and pressure drop when PM 0.3 particles are used and the airflow velocity is 5.33 cm·s-1. (b) Pore size distribution. (c) The porosity and filling density of PAN nanofiber networks with dual network structure prepared at different RH. (d~f) The process diagram of PAN nanofiber filter capturing particles in the air with or without voids. (d' ~f') The pressure field model of airflow passing through these three filters at a surface velocity of 5.33 cm · s-1 [42]. Copyright 2019, Wiley-VCH Verlag
图10 由CNFNs组装而成的可穿戴设备。(a、b)发音期间的实时阻抗响应;(c)固定在手腕上测量脉搏的CNFN传感器的照片;(d)具有清晰波形的脉冲信号,指示每分钟76次搏动;(e)分别由平稳呼吸和急促呼吸的空气运动引起的呼吸信号;(f)附着在手指关节上的CNFN传感器对不同弯曲程度的电阻响应[26]
Fig.10 Wearable device assembled from CNFNs for various physiological signal monitoring. (a and b) Real-time resistance response during pronouncing. (c) Photograph of the CNFN sensor fixed on the wrist to measure the pulse. (d) Pulse signal with clear waveforms, indicating 76 beats per min. (e) Respiratory signal caused by air movements for breathing smoothly and hurriedly, respectively. (f) Resistance responses of the CNFN sensor attached to the finger joint for different degrees of bending[26]. Copyright 2019, Royal Society of Chemistry
[36]
Cao L T, Si Y, Yin X, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2019, 11(38): 35333.
[37]
Wu H Y, Zhao L, Zhang S C, Si Y, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(15): 18165.
[38]
Yu W J, Xin B J, Lu Z. Compos. Commun., 2022, 32: 101164.
[39]
Liang T, Parhizkar M, Edirisinghe M, Mahalingam S. Eur. Polym. J., 2014, 61: 72.
[40]
Wu H Y, Zhao L, Si Y, Zhang S C, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100766.
[41]
Feng Y Y, Zong D D, Hou Y J, Yin X, Zhang S C, Duan L Y, Si Y, Jia Y T, Ding B. J. Colloid Interface Sci., 2021, 593: 59.
[42]
Liu H, Zhang S C, Liu L F, Yu J Y, Ding B. Adv. Funct. Mater., 2019, 29(39): 1904108.
[43]
Weinbreck F, Tromp R H, de Kruif C G. Biomacromolecules, 2004, 5(4): 1437.
[44]
Chang G Q, Zhu X F, Li A K, Kan W W, Warren R, Zhao R G, Wang X L, Xue G, Shen J Y, Lin L W. Mater. Des., 2016, 97: 126.
[45]
Wang H L, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C S, Liu Z L, Fang M H, Ou G, Gao H J, Li X Y, Wu H. Sci. Adv., 2017, 3(6): e1603170.
[46]
Wang H L, Lin S, Yang S, Yang X D, Song J N, Wang D, Wang H Y, Liu Z L, Li B, Fang M H, Wang N, Wu H. Small, 2018, 14(19): 1800258.
[47]
Wang H L, Huang Y, Liao S Y, He H C, Wu H. IOP Conf. Ser.: Earth Environ. Sci., 2019, 358(5): 052015.
[48]
Zhou Y M, Wang H B, He J X, Qi K, Ding B, Cui S Z. Fibers Polym., 2018, 19(10): 2169.
[49]
Guo J R, Fu S B, Deng Y P, Xu X, Laima S J, Liu D Z, Zhang P Y, Zhou J, Zhao H, Yu H X, Dang S X, Zhang J N, Zhao Y D, Li H, Duan X F. Nature, 2022, 606(7916): 909.
[50]
He X X, Zheng J, Yu G F, You M H, Yu M, Ning X, Long Y Z. J. Phys. Chem. C, 2017, 121(16): 8663.
[51]
Sun D H, Chang C, Li S, Lin L W. Nano Lett., 2006, 6(4): 839.
[52]
Luo G X, Teh K S, Liu Y M, Zang X N, Wen Z Y, Lin L W. ACS Appl. Mater. Interfaces, 2015, 7(50): 27765.
[53]
Park Y S, Kim J, Oh J M, Park S, Cho S, Ko H, Cho Y K. Nano Lett., 2020, 20(1): 441.
[54]
Vong M, Speirs E, Klomkliang C, Akinwumi I, Nuansing W, Radacsi N. RSC Adv., 2018, 8(28): 15501.
[55]
Yousefzadeh M, Latifi M, Amani-Tehran M, Teo W E, Ramakrishna S. J. Eng. Fibers Fabr., 2012, 7(2): 17.
[56]
Schneider O D, Weber F, Brunner T J, Loher S, Ehrbar M, Schmidlin P R, Stark W J. Acta Biomater., 2009, 5(5): 1775.
[57]
Zhou Y G, Hu Z Y, Du D P, Tan G Z. Int. J. Adv. Manuf. Technol., 2019, 100(9/12): 3045.
[58]
Zhou Y, Tan G Z. ASME 2018 13th International Manufacturing Science and Engineering Conference. 2018.
[59]
Tan G Z, Zhou Y G. Nano Micro Lett., 2018, 10(4): 73.
[60]
Zhou Y G, Mahesh T, Edward L. Q, Tan G Z. JOM, 2019, 71: 956.
[61]
Zhu P, Lin A M, Tang X C, Lu X Z, Zheng J Y, Zheng G F, Lei T P. AIP Adv., 2016, 6(5): 55304.
[62]
Zaman M A U, Sooriyaarachchi D, Zhou Y G, Tan G Z, Du D P. Adv. Manuf., 2021, 9(3): 414.
[63]
Kim J I, Kim J Y, Park C H. Sci. Rep., 2018, 8: 3424.
[64]
Lin S J, Xue Y P, Chang G Q, Han Q L, Chen L F, Jia Y B, Zheng Y G. Mater. Res. Express, 2018, 5(2): 025401.
[65]
Shah Hosseini N, Bölgen N, Khenoussi N, Yılmazş N, Yetkin D, Hekmati A H, Schacher L, Adolphe D. Int. J. Polym. Mater. Polym. Biomater., 2018, 67(3): 143.
[66]
Hong S, Kim G. Appl. Phys. A, 2011, 103(4): 1009.
[67]
Yang X L, Chen X, Zhao J Y, Lv W L, Wu Q L, Ren H J, Chen C T, Sun D P. J. Nanomater., 2021, 2021: 4639317.
[68]
Ki C S, Kim J W, Hyun J H, Lee K H, Hattori M, Rah D K, Park Y H. J. Appl. Polym. Sci., 2007, 106(6): 3922.
[69]
Kasuga T, Obata A, Maeda H, Ota Y, Yao X F, Oribe K. J. Mater. Sci. Mater. Med., 2012, 23(10): 2349.
[70]
Mi H Y, Jing X, Huang H X, Turng L S. Mater. Lett., 2017, 204: 45.
[71]
Baji A, Mai Y W, Wong S C, Abtahi M, Chen P. Compos. Sci. Technol., 2010, 70(5): 703.
[72]
Song J Y, Kim D Y, Yun H J, Kim J H, Yi C C, Park S M. Compos. Sci. Technol., 2022, 227: 109629.
[73]
Zhong H L, Huang J, Wu J, Du J H. Nano Res., 2022, 15(2): 787.
[1]
Rahmati M, Mills D K, Urbanska A M, Saeb M R, Venugopal J R, Ramakrishna S, Mozafari M. Prog. Mater. Sci., 2021, 117: 100721.
[2]
Hu J, Zhang S F, Tang B T. Energy Storage Mater., 2021, 37: 530.
[3]
Li X Y, Zhou R F, Wang Z Z, Zhang M H, He T S. J. Mater. Chem. A, 2022, 10(4): 1642.
[4]
Gbewonyo S, Carpenter A W, Gause C B, Mucha N R, Zhang L F. Mater. Des., 2017, 134: 218.
[5]
Ponce-Alcántara S, Martín-Sánchez D, PÉrez-Márquez A, Maudes J, Murillo N, García-RupÉrez J. Opt. Mater. Express, 2018, 8(10): 3163.
[6]
Cho H J, Kim Y H, Park S, Kim I D. ChemNanoMat, 2020, 6(7): 1014.
[7]
Haghighat F, Hosseini Ravandi S A, Nasr Esfahany M, Valipouri A. J. Mater. Sci., 2018, 53(6): 4665.
[8]
Danish Ali Zaidi S, Wang C, Jin Y Z, Zhu S D, Yuan H F, Yang Y Y, Chen J. J. Alloys Compd., 2020, 848: 156531.
[9]
Xia S H, Zhang Y Y, Zhao Y, Wang X, Yan J H. ACS Appl. Mater. Interfaces, 2021, 13(37): 44768.
[10]
Cheng Y, An Q, Li D W, Fu Y Y, Zhang W, Zhang Y. J. Text. Res., 2021, 42(03):71.
( 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. 纺织学报, 2021, 42(03):71.)
[11]
Liu H Z, Li D W, Shen Y, Deng B Y. Fibers Polym., 2021, 22(3): 664.
[12]
Zong D D, Bai W Y, Geng M, Yin X, Yu J Y, Zhang S C, Ding B. ACS Nano, 2022, 16(9): 13740.
[13]
Zheng Z B, Wu H Y, Si Y, Jia Y T, Ding B. Compos. Commun., 2021, 27: 100788.
[14]
Li Y, Wang J, Qian D J, Chen L, Mo X M, Wang L, Wang Y, Cui W G. J. Nanobiotechnology, 2021, 19(1): 131.
[15]
Li S Y, Qiu F, Xia Y G, Chen D R, Jiao X L. ACS Appl. Mater. Interfaces, 2022, 14(17): 19409.
[16]
Rao F, Yuan Z P, Li M, Yu F, Fang X X, Jiang B G, Wen Y Q, Zhang P X. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 491.
[17]
Mi H Y, Jing X, Napiwocki B N, Li Z T, Turng L S, Huang H X. Chem. Eng. J., 2018, 331: 652.
[18]
Yan G D, Yu J, Qiu Y J, Yi X H, Lu J, Zhou X S, Bai X D. Langmuir, 2011, 27(8): 4285.
[74]
Ng R, Zang R, Yang K K, Liu N, Yang S T. RSC Adv., 2012, 2(27): 10110.
[75]
Choi W, Lee S, Kim S H, Jang J H. Macromol. Biosci., 2016, 16(6): 824.
[76]
Li L, Zhou G L, Wang Y, Yang G, Ding S, Zhou S B. Biomaterials, 2015, 37: 218.
[77]
Taskin M B, Xu R D, Gregersen H, Nygaard J V, Besenbacher F, Chen M L. ACS Appl. Mater. Interfaces, 2016, 8(25): 15864.
[78]
Qian Y, Song J, Zheng W, Zhao X, Ouyang Y, Yuan W, Fan C. Adv. Funct. Mater., 2018, 28(14): 1707077.
[79]
Walser J, Stok K S, Caversaccio M D, Ferguson S J. Biofabrication, 2016, 8(2): 025007.
[80]
Zhang Y G, Zhang M M, Cheng D R, Xu S X, Du C, Xie L, Zhao W. Biomater. Sci., 2022, 10(6): 1423.
[81]
McClure M J, Wolfe P S, Simpson D G, Sell S A, Bowlin G L. Biomaterials, 2012, 33(3): 771.
[82]
Bosworth L A, Alam N, Wong J K, Downes S. J. Mater. Sci. Mater. Med., 2013, 24(6): 1605.
[83]
Eom S S, Park S M, Hong H J, Kwon J J, Oh S R, Kim J S, Kim D S. ACS Appl. Mater. Interfaces, 2020, 12(46): 51212.
[84]
Zou Y L, Shi L, Zhou Y, Yao L R. Tech. Text., 2014, 32(9): 22.
( 邹亚玲, 石琳, 周颖, 姚理荣. 产业用纺织品, 2014, 32(9): 22.)
[85]
Ozkal A, Callioglu F C. Applied Acoustics, 2020(11): 107468.
[86]
Bai W Y, Zong D D, Liu X Y, Wang F, Yin X, Yu J Y, Zhang S C, Ding B. J. Text. Inst., 2023(4):1.
[87]
Zhang X X, Wang F, Dou L Y, Cheng X T, Si Y, Yu J Y, Ding B. ACS Nano, 2020, 14(11): 15616.
[88]
Dong J H, Xie Y S, Liu L X, Deng Z Z, Liu W, Zhu L Y, Wang X Q, Xu D, Zhang G H. Adv. Eng. Mater., 2022, 24(8): 2101603.
[89]
Zhang H N, Xie Y X, Song Y, Qin X H. Colloids Surf., A, 2021, 624: 126834.
[90]
Chen X, Xu Y, Liang M, Ke Q, Fang Y, Xu H, Jin X, Huang C. J. Hazard. Mater., 2018, 347: 325.
[91]
Feng Z B, Long Z W, Yu T. J. Electrost., 2016, 83: 52.
[19]
Li M M, Long Y Z. Mater. Sci. Forum, 2011, 688: 95.
[20]
Deitzel J M, Kleinmeyer J, Harris D, Beck Tan N C. Polymer, 2001, 42(1): 261.
[21]
Sun B, Long Y Z, Yu F, Li M M, Zhang H D, Li W J, Xu T X. Nanoscale, 2012, 4(6): 2134.
[22]
Bonino C A, Efimenko K, Jeong S I, Krebs M D, Alsberg E, Khan S A. Small, 2012, 8(12): 1928.
[23]
Cai S B, Xu H L, Jiang Q R, Yang Y Q. Langmuir, 2013, 29(7): 2311.
[24]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[25]
Sun B, Long Y Z, Zhang H D, Li M M, Duvail J L, Jiang X Y, Yin H L. Prog. Polym. Sci., 2014, 39(5): 862.
[26]
Han Z Y, Cheng Z Q, Chen Y, Li B, Liang Z W, Li H F, Ma Y J, Feng X. Nanoscale, 2019, 11(13): 5942.
[27]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[28]
Vong M, Diaz Sanchez F J, Keirouz A, Nuansing W, Radacsi N. Mater. Des., 2021, 208: 109916.
[29]
Cheng X T, Liu Y T, Si Y, Yu J Y, Ding B. Nat. Commun., 2022, 13: 2637.
[30]
Szewczyk P K, Stachewicz U. Adv. Colloid Interface Sci., 2020, 286: 102315.
[31]
Mailley D, HÉbraud A, Schlatter G. Macromol. Mater. Eng., 2021, 306(7): 2100115.
[32]
Zhang R H, Gong X B, Wang S, Tian Y C, Liu Y T, Zhang S C, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(48): 58027.
[33]
Kim J I, Lee J C, Kim M J, Park C H, Kim C S. Mater. Lett., 2019, 236: 510.
[34]
Chen X, Xu Y, Liang M M, Ke Q F, Fang Y Y, Xu H, Jin X Y, Huang C. J. Hazard. Mater., 2018, 347: 325.
[35]
Zhao L, Wu H Y, Jiao W L, Yin X, Si Y, Yu J Y, Ding B. Compos. Commun., 2021, 25: 100681.
[92]
Liu Z G, Wang P K. Aerosol. Sci. Technol., 1997, 26(4): 313.
[93]
Yu Y S, Tao Y B, Wang F L, Chen X, He Y L. Sep. Purif. Technol., 2020, 251: 117318.
[94]
Chen X, Xu Y, Zhang W X, Xu K L, Ke Q F, Jin X Y, Huang C. Nanoscale, 2019, 11(17): 8185.
[95]
Gao Y, Zhou Y S, Xiong W, Wang M M, Fan L S, Rabiee-Golgir H, Jiang L J, Hou W J, Huang X, Jiang L, Silvain J F, Lu Y F. ACS Appl. Mater. Interfaces, 2014, 6(8): 5924.
[96]
Liu S Z, Zhang Y, Fan L Y, Zhang Q, Zhou Y. Materials Reports, 2020, 34(17): 17099.
( 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 材料导报, 2020, 034(017): 17099.)
[97]
Venkatesan N, Yuvaraj P, Fathima N N. Mater. Chem. Phys., 2022, 286: 126190.
[98]
Song J N, Wang H Y, Li Z W, Long Y Z, Liu Z L, Wang H L, Li X Y, Fang M H, Li B, Wu H. Chem. Eng. J., 2018, 343: 638.
[99]
Tai M H, Tan B Y L, Juay J, Sun D D, Leckie J O. Chem. Eur. J., 2015, 21(14): 5395.
[100]
Mi H Y, Li H, Jing X, Zhang Q, Feng P Y, He P, Liu Y J. Sep. Purif. Technol., 2020, 241: 116700.
[101]
Bian Y, Liu K., Ran Y. Nat. Commun., 2022, 13: 7163.
[102]
Tropp J, Ihde M H, Williams A K, White N J, Eedugurala N, Bell N C, Azoulay J D, Bonizzoni M. Chem. Sci., 2019, 10(44): 10247.
[103]
Yang H Z, Ma C, Wei S J, Zhou Z L, Tian Z K. Adv. Text. Technol., 2023, 31(2): 256.
( 杨海贞, 马闯, 魏肃桀, 周泽林, 田征坤. 现代纺织技术, 2023, 31(2): 256.)
[104]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.
[105]
Wu X D, Han Y Y, Zhang X X, Zhou Z H, Lu C H. Adv. Funct. Mater., 2016, 26(34): 6246.
[106]
Han J W, Kim B, Li J, Meyyappan M. Appl. Phys. Lett., 2013, 102(5): 051903.
[107]
Yang G, Luo H J, Ding Y P, Yang J W, Li Y F, Ma C Q, Yan J, Zhuang X P. ACS Appl. Mater. Interfaces, 2023, 15(5): 7380.
[108]
Si Y, Yu J Y, Tang X M, Ge J L, Ding B. Nat. Commun., 2014, 5: 5802.
[109]
Zhang M, Wang Y, Zhang Y Y, Song J, Si Y, Yan J H, Ma C L, Liu Y T, Yu J Y, Ding B. Angew. Chem. Int. Ed., 2020, 59(51): 23252.
[110]
Xu T, Li X F, Liang Z P, Amar V S, Huang R Z, Shende R V, Fong H. Adv. Fiber Mater., 2020, 2(2): 74.
[1] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.
[4] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[5] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[6] 杨正龙, 徐晓黎, 赵宇馨. 硫醇-烯/炔点击化学制备有机/无机杂化材料[J]. 化学进展, 2014, 26(06): 996-1004.
[7] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[8] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[9] 郭风, 朱桂茹, 高从堦. 有机-无机杂化介孔二氧化硅在环境保护中的应用[J]. 化学进展, 2011, 23(6): 1237-1250.
[10] 张金超 刘丹丹 周国强 申世刚. 纳米材料在组织工程中的应用*[J]. 化学进展, 2010, 22(11): 2232-2237.
[11] 姚响,庹新林,王晓工. 可降解聚氨酯型组织工程多孔支架材料的制备* [J]. 化学进展, 2009, 21(0708): 1546-1552.
[12] 魏宏亮,王连才,张爱英,朱凯强,冯增国. 可注射水凝胶的制备与应用*[J]. 化学进展, 2004, 16(06): 1008-.
[13] 崔俊锋,尹玉姬,何淑兰,姚康德. 骨组织工程支架材料研究进展*[J]. 化学进展, 2004, 16(02): 299-.
[14] 蔡开勇,林松柏,姚康德. 组织工程相关生物材料表面工程的研究进展[J]. 化学进展, 2001, 13(01): 56-.
[15] 张国栋,杨纪元,冯新德,顾忠伟. 聚乳酸的研究进展[J]. 化学进展, 2000, 12(01): 89-.
阅读次数
全文


摘要

直接电纺纤维海绵的制备及应用