English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1674-1685 DOI: 10.7536/PC230401 前一篇   后一篇

• 综述 •

双网络水凝胶制备及其力学改性

李立清1,2, 钟秀敏1, 章礼旭1, 刘昆明1,*(), 王全兵3, 马杰4,5,*   

  1. 1 江西理工大学 材料冶金化学学部 赣州 341000
    2 江西省赣州市应用电化学重点实验室 赣州 341000
    3 江西同益高分子材料科技有限公司 赣州 341000
    4 同济大学长江水环境教育部重点实验室 上海 200092
    5 上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2023-04-06 修回日期:2023-07-01 出版日期:2023-11-24 发布日期:2023-09-11
  • 通讯作者: 刘昆明, 马杰
  • 作者简介:

    李立清 男,1979年生,博士,教授,博导,江西省高层次领军人才,江西省杰出青年人才。2014年毕业于中南大学化学工艺专业,现在江西理工大学化学化工学院工作。主要从事环境化学、资源化学、应用电化学等领域研究。

  • 基金资助:
    江西省自然科学基金重点项目,离子型稀土萃取剂的靶向分子设计规律及其构效关系研究(20224ACB203010); 江西省高层次高技能领军人才培训工程(2022); 江西省自然科学基金(20212BAB203013); 江西省教育厅科技项目(GJJ22008207)

Preparation of Double Network Hydrogels and their Mechanical Modification

Li Liqing1,2, Zhong Xiumin1, Zhang Lixu1, Liu Kunming1(), Wang Quanbing3, Ma Jie4,5   

  1. 1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,Ganzhou 341000, China
    2 Jiangxi Ganzhou Key Laboratory of Applied Electrochemistry,Ganzhou 341000, China
    3 Jiangxi Tongyi Polymer Material Technology Co. Ltd,Ganzhou 341000, China
    4 MOE Key Laboratory of Yangtze River Water Environment, Tongji University,Shanghai 200092, China
    5 Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092, China
  • Received:2023-04-06 Revised:2023-07-01 Online:2023-11-24 Published:2023-09-11
  • Contact: Liu Kunming, Ma Jie
  • Supported by:
    Key Project of Natural Science Foundation of Jiangxi Province, Research on Targeted Molecular Design Law and Structure-Activity Relationship of Ionic Rare Earth Extractants(20224ACB203010); project of High Level and High Skilled Leading Talent Training of Jiangxi Province(2022); Jiangxi Provincial Natural Science Foundation(20212BAB203013); Science and Technology Project Founded by the Education Department of Jiangxi Province(GJJ22008207)

双网络水凝胶(Double Network Hydrogels)是两个互穿或半穿三维网络组成的聚合物材料,其独特的对比互穿网络结构和可调节的网络交联方式克服了单网络水凝胶在力学性能上的障碍,并以其良好的机械、抗溶胀、自修复等力学性能而被广泛地应用于组织工程、智能传感器、离子吸附等领域。然而,现有技术存在合成步骤繁多、制备条件复杂以及使用有毒有害的化学交联等问题,限制了双网络水凝胶的大规模生产应用。因此,近年来对双网络水凝胶的改性研究受到了越来越多的关注,科研工作者主要围绕如何提高双网络水凝胶的力学性能开展了一系列结构修饰研究,旨在扩宽其在各个领域的应用。本文综述了双网络水凝胶的种类,详细介绍了不同的水凝胶的制备方法、结构和独特性能。重点针对改善其机械性能、抗溶胀性能和自修复性能等力学性能的改性研究进行了分析,旨在突破双网络水凝胶目前的局限性,为其未来的发展提供思路和方向。

Double Network Hydrogels are polymer materials composed of two interpenetrating or semi-penetrating three-dimensional networks, and their unique contrast interpenetrating network structure and adjustable network crosslinking method overcome the obstacles in mechanical properties of single-network hydrogels, and are widely used in tissue engineering, intelligent sensors, ion adsorption and other fields with their good mechanical, anti-swelling, self-healing and other mechanical properties. However, the existing technologies suffer from numerous synthesis steps, complicated preparation conditions and the use of toxic and harmful chemical cross-linking, which limit the mass production of double network hydrogels for applications. Therefore, in recent years, the modification of double network hydrogels has received more and more attention, and researchers have carried out a series of structural modification studies mainly around how to improve the mechanical properties of double network hydrogels, aiming to broaden their application in various fields. In this paper, the types of double network hydrogels are reviewed, and the preparation methods, structures and unique properties of different hydrogels are introduced in detail. The research on modification to improve mechanical properties, anti-swelling performance and self-healing properties is analyzed, aiming to break through the current limitations of double network hydrogels and provide ideas and directions for their future development.

Contents

1 Introduction

2 Types and preparation methods of double network hydrogels

2.1 Study on the preparation of organic-organic double network hydrogels

2.2 Study on the preparation of organic-inorganic double network hydrogels

3 Research on improving the performance of double network hydrogels

3.1 Improving mechanical properties

3.2 Improving anti-swelling properties

3.3 Improving self-healing properties

4 Conclusion and outlook

()
图1 经典的两步聚合法制备化学交联的DN水凝胶[11]
Fig.1 Classical two-step polymerization method to prepare chemically linked DN hydrogels[11]. Copyright 2015, Journal of Materials Chemistry B
图2 PVA/PAA凝胶制备示意图[20]
Fig.2 Schematic illustration of preparation of PVA/PAA gel[20]. Copyright 2015, Journal of Hazardous Materials
图3 一锅法制备κ-卡拉胶/聚丙烯酰胺DN水凝胶[23]
Fig.3 Preparation of κ-car/PAM DN hydrogels using a one-pot method[23]. Copyright 2016, American Chemical Society
图4 κ-car/SA珠合成示意图(a)和κ-car/SA双网络结构示意图(b)[24]
Fig.4 Schematic illustration of (a) κ-car/SA beads synthesis, and (b) κ-car/SA double network structure[24]. Copyright 2019, Chemosphere
图5 HAp自组装到BC网络中以及BC-GEL/Hap DN水凝胶的制备过程的示意图[34]
Fig.5 Schematic diagrams of the self-assembly of HAp into the BC network and the preparation process of the BC-GEL/HAp DN hydrogel[34]. Copyright 2017, Materials Science and Engineering C
表1 各种双网络水凝胶的制备方法和性能
Table 1 Preparation methods and properties of various double network hydrogels
Category Double Network hydrogels Preparation method Performance ref
Organic-organic double network hydrogels PVA/PAM-co-PAA Two-steps methods of copolymerization and freezing/thawing High strength and toughness(1230±90 kPa和1250±50 kJ / m3), fast self-recovery 19
PVA/PAA Two-step method After 5 adsorption-desorption cycles, the removal rate remained nearly 100% 20
κ-car/SA Calcium-hardening method The maximum adsorption capacity for CIP reaches 220 mg/g 24
κ-car/PNAGA One-pot method The hydrogel, cut in half, was annealed at 90℃ for 3 hours and subsequently healed and withstood bending and stretching by hand 25
Organic-inorganic double network hydrogels GO/PAA Two step synthesis After the press is compressed, the press is removed and the press can also be restored to its original shape 30
Alginate/RGO Hydrothermal reduction method After 10 cycles, the adsorption capacities of Cr2 O 7 2 -and Cu2+on the GAD were maintained at 48.23 and 92.12 mg·g-1, respectively 28
GO/SA Soaking method After 18 adsorption-desorption cycles, the adsorption capacity of GAD hydrogel for Mn (II) remained unchanged at 11.2 mg/g 31
PAM/SAC Solution polymerization method Tensile properties (stress and strain are 12 MPa and 2500%, respectively) and compressive strength (stress and strain are 65 MPa and 80%, respectively) 32
Silica particles/PDMAAm One-pot method The DN ion gels with an 80 wt% IL content show more than 28 MPa of compressive fracture stress 33
BC-GEL / HAp Soaking method Has a higher modulus of elasticity (0.27 MPa) and fracture (0.28 MPa) 34
图6 热响应和可回收Agar/PAM DN凝胶的制备[41]
Fig.6 Preparation of thermoresponsive and recoverable Agar/PAM DN gels[41]. Copyright 2013, Advanced Materials
图7 TM-SiO2/PAM/PAA纳米复合双网水凝胶的合成工艺和机理[43]
Fig.7 The synthesis procedures and mechanism of the TM-SiO2/PAM/PAA nanocomposite double network hydrogels[43]. Copyright 2022, Journal of Molecular Liquids
图8 氧化石墨烯(GO)增强双网络(DN)水凝胶的交联机理示意图[44]
Fig.8 Schematic of crosslinking mechanism of graphene oxide(GO)reinforced double network(DN)hydrogel[44]. Copyright 2018, Polymers
图9 PAM/SA-Fe水凝胶的制备和PAM/SA-Fe水凝胶的可能网络结构的示意图[63]
Fig.9 Schematic diagram representation of the preparation of the PAM/SA-Fe hydrogel and a possible network structure of the PAM/SA-Fe hydrogel[63]. Copyright 2020, Colloids and Surfaces
图10 Agar/PAM物理DN凝胶的合成和网络结构[64]
Fig.10 Synthesis and Network Structure of Agar/PAM Physical DN gels[64]. Copyright 2018, Polymer Testing
表2 各种双网络水凝胶的力学性能
Table 2 Mechanical properties of various double network hydrogels
Improve mechanical properties Double Network hydrogels Performance ref
Improved mechanical
properties
agar/PAM Able to withstand high levels of compression and stretching 41
curdlan/PAM Tensile rupture strength of 0.81 MPa, tensile stress of 25.3 MPa 42
TM-SiO2/ PAM/PAA Both tensile and compressive strength have increased, and the network structure is more stable 43
GO/SA/PVA The breaking strength increased from 0.11 MPa of pure SA/PVA to 0.24 MPa 44
Improved anti-swelling
performance
PVA/P(AM-co-AA)/CS Strong electrostatic interactions reduce the swelling rate of hydrogels 53
SA/CS/Zn2+ The swelling rate of the hydrogel decreases with increasing zinc content 54
GO/ CA/PAM Smaller dissolution changes in visual model plots 55
PAA/P (AM-co-AA sodium salts) Remarkable swelling characteristics (an SR of 1200% ± 20% and an unusually high compressive modulus of 10.12 ± 0.31 MPa) 56
SSH Compression modulus increases by 15.6% ± 4.5% at a 25% swelling rate 57
BCD-AMPS/PAM Reactive strand extensions of up to 40% lead to hydrogels that stretch 40% to 50% further and exhibit tear energies that are twice as large. 58
Improve self-healing
performance
Alginate/ polyacrylamide After standing at 80℃ for 1 day, the recovery relative to the initial value was 74% 62
PAM/SA-Fe The breaking strength and toughness recovered 103.85% and 75.54%, respectively, within 1 min 63
Agar / PAM After standing for 2 min at room temperature without external stimuli, toughness recovers approximately 83% 64
ST/ PAA/ AMPS The damage at the cutting interface will slowly but steadily self-repair to its initial state 65
[1]
Xu S C, Tang N, Bai X J, Liu Y F, Yang W J. Modern Chemical Industry, 2021, 41(6): 37.
( 许世超, 唐楠, 白学健, 刘宇凡, 杨伟静. 现代化工, 2021, 41(6):37.)
[2]
Chen X Y, Ji N, Li F, Qin Y, Wang Y F, Xiong L, Sun Q J. Foods, 2022, 11(9): 1315.
[3]
Li Z L, Lin Z Q. Aggregate, 2021, 2(2): e21.
[4]
Huang X X, Li J C, Luo J, Gao Q, Mao A, Li J Z. Mater. Today Commun., 2021, 29: 102757.
[5]
Li T, Zhang X H, Xia B H, Ma P M, Chen M Q, Du M L, Wang Y, Dong W F. New J. Chem., 2020, 44(38): 16569.
[6]
Liang J, Shan G R, Pan P J. Soft Matter, 2017, 13(22): 4148.
[7]
Li K Y, Liu Y, Ge Y Q, Cao H Y, Zhuang S J, Yang X T, Zhao Y Y, Gu X L. J. Mater. Chem. C, 2023, 11(5): 1908.
[8]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217(9): 1017.
[9]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2019, 183: 121837.
[10]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[11]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3(18): 3654.
[12]
Yang Y Y, Wang X, Wu D C. Acta Chimica Sinica, 2021, 79(1): 1.
( 杨艳宇, 王星, 吴德成. 化学学报, 2021, 79(1):1.)
[13]
Li L Q, Wu P W, Yu F, Ma J. J. Mater. Chem. A, 2022, 10(17): 9215.
[14]
Yu F, Yang P Y, Yang Z Q, Zhang X C, Ma J. Chem. Eng. J., 2021, 426: 131900.
[15]
Yang J, Li Y, Zhu L, Qin G, Chen Q. J. Polym. Sci. B Polym. Phys., 2018, 56(19): 1351.
[16]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141: 105918.
[17]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192: 122319.
[18]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206: 289.
[19]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8(36): 24030.
[20]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300: 153.
[21]
Li L Q, Wu P W, Ma J. Progress in Chemistry, 2021, 33(6): 1010.
( 李立清, 吴盼旺, 马杰. 化学进展, 2021, 33(6):1010.)
[22]
Li L, Ni R, Shao Y, Mao S R. Carbohydr. Polym., 2014, 103: 1.
[23]
Liu S J, Li L. ACS Appl. Mater. Interfaces, 2016, 8(43): 29749.
[24]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237: 124417.
[25]
Guo Y, He M M, Peng Y, Zhang Q, Yan L K, Zan X J. J. Mater. Sci., 2020, 55(21): 9109.
[26]
Milovanovic M, Isselbaecher N, Brandt V, Tiller J C. Chem. Mater., 2021, 33(21): 8312.
[27]
Ma J, Xiong Y C, Dai X H, Yu F. Chem. Eng. J., 2020, 380: 122387.
[28]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4(28): 10885.
[29]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106: 120.
[30]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5(13): 6034.
[31]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8: 10717.
[32]
Chu Y Y, Song X F, Zhao H X. J. Appl. Polym. Sci., 2019, 136(35): 47905.
[33]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29(47): 1704118.
[34]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng. C, 2017, 78: 130.
[35]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1(25): 7433.
[36]
Yang D Y. Chem. Mater., 2022, 34(5): 1987.
[37]
Ning X J, Huang J N, Yimuhan A, Yuan N N, Chen C, Lin D H. Int. J. Mol. Sci., 2022, 23(24): 15757.
[38]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromol., 2019, 2: 629.
[39]
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju X J, Wang W, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2017, 9(18): 15758.
[40]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22(21): 4426.
[41]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25(30): 4171.
[42]
Ye L N, Lv Q, Sun X Y, Liang Y Z, Fang P W, Yuan X Y, Li M, Zhang X Z, Shang X F, Liang H Y. Soft Matter, 2020, 16(7): 1840.
[43]
Xu P, Shang Z J, Yao M L, Ke Z Y, Li X X, Liu P D. J. Mol. Liq., 2022, 368: 120611.
[44]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10(8): 835.
[45]
Wu S J, Yuan C Y, Tang J X, Tang L. J. Xiangtan Univ. Nat. Sci. Ed., 2022, 44(1): 31.
( 伍绍吉, 袁尘瑜, 汤建新, 汤力. 湘潭大学学报(自然科学学报), 2022, 44(1): 31.)
[46]
Louf J F, Lu N B, O’Connell M G, Cho H J, Datta S S. Sci. Adv., 2021, 7(7): eabd2711.
[47]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343(6173): 873.
[48]
Li H F, Wang H B, Zhang D F, Xu Z Y, Liu W G. Polymer, 2018, 153: 193.
[49]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25(16): 3357.
[50]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4(84): 44600.
[51]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137(24): 48805.
[52]
Bi S C, Pang J H, Huang L, Sun M J, Cheng X J, Chen X G. Int. J. Biol. Macromol., 2020, 146: 99.
[53]
Liu Y, Xia M, Wu L L, Pan S X, Zhang Y H, He B Q, He P X. Ind. Eng. Chem. Res., 2019, 58(47): 21649.
[54]
Shi C, Yang F M, Hu L, Wang H B, Wang Y X, Wang Z C, Pan S H, Chen J D. Mater. Lett., 2022, 316: 132048.
[55]
Wang J L, Su S H, Qiu J J. New J. Chem., 2017, 41(10): 3781.
[56]
Kim J R, Woo S H, Son Y L, Kim J R, Kasi R M, Kim S C. Macromolecules, 2021, 54(5): 2439.
[57]
Wu F, Pang Y, Liu J Y. Nat. Commun., 2020, 11: 4502.
[58]
Wang Z, Zheng X J, Ouchi T, Kouznetsova T B, Beech H K, Av-Ron S, Matsuda T, Bowser B H, Wang S, Johnson J A, Kalow J A, Olsen B D, Gong J P, Rubinstein M, Craig S L. Science, 2021, 374(6564): 193.
[59]
Mi Z Y, Chen X Y, Yao X L, Xu K, Liu H B, Li N, Liu N. Mod. Food Sci. Technol., 2022, 38(1): 398.
( 糜志远, 陈晓雨, 姚晓琳, 徐凯, 刘华兵, 李娜, 刘宁. 现代食品科技, 2022, 38(1): 398.)
[60]
Zhang H T, Wu X J, Qin Z H, Sun X, Zhang H, Yu Q Y, Yao M M, He S S, Dong X R, Yao F L, Li J J. Cellulose, 2020, 27(17): 9975.
[61]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124: 109474.
[62]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7414): 133.
[63]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surf. A Physicochem. Eng. Aspects, 2020, 589: 124402.
[64]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69: 167.
[65]
Shang X Q, Wang Q L, Li J H, Zhang G J, Zhang J G, Liu P, Wang L M. Carbohydr. Polym., 2021, 257: 117626.
[1] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[2] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[3] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[8] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[9] 赵兰清, 侯敏杰, 张达, 周英杰, 解志鹏, 梁风. 固态钠离子电池用PEO基聚合物固体电解质[J]. 化学进展, 2023, 35(11): 1625-1637.
[10] 迟彦萧, 杨宇轩, 杨昆仑, 孟宪荣, 许伟, 缪恒锋. 黄铁矿及其改性复合材料在水污染处理中的应用[J]. 化学进展, 2023, 35(10): 1544-1558.
[11] 汤炜, 邴研, 刘旭东, 姜鸿基. 基于二苯甲酮框架的多功能有机发光材料[J]. 化学进展, 2023, 35(10): 1461-1485.
[12] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[13] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[14] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[15] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
阅读次数
全文


摘要

双网络水凝胶制备及其力学改性