English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1638-1654 DOI: 10.7536/PC230332 前一篇   后一篇

• 综述 •

燃料电池氧还原反应中的多孔有机聚合物衍生碳基电催化剂

孙寒雪*(), 王娟娟, 朱照琪, 李安*()   

  1. 兰州理工大学 兰州 730050
  • 收稿日期:2023-03-31 修回日期:2023-06-19 出版日期:2023-11-24 发布日期:2023-09-11
  • 通讯作者: 孙寒雪, 李安
  • 作者简介:

    孙寒雪 兰州理工大学副教授,硕士生导师。2012年和2015年于兰州理工大学分别获得工学硕士和博士学位。主要从事有机多孔材料、碳基多孔材料设计及其在环境、储能等领域的应用基础研究。近年来获国家自然科学基金青年科学基金、甘肃省杰出青年基金、甘肃省高校教师创新基金等项目资助,在Chem. Eng. J.、ACS Appl. Mater. Interf.、J. Hazard. Mater.等期刊发表SCI论文50余篇,授权专利3件。

    李安 研究员,博士生导师,甘肃省“飞天学者”特聘教授。2001年和2006年于中国科学院兰州化学物理研究所分别获理学硕士和博士学位。2007年至2010年先后在美国威斯康星大学米尔沃基分校和新加坡南洋理工大学从事博士后研究工作。长期致力于微纳孔材料及其在储能、分离、环境治理等领域应用基础研究,在Energy Environ. Sci.、Adv. Energy Mater.等期刊发表SCI论文200余篇,SCI引用7000余次。获甘肃省自然科学二等奖1项,湖北省自然科学三等奖1项,主持国家自然科学基金项目3项、甘肃省杰出青年基金、甘肃省重点人才项目等。

  • 基金资助:
    国家自然科学基金项目(22006061); 国家自然科学基金项目(21975113); 甘肃省杰出青年基金项目(23JRRA808); 甘肃省研究生“创新之星”项目(2023CXZX423)

Carbon-Based Electrocatalyst Derived from Porous Organic Polymer in Oxygen Reduction Reaction for Fuel Cells

Sun Hanxue(), Wang Juanjuan, Zhu Zhaoqi, Li An()   

  1. Lanzhou University of Technology,Lanzhou 730050, China
  • Received:2023-03-31 Revised:2023-06-19 Online:2023-11-24 Published:2023-09-11
  • Contact: Sun Hanxue, Li An
  • Supported by:
    National Natural Science Foundation of China(22006061); National Natural Science Foundation of China(21975113); Gansu Provincial Science Fund for Distinguished Young Scholars(23JRRA808); Postgraduate “Innovation Star” program of Gansu Province(2023CXZX423)

燃料电池是一种能够将化学能直接转变为电能的能量转换装置,是我国“十四五”规划中明确发展的新能源技术。近年来燃料电池技术迭代升级持续加速,有效推动了氢能产业从模式探索向多元示范迈进,助力新能源产业高质量发展。阴极氧还原反应(ORR)是燃料电池的基础和核心反应之一,然而其缓慢的动力学过程制约了燃料电池的规模化应用。虽然金属Pt基催化剂具有较高的催化活性能够提高ORR的反应速率,但因其稀缺性、高成本及耐久性等问题不利于广泛的商业化使用。发展非Pt基ORR催化剂对推进燃料电池的发展具有重要的现实意义。多孔有机聚合物(Porous Organic Polymer,POPs)是多孔材料的重要分支,由于其可调控的组成和多样化结构,可将杂原子和金属物种纳入其骨架结构中,提升材料整体催化活性,作为高效电催化剂的理想候选材料在促进ORR缓慢动力学方面受到广泛关注。本文重点介绍了近年来基于POPs衍生碳基ORR电催化剂在合成策略、组分、形貌、结构调控及电催化性能上的研究进展,讨论了POPs衍生碳基ORR电催化剂目前面临的挑战,并对其未来发展方向进行了总结。

Fuel cell, a kind of energy conversion device that can directly convert chemical energy into electric energy, is a new and an important energy technology during China’s 14th Five-Year Plan. In recent years, the fuel cell technology has undergone iterative upgrading, which effectively promotes the transition of hydrogen energy industry from mode-exploration to multiple demonstration, and helps the high-quality development of the new energy. Cathodic oxygen reduction reaction (ORR) is one of the basic and core reactions of fuel cells, but its slow kinetic process restricts the large-scale application of fuel cells. Although metal Pt-based catalysts have high catalytic activity and can improve the reaction rate of ORR, they are not conducive to wide commercial use because of their scarcity, high cost and poor durability. The development of non-Pt-based ORR catalysts is of great practical significance to promote the development of fuel cells. Porous Organic Polymers (POPs) are an important branch of porous materials. Due to their controllable composition and diverse structure, heteroatoms and metal species can be incorporated into the skeleton to enhance the overall catalytic activity of materials. As ideal candidate materials for electrocatalysts with high-efficiency, POPs have attracted wide attention in promoting the slow kinetics of ORR. In this paper, the research progress in the synthesis strategy, composition, morphology, structure regulation and electrocatalytic performance of POPs-derived carbon-based ORR electrocatalysts in recent years are emphatically introduced. The challenges faced by POPs-derived carbon-based ORR electrocatalysts at present are discussed, and their future development directions are summarized.

Contents

1 Introduction

2 Oxygen reduction reaction (ORR) mechanism

3 Design and performance of porous organic polymer derived carbon-based ORR electrocatalysts

3.1 Conjugated microporous polymers (CMPs) derived carbon-based ORR catalysts

3.2 Covalent organic frameworks (COFs) derived carbon-based ORR catalysts

3.3 Hyper-cross-linked polymers (HCPs) derived carbon-based ORR catalysts

3.4 Covalent triazine frameworks (CTFs) derived carbon-based ORR catalysts

3.5 Polymers of intrinsic microporosity (PIMs) derived carbon-based ORR catalysts

3.6 Porous aromatic frameworks (PAFs) derived carbon-based ORR catalysts

4 Conclusion and outlook

()
图1 (a) 酸性条件下金属表面多电子ORR反应模型[16];(b)酸性条件下N掺杂碳材料ORR反应机理[17]
Fig.1 (a) Model of multielectron ORR reaction on metal surface under acid condition[16]. Copyright 1976, Elsevier. (b) ORR reaction mechanism of N-doped carbon materials under acidic conditions[17]. Copyright 2016, American Association for the Advancement of Science
图2 POPs的典型合成过程和分子结构单元示例
Fig.2 Examples of typical synthesis process and molecular structural unit of POPs
图3 在Web of Science上搜索主题如“conjugated microporous polymers”和“oxygen reduction”获得的文献量数据(2014~2022)
Fig.3 The statistics of the paper by topic of “conjugated microporous polymers” as an example and “oxygen reduction” indexed in Web of Science from 2014 to 2022
图4 POPs衍生碳基ORR电催化剂的设计流程
Fig.4 Schematic of POPs derived carbon-based ORR electrocatalysts
表1 近年来CMPs及其衍生碳基ORR催化剂的电化学性能汇总
Table 1 Summary of electrochemical properties of CMPs and their derived carbon-based ORR catalysts
Catalysts Heteroatom Method for CMPs Eonset vs.RHE (V) E1/2 vs.RHE (V) Jd
(mA·cm-2)
Pt/C Jd
(mA·cm-2)
Electrolyte ref
1DPC-L3 B, N, S Sonogashira-Hagihara coupling reaction / 0.75 4.6 5.3 0.1 mol/L KOH 29
N-HsGDY-900 ℃ N Sonogashira-Hagihara coupling reaction 0.86 0.64 4.7 / 0.1 mol/L HClO4 18
1.02 0.85 6.5 / 0.1 mol/L KOH
TPA-BP-1 N Sonogashira-Hagihara coupling reaction 0.80 / / / 0.1 mol/L KOH 27
TPA-TPE-2 0.82 / /
ZnPcFePor-CMP Fe, Zn, N Sonogashira-Hagihara coupling reaction 0.902 0.724 -5.31 / 0.1 mol/L KOH 26
FePcZnPor-CMP 0.936 0.866 -5.59
CPP-P1 N Sonogashira-Hagihara coupling reaction 0.87 0.73 4.71 4.88 0.1 mol/L KOH 30
BP-800 B, N, Co, Fe Sonogashira-Hagihara coupling reaction 0.85 0.66 5.97 / 0.1 mol/L HClO4 31
0.93 0.80 5.95 5.57 0.1 mol/L KOH
0.85 0.66 / / 0.1 mol/L PBS
BPCMP-Fe-800 Fe, N Sonogashira-Hagihara coupling reaction 0.97 0.85 4.98 / 0.1 mol/L KOH 32
BBCMP-Fe-800 0.81 0.71 /
C-CMPs-NP N, S Sonogashira-Hagihara coupling reaction 0.98 0.82 4.2 4.3 0.1 mol/L KOH 33
NHCNT-1 N Sonogashira-Hagihara coupling reaction 0.87 0.76 3.8 / 0.1 mol/L KOH 34
1.15 0.45 4.4 / 0.1 mol/L HClO4
Fe/N-CMP-1000 Fe, N Sonogashira-Hagihara coupling reaction 0.95 0.85 5.10 4.10 0.1 mol/L KOH 35
CMP-NP-800 N Sonogashira-Hagihara coupling reaction 0.903 0.815 / 4.25 0.1 mol/L KOH 36
CMP-NP-900 0.930 0.857 4.45
CMP-NP-1000 0.872 0.766 /
N-Fc-800 Fe, N Schiff base reaction 0.96 0.82 5.3 4.6 0.1 mol/L KOH 37
CoNCs800 Co, N Schiff base reaction 0.905 0.807 -4.72 / 0.1 mol/L KOH 38
0.80 0.70 -4.40 3.57 0.5 mol/L H2SO4
CoPP-FePc-CMPs Co, Fe, N Schiff base reaction 0.837 0.426 1.537 5.85 0.1 mol/L KOH 39
CoFeNC 0.904 0.775 3.68
CoFeNG 0.957 0.777 4.00
C-POP-2-900 N, P Schiff base reaction -0.11 -0.19 / / 0.1 mol/L KOH 40
Fe/Co-CMP-800 N, Fe, Co Suzuki coupling reaction 0.88 0.78 4.5 / 0.5 mol/L H2SO4 41
TT-TPB S Suzuki coupling reaction 0.9 0.89 / / 0.1 mol/L KOH 28
TPP-CMP-900 N Suzuki coupling reaction 0.95 0.83 4.05 4.1 0.1 mol/L KOH 42
XWB-CMP-1000 N, S one-pot catalyst-free
procedure
-0.11 -0.19 -5.2 / 0.1 mol/L KOH 43
CoO/ZnO@N-PC Co, Zn, N Molten salt-templated
approach
0.91 0.85 / / 0.1 mol/L KOH 44
N, P-CMP-1000 N, P Acid-catalyzed con-
densation
0.94 0.84 / / 0.1 mol/L KOH 45
0.75 0.57 / / 0.1 mol/L HClO4
/ 0.48 / / 0.01 mol/L PBS
图5 (a) Fe/Co-CMP, (b) Co-CMP和(c) Fe-CMP的合成和结构示意图及其SEM和TEM成像的纳米尺寸形貌[41]
Fig.5 Schematic representation of the synthesis and structure of (a) Fe/Co-CMP, (b) Co-CMP and (c) Fe-CMP and their nanosized morphology imaged by SEM and TEM[41]. Copyright 2015, Royal Society of Chemistry
图6 CoO/ZnO@N-PC的合成示意图[44]
Fig.6 Schematic illustration of synthesis of CoO/ZnO@N-PC[44]. Copyright 2020, Elsevier
图7 (a)在ZIF-67表面配合生长TP-BPY-COF合成COF@ZIF800催化剂的工艺示意图。(b) TP-BPY-COF的合成与结构。ZIF-67 (c)、COF@ZIF (d)、COF@ZIF800 (e)的SEM图像[64]
Fig.7 (a) Schematic of the synthesis procedure of COF@ZIF800 catalyst by in-situ growing TP-BPY-COF on the surface of ZIF-67. (b) The synthesis and structure of TP-BPY-COF. The SEM images of ZIF-67 (c), COF@ZIF (d), and COF@ZIF800 (e)[64]. Copyright 2022, Royal Society of Chemistry
表2 基于外部交联剂编织法的HCPs衍生碳基ORR催化剂的电化学性能汇总
Table 2 Summary of electrochemical properties of HCPs derived carbon-based ORR catalysts
图8 超交联聚合物纳米管(HCP-NT)和衍生多孔碳纳米管的示意图[80]
Fig.8 Schematic illustration of the hyper-cross-linked polymer nanotubes (HCP-NT) and derived porous carbon nanotubes[80]. Copyright 2023, Elsevier
表3 CTFs衍生碳基ORR催化剂的电化学性能汇总
Table 3 Summary of electrochemical properties of CTFs derived carbon-based ORR catalysts
图9 C-N4、C-FeN4(O)和C-FeN4(OH)的结构模型(左)及不同压缩应变下C位点上的2e-反应途径自由能变化(右)[98]
Fig.9 Structural models of C-N4, C-FeN4(O) and C-FeN4(OH) (left), and the corresponding free energy diagram of the 2e- pathway at C sites of varying compressive strain[98]. Copyright 2021, American Chemical Society
图10 基于CTFs的Fe/Co双金属单原子催化剂的制备流程[99]
Fig.10 Preparation process of Fe and Co bimetallic monatomic catalyst based on CTFs[99]. Copyright 2023, Royal Society of Chemistry
[1]
Wang Q, Han N, Bokhari A, Li X, Cao Y, Asif S, Shen Z F, Si W M, Wang F G, Klemeš J J, Zhao X L. Energy, 2022, 255: 124465.
[2]
Zhao G Q, Rui K, Dou S X, Sun W P. Adv. Funct. Mater., 2018, 28(43): 1803291.
[3]
Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Angewandte Chemie Int. Ed., 2021, 60(33): 17832.
[4]
Wei C, Rao R R, Peng J Y, Huang B T, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Adv. Mater., 2019, 31(31): 1806296.
[5]
Wang H J, Ren H, Liu S L, Yin S L, Jiao S Q, Xu Y, Li X N, Wang Z Q, Wang L. Chem. Eng. J., 2022, 438: 135539.
[6]
Huang L, Wei M, Qi R J, Dong C L, Dang D, Yang C C, Xia C F, Chen C, Zaman S, Li F M, You B, Xia B Y. Nat. Commun., 2022, 13: 6703.
[7]
Li S W, Liu J J, Yin Z, Ren P J, Lin L L, Gong Y, Yang C, Zheng X S, Cao R C, Yao S Y, Deng Y C, Liu X, Gu L, Zhou W, Zhu J F, Wen X D, Xu B J, Ma D. ACS Catal., 2020, 10(1): 907.
[8]
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Angewandte Chemie Int. Ed., 2016, 55(8): 2650.
[9]
Lin L X, Miao N H, Wallace G G, Chen J, Allwood D A. Adv. Energy Mater., 2021, 11(32): 2100695.
[10]
Wei W, Ge H T, Huang L S, Kuang M, Al-Enizi A M, Zhang L J, Zheng G F. J. Mater. Chem. A, 2017, 5(26): 13634.
[11]
He M, Song S J, Wang P, Fang Z, Wang W W, Yuan X L, Li C Y, Li H, Song W Y, Luo D, Li Z X. Carbon, 2022, 196: 483.
[12]
Feng L Y, Wang T T, Sun H, Jiang M, Chen Y G. ACS Appl. Mater. Interfaces, 2020, 12(51): 56954.
[13]
Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Nano Energy, 2021, 86: 106073.
[14]
Yang D H, Tao Y, Ding X S, Han B H. Chem. Soc. Rev., 2022, 51(2): 761.
[15]
Liu X, Liu C F, Xu S H, Cheng T, Wang S, Lai W Y, Huang W. Chem. Soc. Rev., 2022, 51(8): 3181.
[16]
Wroblowa H S, Pan Y C, Razumney G. J. Electroanal. Chem. Interfacial Electrochem., 1976, 69(2): 195.
[17]
Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351(6271): 361.
[18]
Lv Q, Si W Y, He J J, Sun L, Zhang C F, Wang N, Yang Z, Li X D, Wang X, Deng W Q, Long Y Z, Huang C S, Li Y L. Nat. Commun., 2018, 9: 3376.
[19]
Yeager E. Electrochim. Acta, 1984, 29(11): 1527.
[20]
Liu M Y, Xiao X D, Li Q, Luo L Y, Ding M H, Zhang B, Li Y X, Zou J L, Jiang B J. J. Colloid Interface Sci., 2022, 607: 791.
[21]
Kim H W, Bukas V J, Park H, Park S, Diederichsen K M, Lim J, Cho Y H, Kim J, Kim W, Han T H, Voss J, Luntz A C, McCloskey B D. ACS Catal., 2020, 10(1): 852.
[22]
Zhang J T, Xia Z H, Dai L M. Sci. Adv., 2015, 1(7): e1500564.
[23]
Zhou R F, Zheng Y, Jaroniec M, Qiao S Z. ACS Catal., 2016, 6(7): 4720.
[24]
Li Z, Yang Y W. J. Mater. Chem. B, 2017, 5(47): 9278.
[25]
Jiang J X, Su F B, Trewin A, Wood C, Campbell N, Niu H J, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew. Chem. Int. Ed., 2007, 46(45): 8574.
[26]
Liu W B, Wang K, Wang C M, Liu W P, Pan H H, Xiang Y J, Qi D D, Jiang J Z. J. Mater. Chem. A, 2018, 6(45): 22851.
[27]
Roy S, Bandyopadhyay A, Das M, Ray P P, Pati S K, Maji T K. J. Mater. Chem. A, 2018, 6(14): 5587.
[28]
Isci R, Balkan T, Tafazoli S, Sütay B, Eroglu M S, Ozturk T. ACS Appl. Energy Mater., 2022, 5(11): 13284.
[29]
He Y F, Gehrig D, Zhang F, Lu C B, Zhang C, Cai M, Wang Y Y, Laquai F, Zhuang X D, Feng X L. Adv. Funct. Mater., 2016, 26(45): 8255.
[30]
Bandyopadhyay S, Boukhvalov D W, Nayak A K, Ha S R, Shin H J, Kwon J, Song T, Choi H. Dyes Pigments, 2019, 170: 107557.
[31]
Dou J L, Luo H T, Zhang C L, Lu J J, Luan X J, Guo W X, Zhang T, Bian W W, Bai J K, Zhang X L, Zhou B L. New J. Chem., 2021, 45(45):21020.
[32]
Wang M Y, Cao Z L, Li L Y, Ren S J. Carbon, 2022, 200: 337.
[33]
Jiao R, Zhang W L, Sun H X, Zhu Z Q, Yang Z F, Liang W D, Li A. Mater. Today Energy, 2020, 16: 100382.
[34]
Zhang W L, Sun H X, Zhu Z Q, Jiao R, Mu P, Liang W D, Li A. Renew. Energy, 2020, 146: 2270.
[35]
Sun H X, Zhou P L, Tian Z Y, Ye X Y, Zhu Z Q, Ma C H, Liang W D, Li A. ChemPlusChem, 2022, 87(7): e202200168.
[36]
Sun H X, Zhou P L, Ye X Y, Wang J J, Tian Z Y, Zhu Z Q, Ma C H, Liang W D, Li A. J. Colloid Interface Sci., 2022, 617: 11.
[37]
Zhou B L, Liu L Z, Cai P W, Zeng G, Li X Q, Wen Z H, Chen L. J. Mater. Chem. A, 2017, 5(42): 22163.
[38]
Li Q, Shao Q, Wu Q, Duan Q, Li Y H, Wang H G. Catal. Sci. Technol., 2018, 8(14): 3572.
[39]
Li Y, Tao X S, Wei J C, Lv X L, Wang H G. Chem. Asian J., 2020, 15(13): 1970.
[40]
Yang J, Xu M, Wang J Y, Jin S B, Tan B E. Sci. Rep., 2018, 8: 4200.
[41]
Brüller S, Liang H W, Kramm U I, Krumpfer J W, Feng X L, Müllen K. J. Mater. Chem. A, 2015, 3(47): 23799.
[42]
Zhu Z Q, Yang Z F, Fan Y K, Liu C, Sun H X, Liang W D, Li A. ACS Appl. Energy Mater., 2020, 3(6):5260.
[43]
Ren S B, Chen X L, Li P X, Hu D Y, Liu H L, Chen W, Xie W B, Chen Y X, Yang X L, Han D M, Ning G H, Xia X H. J. Power Sources, 2020, 461: 228145.
[44]
Hu L L, Gu S, Yu W G, Zhang W J, Xie Q J, Pan C Y, Tang J T, Yu G P. J. Colloid Interface Sci., 2020, 562: 550.
[45]
Lin D Q, Hu C G, Chen H, Qu J, Dai L M. Chem. A Eur. J., 2018, 24(69): 18487.
[46]
Ma L, Liu Y L, Liu Y, Jiang S Y, Li P, Hao Y C, Shao P P, Yin A X, Feng X, Wang B. Angew. Chem. Int. Ed., 2019, 58(13): 4221.
[47]
Chen J, Yan W, Townsend E J, Feng J T, Pan L, Del Angel Hernandez V, Faul C F J. Angew. Chem. Int. Ed., 2019, 58(34): 11715.
[48]
Wang Z J, Yang X Y, Yang T J, Zhao Y B, Wang F, Chen Y, Zeng J H, Yan C, Huang F, Jiang J X. ACS Catal., 2018, 8(9):8590.
[49]
Bhosale M E, Illathvalappil R, Kurungot S, Krishnamoorthy K. Chem. Commun., 2016, 52(2): 316.
[50]
Abdulaeva I A, Birin K P, Bessmertnykh-Lemeune A, Tsivadze A Y, Gorbunova Y G. Coord. Chem. Rev., 2020, 407: 213108.
[51]
Park J M, Hong K I, Lee H, Jang W D. Acc. Chem. Res., 2021, 54(9): 2249.
[52]
Xia W, Zou R Q, An L, Xia D G, Guo S J. Energy Environ. Sci., 2015, 8(2): 568.
[53]
Lohse M S, Bein T. Adv. Funct. Mater., 2018, 28(33): 1705553.
[54]
Bu R, Lu Y Y, Zhang B. Chem. Res. Chin. Univ., 2022, 38(5):1151.
[55]
Yang C, Tao S S, Huang N, Zhang X B, Duan J G, Makiura R, Maenosono S. ACS Appl. Nano Mater., 2020, 3(6):5481.
[56]
Park J H, Lee C H, Ju J M, Lee J H, Seol J, Lee S U, Kim J H. Adv. Funct. Mater., 2021, 31: 2101727.
[57]
Li Z, Liu Z W, Li Z Y, Wang T X, Zhao F L, Ding X S, Feng W, Han B H. Adv. Funct. Mater., 2020, 30: 1909267.
[58]
Wan X, Liu Q T, Liu J Y, Liu S Y, Liu X F, Zheng L R, Shang J X, Yu R H, Shui J L. Nat. Commun., 2022, 13: 2963.
[59]
Zhang R M, Wang K, Wang P, He Y, Liu Z M. Energies, 2023, 16(9): 3684.
[60]
Yang S, Li X W, Tan T Y, Mao J N, Xu Q, Liu M H, Miao Q Y, Mei B B, Qiao P Z, Gu S Q, Sun F F, Ma J Y, Zeng G F, Jiang Z. Appl. Catal. B Environ., 2022, 307: 121147.
[61]
Zhao X J, Pachfule P, Li S, Langenhahn T, Ye M Y, Tian G Y, Schmidt J, Thomas A. Chem. Mater., 2019, 31(9): 3274.
[62]
Chen H, Li Q H, Yan W S, Gu Z G, Zhang J. Chem. Eng. J., 2020, 401: 126149.
[63]
Zhang S H, Xia W, Yang Q, Valentino Kaneti Y, Xu X T, Alshehri S M, Ahamad T, Hossain M S A, Na J, Tang J, Yamauchi Y. Chem. Eng. J., 2020, 396: 125154.
[64]
Liu M H, Xu Q, Miao Q Y, Yang S, Wu P, Liu G J, He J, Yu C B, Zeng G F. J. Mater. Chem. A, 2022, 10(1): 228.
[65]
Liu M M, Zhu X H, Song Y J, Huang G L, Wei J M, Song X K, Xiao Q, Zhao T, Jiang W, Li X P, Luo W. Adv. Funct. Mater., 2023, 33(11): 2213395.
[66]
Tan L X, Tan B E. Chem. Soc. Rev., 2017, 46(11): 3322.
[67]
Lu Y, Liang J N, Deng S F, He Q M, Deng S Y, Hu Y Z, Wang D L. Nano Energy, 2019, 65: 103993.
[68]
Gu Y L, Son S U, Li T, Tan B E. Adv. Funct. Mater., 2021, 31(12): 2170082.
[69]
Li B Y, Gong R N, Luo Y L, Tan B E. Soft Matter, 2011, 7(22): 10910.
[70]
Xu J J, Shi L, Wang J N, Lu S Y, Wang Y K, Gao G X, Ding S J. Carbon, 2018, 138: 348.
[71]
Zhang J W, Xu D, Wang C C, Guo J N, Yan F. Adv. Mater. Interfaces, 2018, 5(7): 1701641.
[72]
Yang Z F, Han J X, Jiao R, Sun H X, Zhu Z Q, Liang W D, Li A. J. Colloid Interface Sci., 2019, 557: 664.
[73]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Int. J. Hydrog. Energy, 2022, 47(16): 9504.
[74]
Zhai T L, Xuan C J, Xu J C, Ban L, Cheng Z M, Wang S L, Wang D L, Tan B E, Zhang C. Chem. Asian J., 2018, 13(18): 2671.
[75]
Barman J, Deka N, Maji P K, Dutta G K. ChemElectroChem, 2022, 9(15): e202200677.
[76]
Yang Y, He Z P, Liu Y, Wang S L, Wang H G, Zhu G S. Appl. Surf. Sci., 2021, 565: 150579.
[77]
Pei Y C, Qi Z Y, Li X L, Maligal-Ganesh R V, Goh T W, Xiao C X, Wang T Y, Huang W Y. J. Mater. Chem. A, 2017, 5(13): 6186.
[78]
Zhu Z Q, Cui J, Cao X Y, Yang L J, Sun H X, Liang W D, Li J Y, Li A. Energy Technol., 2022, 10(5): 2101097.
[79]
Chen H W, Liu Y J, Liu B, Yang M, Li H M, Chen H B. Nanoscale, 2022, 14(34): 12431.
[80]
Qian Q P, Hu H Y, Huang S D, Li Y, Lin L L, Duan F, Zhu H, Du M L, Lu S L. Carbon, 2023, 202: 81.
[81]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18): 3450.
[82]
Liu M Y, Guo L P, Jin S B, Tan B E. J. Mater. Chem. A, 2019, 7(10): 5153.
[83]
Kamiya K, Kamai R, Hashimoto K, Nakanishi S. Nat. Commun., 2014, 5: 5040.
[84]
Hao L, Zhang S S, Liu R J, Ning J, Zhang G J, Zhi L J. Adv. Mater., 2015, 27(20): 3190.
[85]
Chai D, Min X T, Harada T, Nakanishi S, Zhang X W. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628: 127240.
[86]
Cao Y Q, Zhu Y Z, Chen X F, Abraha B S, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Catal. Sci. Technol., 2019, 9(23): 6606.
[87]
Jiao L, Hu Y L, Ju H X, Wang C D, Gao M R, Yang Q, Zhu J F, Yu S H, Jiang H L. J. Mater. Chem. A, 2017, 5(44): 23170.
[88]
Zhang X L, Lin Z Y, Su W, Zhang M T, Wang X J, Li K X. Appl. Surf. Sci., 2022, 592: 153278.
[89]
Zheng Y, Chen S, Song H, Guo H L, Zhang K A I, Zhang C, Liu T X. Nanoscale, 2020, 12(27): 14441.
[90]
Yu W G, Gu S, Fu Y, Xiong S H, Pan C Y, Liu Y N, Yu G P. J. Catal., 2018, 362: 1.
[91]
Jena H S, Krishnaraj C, Parwaiz S, Lecoeuvre F, Schmidt J, Pradhan D, van der Voort P. ACS Appl. Mater. Interfaces, 2020, 12(40): 44689.
[92]
Sönmez T, Belthle K S, Iemhoff A, Uecker J, Artz J, Bisswanger T, Stampfer C, Hamzah H H, Alexandra Nicolae S, Titirici M M, Palkovits R. Catal. Sci. Technol., 2021, 11(18): 6191.
[93]
Tong L, Shao Z G, Qian Y S, Li W M. J. Mater. Chem. A, 2017, 5(8): 3832.
[94]
Zhu Y Z, Chen X F, Liu J, Zhang J F, Xu D Y, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. ChemSusChem, 2018, 11(14): 2402.
[95]
Iwase K, Yoshioka T, Nakanishi S, Hashimoto K, Kamiya K. Angew. Chem. Int. Ed., 2015, 54(38): 11068.
[96]
Zhou S K, Xiao Z C, Yang Q, Huang X X, Niu Y, Ma Y J, Zhi L J. Sci. China Mater., 2021, 64(9): 2221.
[97]
Zheng Y, Song H, Chen S, Yu X H, Zhu J X, Xu J S, Zhang K, Zhang C, Liu T X. Small, 2020, 16(47): 2004342.
[98]
Zhu Y P, Li J J, Chen Y B, Zou J, Cheng Q Q, Chen C, Hu W B, Zou L L, Zou Z Q, Yang B, Yang H. ACS Catal., 2021, 11(21): 13020.
[99]
Dun R M, He X, Huang J, Wang W liu Y W, Li L H, Lu B W, Hua Z L, Shi J L. J. Mater. Chem. A, 2023, 11(11): 5902.
[100]
Quernheim M, Liang H W, Su Q, Baumgarten M, Koshino N, Higashimura H, Müllen K. Chem. A Eur. J., 2014, 20(44): 14178.
[101]
Patil B, Satilmis B, Uyar T. J. Power Sources, 2020, 451: 227799.
[102]
He D P, Rong Y Y, Kou Z K, Mu S C, Peng T, Malpass-Evans R, Carta M, McKeown N B, Marken F. Electrochem. Commun., 2015, 59: 72.
[103]
Tian Y Y, Zhu G S. Chem. Rev., 2020, 120(16): 8934.
[104]
Wu X, Shaibani M, Smith S J D, Konstas K, Hill M R, Wang H T, Zhang K S, Xie Z L. J. Mater. Chem. A, 2018, 6(24): 11327.
[105]
Chen J H, Jiang L C, Wang W T, Wang P Y, Li X, Ren H, Wang Y G. Micropor. Mesopor. Mater., 2021, 326: 111385.
[106]
Zhao S, Bian Z, Liu Z L, Wang Y H, Cui F C, Wang H G, Zhu G S. Adv. Funct. Mater., 2022, 32 (44):2204539.
[107]
Xiang Z H, Wang D, Xue Y H, Dai L M, Chen J F, Cao D P. Sci. Rep., 2015, 5: 8307.
[108]
Wu K Q, Chen R, Zhou Z X, Chen X H, Lv Y Q, Ma J, Shen Y F, Liu S Q, Zhang Y J. Angew. Chem. Int. Ed., 2023, 62(12): e202217078.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[5] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[6] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[7] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[8] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[9] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[10] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[11] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[12] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[13] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 吴晓甫, 童辉, 王利祥. 爆炸物检测用荧光聚合物材料[J]. 化学进展, 2019, 31(11): 1509-1527.