English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1625-1637 DOI: 10.7536/PC230324 前一篇   后一篇

• 综述 •

固态钠离子电池用PEO基聚合物固体电解质

赵兰清1, 侯敏杰1, 张达1,2,3,*(), 周英杰1, 解志鹏1, 梁风1,2,3,*()   

  1. 1 昆明理工大学 云南省有色金属真空冶金重点实验室 昆明 650093
    2 昆明理工大学 真空冶金国家工程研究中心 昆明 650093
    3 昆明理工大学 冶金与能源工程学院 昆明 650093
  • 收稿日期:2023-03-27 修回日期:2023-07-12 出版日期:2023-11-24 发布日期:2023-08-07
  • 通讯作者: 张达, 梁风
  • 作者简介:

    张达 昆明理工大学讲师,2021年博士毕业于昆明理工大学冶金与能源工程学院,主要从事纳米材料的等离子体制备和改性、新能源材料与器件等方面的研究。

    梁风 昆明理工大学教授,博士生导师,日本九州大学客座教授。博士毕业于日本东京工业大学,入选“国家高层次人才”青年学者、国家人力资源与社会保障部资助高层次留学回国人才计划、云南省高端科技人才、云南省兴滇英才计划-产业创新人才等多项人才计划。主要从事高能量密度储能器件(固态电池、金属空气电池等)开发等离子体制备和改性能源材料等方面的研究。

  • 基金资助:
    国家自然科学基金项目(12175089); 国家自然科学基金项目(12205127); 云南省重点研发计划项目(202103AF140006); 云南省基础研究计划项目(202001AW070004); 云南省基础研究计划项目(202301AS070051); 云南省基础研究计划项目(202301AU070064); 云南省重大科技计划项目(202202AG050003)

Poly(Ethylene Oxide)-Based Solid Polymer Electrolytes for Solid-State Sodium Ion Batteries

Zhao Lanqing1, Hou Minjie1, Zhang Da1,2,3(), Zhou Yingjie1, Xie Zhipeng1, Liang Feng1,2,3()   

  1. 1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology,Kunming 650093, China
    3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received:2023-03-27 Revised:2023-07-12 Online:2023-11-24 Published:2023-08-07
  • Contact: Zhang Da, Liang Feng
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202301AS070051); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202301AU070064); Yunnan Major Scientific and Technological Projects(202202AG050003)

固态钠离子电池采用固体电解质替代传统有机电解液,具有安全性能高、能量密度高和循环寿命长等优点,被认为是大规模储能应用中最有前景的候选电池之一。在众多固体电解质材料中,聚环氧乙烷(PEO)基聚合物固体电解质因安全性高、成本低、能量密度高、电化学稳定性好、对钠盐溶解度高等特点,被认为是极具前景的固体电解质材料。然而环氧乙烷(EO)链段的高结晶度导致其室温离子电导率低而无法满足实际应用。为此研究人员采用不同策略来降低PEO基聚合物固体电解质的结晶度以提高其离子电导率,常见方法包括聚合物嵌段共聚、共混、交联、添加增塑剂和添加无机填料。本文对PEO基聚合物固体电解质的物理化学性质、制备工艺及上述改性技术进行了评价,并综述了PEO基聚合物固体电解质最新研究进展。

One of the most promising candidates for large-scale energy storage applications is the solid-state sodium ion battery, which replaces conventional organic liquid electrolytes with solid electrolytes and has the advantages of high safety, high energy density, and extended cycle life. Among many solid electrolyte materials, Poly(ethylene oxide) (PEO)-based polymer solid electrolytes are considered promising solid electrolyte materials because of their high safety, easy manufacturing, low cost, high energy density, favorable electrochemical stability, and excellent solubility in sodium salts. However, the high crystallinity of the ethylene oxide (EO) chain segment results in low ionic conductivity at room temperature, which is unable to meet the requirements of practical application. To overcome the aforementioned limitations, researchers have used a variety of strategies to lessen the crystallinity of PEO-based polymer electrolyte and hence increase its ionic conductivity. Common techniques include polymer block copolymerization, blending, crosslinking, adding plasticizers, and adding inorganic fillers. In the review, the physical and chemical properties, preparation methods, and modification techniques of PEO-based polymer electrolytes are evaluated, and the most recent advancements on PEO-based polymer electrolytes are reviewed.

Contents

1 Introduction

2 PEO-based polymer solid electrolyte

2.1 Physicochemical properties of PEO

2.2 PEO polymer solid electrolyte

2.3 Ion transport mechanism

3 Preparation method of PEO-based polymer solid electrolyte

3.1 Solution casting

3.2 Hot pressing

3.3 Other methods

4 Modification strategy

4.1 Polymer block copolymerization, blending and crosslinking

4.2 Adding plasticizers

4.3 Adding inorganic fillers

5 Conclusion and outlook

()
表1 常用聚合物基体优缺点对比
Table 1 Comparison of advantages and disadvantages of common polymer matrix
图1 (a)PEO及PEO基CPE结构示意图[16];(b)Na+在结晶PEO中的缓慢迁移[16]
Fig.1 (a) Structure diagram of PEO and PEO based CPE[16]; (b) The slow migration of Na+ in crystalline PEO[16]
图2 (a)聚合物基固态钠离子电池示意图[13];(b)固态钠离子电池聚合物固体电解质内聚合物相[28]
Fig.2 (a) Schematic of polymer-based solid sodium ion battery[13] and (b) Polymer phase in polymer solid electrolyte[28]
图3 PEO聚合物固体电解质中Na+传输机制[28]
Fig.3 Mechanism of sodium ion transport in PEO[28]
图4 (a)21-β-CD-g-PTFEMA新型聚合物的合成路径[49];(b)密度泛函理论(DFT)分析最高占据分子轨道(HOMO)和不同聚合物单元的电子云密度分布概率[49];(c)非晶态PPC和NASICON颗粒掺入结晶PEO基体中的CPE优化示意图[51];(d)Na-CMC为骨架的三维交联结构SPE的高倍FESEM[55];(e)Na|SPE|Na3V2(PO4)3电池在1 C倍率下的比容量和库仑效率曲线[56]
Fig.4 (a) Synthetic route for 21-β-CD-g-PTFEMA[49]; (b) Density functional theory (DFT) analysis of the highest occupied molecular orbital (HOMO) and probability of electron cloud density distributions for different polymer units[49]; (c) Schematic of the optimizing steps for amorphous PPC and NASICON particles incorporated into the crystalline PEO host[51]; (d) FESEM analysis at high magnification of the three-dimensional cross-linked structure SPE with Na-CMC as the skeleton[55]; (e) Specific capacity and coulombic efficiency curves of Na|SPE|Na3V2(PO4)3 battery cycled at 1 C rate[56]
表2 基于聚合物共混、嵌段共聚、交联改性固体电解质离子电导率对比
Table 2 Comparison of ionic conductivity of solid electrolyte modified by polymer blending, block copolymerization and cross-linking
表3 基于添加增塑剂改性聚合物固体电解质离子电导率对比
Table 3 Comparison of ionic conductivity of solid electrolyte modified by adding plasticizer
图5 (a)PEO/NaPO3和PEO/NaPO3 + 50%(质量分数)PEG SPE的DSC曲线[58];(b)PEO-PAM共混电解质体系中添加(EC + PC)混合增塑剂的离子电导率[64];(c)PEO/NaClO4/EC-PC SPE的合成示意图[65];(d)具有紧密界面接触的双层PEO-SN-NaClO4|NZSP-NSO电解质[66];(e)NZP-PEO和NZP-PEO@IL CPEs的Na+传导途径示意图[69];(f)PEO/NaClO4-Pyr13FSI SPE组成结构及FSI-阴离子与PEO链相互作用的示意图[70]
Fig.5 (a) DSC traces of PEO/NaPO3 and PEO/NaPO3 + 50% PEG SPE[58] ; (b) Ionic conductivity of (EC + PC) mixed plasticizer in PEO-PAM blended electrolyte system[64]; (c) Schematic representation of synthesis route for PEO/NaClO4/EC-PC SPE[65]; (d) The asymmetric PEO-SN-NaClO4|NZSP-NSO SPE with close interface contact[66]; (e) Schematic illustration of the proposed Na+ conduction pathways for the NZP-PEO and NZP-PEO@IL CPEs[69]; (f) Composition of PEO/NaClO4-Pyr13FSI SPE and schematic diagram illustrating the interaction of FSI- anion and PEO chain[70]
图6 (a)溶液浇铸法制备PEO/PVP/NaPO3/Al2O3 CPE示意图[74];(b)Na3PS4-PEO CPE结构示意图及其在全固态电池中的电化学性能[86];(c)PEO-NZTO CPE的数码照片和背散射电子图像[87];(d)Na|PEO-NZTO|NVP全固态电池在80℃,0.2 C倍率下恒流充放电循环过程中的比容量[87];(e)PEO-NaClO4-NASICON CPE组成示意图及其在全固态电池中的电化学性能[88]
Fig.6 (a) Schematic diagram of preparation of PEO/PVP/NaPO3/Al2O3 CPE by solution casting technique[74]; (b) Structure diagram of Na3PS4-PEO CPE and its electrochemical performance in all solid-state batteries[86]; (c) Photograph and back scattered electron image of the PEO/NZTO CPE[87]; (d) Specific capacities of Na|PEO-NZTO|NVP all-solid-state batteries during the galvanostatic charge/discharge cycling at a rate of 0.2 C at 80℃[87]; (e) Schematic diagram of composition of PEO-NaClO4-NASICON CPE and its electrochemical performance in all solid-state batteries[88]
表4 基于复合聚合物固体电解质离子电导率对比
Table 4 Comparison of ionic conductivity based on composite polymer solid electrolyte
[1]
Huang Y X, Zhao L Z, Li L, Xie M, Wu F, Chen R J. Adv. Mater., 2019, 31(21): 1808393.

doi: 10.1002/adma.v31.21     URL    
[2]
Maurya D K, Dhanusuraman R, Guo Z H, Angaiah S. Adv. Compos. Hybrid Mater., 2022, 5(4): 2651.

doi: 10.1007/s42114-021-00412-z    
[3]
Hueso K B, Armand M, Rojo T. Energy Environ. Sci., 2013, 6(3): 734.

doi: 10.1039/c3ee24086j     URL    
[4]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028     URL    
[5]
Cui Y, Wan J Y, Ye Y S, Liu K, Chou L Y, Cui Y,. Nano Lett., 2020, 20(3): 1686.

doi: 10.1021/acs.nanolett.9b04815     pmid: 32020809
[6]
Wang E H, Wan J, Guo Y J, Zhang Q Y, He W H, Zhang C H, Chen W P, Yan H J, Xue D J, Fang T T, Wang F Y, Wen R, Xin S, Yin Y X, Guo Y G. Angew. Chem. Int. Ed., 2023, 62(4): e202216354.

doi: 10.1002/anie.v62.4     URL    
[7]
Wan J Y, Xie J, Kong X, Liu Z, Liu K, Shi F F, Pei A, Chen H, Chen W, Chen J, Zhang X K, Zong L Q, Wang J Y, Chen L Q, Qin J, Cui Y. Nat. Nanotechnol., 2019, 14(7): 705.

doi: 10.1038/s41565-019-0465-3    
[8]
Hou W R, Guo X W, Shen X Y, Amine K, Yu H J, Lu J. Nano Energy, 2018, 52: 279.

doi: 10.1016/j.nanoen.2018.07.036     URL    
[9]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.

doi: 10.1039/C7EE00524E     URL    
[10]
Liu L L, Qi X G, Yin S J, Zhang Q Q, Liu X Z, Suo L M, Li H, Chen L Q, Hu Y S. ACS Energy Lett., 2019, 4(7): 1650.

doi: 10.1021/acsenergylett.9b00857     URL    
[11]
Arya A, Sharma A L. J. Phys. D: Appl. Phys., 2017, 50(44): 443002.

doi: 10.1088/1361-6463/aa8675     URL    
[12]
Goikolea E, Palomares V, Wang S J, de Larramendi I R, Guo X, Wang G X, Rojo T. Adv. Energy Mater., 2020, 10(44): 2002055.

doi: 10.1002/aenm.v10.44     URL    
[13]
Yang J F, Zhang H R, Zhou Q, Qu H T, Dong T T, Zhang M, Tang B, Zhang J J, Cui G L. ACS Appl. Mater. Interfaces, 2019, 11(19): 17109.

doi: 10.1021/acsami.9b01239     URL    
[14]
Xue Z G, He D, Xie X L. J. Mater. Chem. A, 2015, 3(38): 19218.

doi: 10.1039/C5TA03471J     URL    
[15]
Gupta S, Gupta A K, Pandey B K. Polym. Bull., 2022, 79(7): 4999.

doi: 10.1007/s00289-021-03724-8    
[16]
Lu Y, Li L, Zhang Q, Cai Y C, Ni Y X, Chen J. Chem. Sci., 2022, 13(12): 3416.

doi: 10.1039/D1SC06745A     URL    
[17]
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm F R, Frey H. Chem. Rev., 2016, 116(4): 2170.

doi: 10.1021/acs.chemrev.5b00441     pmid: 26713458
[18]
Wintersgill M C, Fontanella J J, Pak Y S, Greenbaum S G, Al-Mudaris A, Chadwick A V. Polymer, 1989, 30(6): 1123.

doi: 10.1016/0032-3861(89)90091-8     URL    
[19]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.

doi: 10.1039/C6MH00218H     URL    
[20]
Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14(11): 589.
[21]
Zhou Q, Ma J, Dong S M, Li X F, Cui G L. Adv. Mater., 2019, 31(50): 1902029.

doi: 10.1002/adma.v31.50     URL    
[22]
Genier F S, Hosein I D. Macromolecules, 2021, 54(18): 8553.

doi: 10.1021/acs.macromol.1c01028     URL    
[23]
Arya A, Sharma A L. J. Phys.: Condens. Matter, 2018, 30(16): 165402.
[24]
Lailun Ni’mah Y, Cheng M Y, Cheng J H, Rick J, Hwang B J. J. Power Sources, 2015, 278: 375.

doi: 10.1016/j.jpowsour.2014.11.047     URL    
[25]
Arya A, Sharma A L. J. Solid State Electrochem., 2018, 22(9): 2725.

doi: 10.1007/s10008-018-3965-4    
[26]
Ma Y P, Doeff M M, Visco S J, De Jonghe L C. J. Electrochem. Soc., 1993, 140(10): 2726.

doi: 10.1149/1.2220900    
[27]
Boschin A, Johansson P. Electrochim. Acta, 2015, 175: 124.

doi: 10.1016/j.electacta.2015.03.228     URL    
[28]
Li Z Y, Li Z, Fu J L, Guo X. Rare Metals, 2023, 42(1): 1.

doi: 10.1007/s12598-022-02132-9    
[29]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.

doi: 10.1002/aenm.v8.17     URL    
[30]
Chen X B, Vereecken P M. Adv. Mater. Interfaces, 2019, 6(1): 1800899.

doi: 10.1002/admi.v6.1     URL    
[31]
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. Chem. Soc. Rev., 2020, 49(23): 8790.

doi: 10.1039/d0cs00305k     pmid: 33107869
[32]
West K, Zachau-Christiansen B, Jacobsen T, Hiort-Lorenzen E, Skaarup S. Brit. Poly. J., 1988, 20(3): 243.

doi: 10.1002/pi.v20:3     URL    
[33]
Niu W, Chen L, Liu Y C, Fan L Z. Chem. Eng. J., 2020, 384: 123233.

doi: 10.1016/j.cej.2019.123233     URL    
[34]
Guo J H, Feng F, Zhao S Q, Wang R, Yang M, Shi Z H, Ren Y F, Ma Z F, Chen S L, Liu T X. Small, 2023, 19(16): 2206740.

doi: 10.1002/smll.v19.16     URL    
[35]
Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C. J. Energy Storage, 2019, 26: 100947.

doi: 10.1016/j.est.2019.100947     URL    
[36]
Chandra A, Chandra A, Thakur K. Arab. J. Chem., 2016, 9(3): 400.

doi: 10.1016/j.arabjc.2013.07.014     URL    
[37]
Gray F, MacCallum J, Vincent C. Solid State Ionics, 1986, 18/19: 282.

doi: 10.1016/0167-2738(86)90127-X     URL    
[38]
Appetecchi G B, Croce F, Hassoun J, Scrosati B, Salomon M, Cassel F. J. Power Sources, 2003, 114(1): 105.

doi: 10.1016/S0378-7753(02)00543-8     URL    
[39]
Pandey G, Hashmi S, Agrawal R. Solid State Ionics, 2008, 179(15/16): 543.

doi: 10.1016/j.ssi.2008.04.006     URL    
[40]
Wang J, Wang Z Z, Ni J F, Li L. Energy Storage Materials, 2022, 45: 704.

doi: 10.1016/j.ensm.2021.12.022     URL    
[41]
Zheng S M, Li D M, Li W B, Chen J, Rao X F, Wang N, Qi J, Wang B, Luo S J, Zhao Y. ACS Appl. Energy Mater., 2022, 5(3): 3587.

doi: 10.1021/acsaem.1c04076     URL    
[42]
Freitag K M, Walke P, Nilges T, Kirchhain H, Spranger R J, van Wüllen L. J. Power Sources, 2018, 378: 610.

doi: 10.1016/j.jpowsour.2017.12.083     URL    
[43]
Liu D L, Wang S M, Gao Z H, Xu L F, Xia S B, Guo H. Energy Storage Science and Technology, 2021, 10(3): 931.
( 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 储能科学与技术, 2021, 10(3): 931.)
[44]
Lin W T, Zheng X W, Ma S, Ji K M, Wang C Y, Chen M M. ACS Appl. Mater. Interfaces, 2023, 15(6): 8128.

doi: 10.1021/acsami.2c20884     URL    
[45]
Yao Y, Wei Z Y, Wang H Y, Huang H J, Jiang Y, Wu X J, Yao X Y, Wu Z S, Yu Y. Adv. Energy Mater., 2020, 10(12): 2070055.

doi: 10.1002/aenm.v10.12     URL    
[46]
Song S F, Kotobuki M, Zheng F, Xu C H, Savilov S V, Hu N, Lu L, Wang Y, Dong Z, Li W. J. Mater. Chem. A, 2017, 5(14): 6424.

doi: 10.1039/C6TA11165C     URL    
[47]
Ngai K S, Ramesh S, Ramesh K, Juan J C. Ionics, 2016, 22(8): 1259.

doi: 10.1007/s11581-016-1756-4     URL    
[48]
Chandra A. Chinese J. Polym. Sci., 2013, 31(11): 1538.

doi: 10.1007/s10118-013-1347-z     URL    
[49]
Su Y, Rong X H, Gao A, Liu Y, Li J W, Mao M L, Qi X G, Chai G L, Zhang Q H, Suo L M, Gu L, Li H, Huang X J, Chen L Q, Liu B Y, Hu Y S. Nat. Commun., 2022, 13: 4181.

doi: 10.1038/s41467-022-31792-5    
[50]
Ganta K K, Jeedi V R, Katrapally V K, Yalla M, Emmadi L N. J. Inorg. Organomet. Polym. Mater., 2021, 31(8): 3430.

doi: 10.1007/s10904-021-01947-w    
[51]
Matios E, Wang H, Luo J M, Zhang Y W, Wang C L, Lu X, Hu X F, Xu Y, Li W Y. J. Mater. Chem. A, 2021, 9(34): 18632.

doi: 10.1039/D1TA05490B     URL    
[52]
Chen Y, Shi Y, Liang Y L, Dong H, Hao F, Wang A, Zhu Y X, Cui X L, Yao Y. ACS Appl. Energy Mater., 2019, 2(3): 1608.

doi: 10.1021/acsaem.8b02188     URL    
[53]
Wang X E, Zhang C, Sawczyk M, Sun J, Yuan Q H, Chen F F, Mendes T C, Howlett P C, Fu C K, Wang Y Q, Tan X, Searles D J, Král P, Hawker C J, Whittaker A K, Forsyth M. Nat. Mater., 2022, 21(9): 1057.

doi: 10.1038/s41563-022-01296-0    
[54]
Xiao Z L, Zhou B H, Wang J R, Zuo C, He D, Xie X L, Xue Z G. J. Membr. Sci., 2019, 576: 182.

doi: 10.1016/j.memsci.2019.01.051     URL    
[55]
Colò F, Bella F, Nair J R, Destro M, Gerbaldi C. Electrochim. Acta, 2015, 174: 185.

doi: 10.1016/j.electacta.2015.05.178     URL    
[56]
Hou M J, Zi J, Zhao L Q, Zhou Y J, Li F P, Xie Z P, Zhang D, Yang B, Liang F. Mater. Chem. Front., 2023, 7(10): 2027.

doi: 10.1039/D3QM00054K     URL    
[57]
Kelly I, Owen J R, Steele B C H. J. Electroanal. Chem. Interfacial Electrochem., 1984, 168(1/2): 467.

doi: 10.1016/0368-1874(84)87116-6     URL    
[58]
Bhide A, Hariharan K. Eur. Polym. J., 2007, 43(10): 4253.

doi: 10.1016/j.eurpolymj.2007.07.038     URL    
[59]
Chandrasekaran R, Selladurai S. J. Solid State Electrochem., 2001, 5(5): 355.

doi: 10.1007/s100080000156     URL    
[60]
Nan C W, Fan L Z, Lin Y H, Cai Q. Phys. Rev. Lett., 2003, 91(26): 266104.

doi: 10.1103/PhysRevLett.91.266104     URL    
[61]
Pitawala H M J C, Dissanayake M A K L, Seneviratne V A. Solid State Ionics., 2007, 178(13/14): 885.

doi: 10.1016/j.ssi.2007.04.008     URL    
[62]
Pitawala H M J C, Dissanayake M A K L, Seneviratne V A, Mellander B E, Albinson I. J. Solid State Electr., 2008, 12(7/8): 783.

doi: 10.1007/s10008-008-0505-7     URL    
[63]
Fan L Z, Dang Z M, Nan C W, Li M. Electrochim. Acta, 2002, 48(2): 205.

doi: 10.1016/S0013-4686(02)00603-5     URL    
[64]
Dave G, Maheshwaran C, Kanchan D. AIP Publishing LLC, 2019, 2115(1): 030234.
[65]
Menisha M, Senavirathna S L N, Vignarooban K, Iqbal N, Pitawala H M J C, Kannan A M. Solid State Ionics, 2021, 371: 115755.

doi: 10.1016/j.ssi.2021.115755     URL    
[66]
Wang H, Sun Y J, Liu Q, Mei Z Y, Yang L, Duan L Y, Guo H. J. Energy Chem., 2022, 74: 18.

doi: 10.1016/j.jechem.2022.07.010     URL    
[67]
Ye Y S, Rick J, Hwang B J. J. Mater. Chem. A, 2013, 1(8): 2719.

doi: 10.1039/C2TA00126H     URL    
[68]
Sun H, Zhu G Z, Xu X T, Liao M, Li Y Y, Angell M, Gu M, Zhu Y M, Hung W H, Li J C, Kuang Y, Meng Y T, Lin M C, Peng H S, Dai H J. Nat. Commun., 2019, 10: 3302.

doi: 10.1038/s41467-019-11102-2    
[69]
Shen L, Deng S G, Jiang R R, Liu G Z, Yang J, Yao X Y. Energy Storage Mater., 2022, 46: 175.
[70]
Chen G H, Bai Y, Gao Y S, Wang Z H, Zhang K, Ni Q, Wu F, Xu H J, Wu C. ACS Appl. Mater. Interfaces, 2019, 11(46): 43252.

doi: 10.1021/acsami.9b16294     URL    
[71]
Boschin A, Johansson P. Electrochim. Acta, 2016, 211: 1006.

doi: 10.1016/j.electacta.2016.06.119     URL    
[72]
Zou Z Y, Li Y J, Lu Z H, Wang D, Cui Y H, Guo B K, Li Y J, Liang X M, Feng J W, Li H, Nan C W, Armand M, Chen L Q, Xu K, Shi S Q. Chem. Rev., 2020, 120(9): 4169.

doi: 10.1021/acs.chemrev.9b00760     URL    
[73]
Feng J N, Wang L, Chen Y J, Wang P Y, Zhang H R, He X M. Nano Converg., 2021, 8(1): 1.

doi: 10.1186/s40580-020-00251-6    
[74]
Shenbagavalli S, Muthuvinayagam M, Jayanthi S, Revathy M S. J. Mater. Sci. Mater. Electron., 2021, 32(8): 9998.

doi: 10.1007/s10854-021-05658-3    
[75]
Chandra A, Chandra A, Thakur K. Indian J. Pure Appl. Phys., 2013, 51(1): 44.
[76]
Jia S F, Ohno S, Wang J, Hasegawa G, Akamatsu H, Hayashi K. ACS Appl. Energy Mater., 2023, 6(1): 317.

doi: 10.1021/acsaem.2c03022     URL    
[77]
Lalère F, Leriche J B, Courty M, Boulineau S, Viallet V, Masquelier C, Seznec V. J. Power Sources, 2014, 247: 975.

doi: 10.1016/j.jpowsour.2013.09.051     URL    
[78]
Zhao K, Liu Y, Zhang S M, He S Y, Zhang N, Yang J H, Zhan Z L. Electrochem. Commun., 2016, 69: 59.

doi: 10.1016/j.elecom.2016.06.003     URL    
[79]
Yao Y W, Liu Z H, Wang X X, Chen J J, Wang X T, Wang D J, Mao Z Y. J. Mater. Sci., 2021, 56(16): 9951.

doi: 10.1007/s10853-021-05885-3    
[80]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601     URL    
[81]
Forsyth M, MacFarlane D R, Best A, Adebahr J, Jacobsson P, Hill A J. Solid State Ionics, 2002, 147(3/4): 203.

doi: 10.1016/S0167-2738(02)00017-6     URL    
[82]
Jayathilaka P A R D, Dissanayake M A K L, Albinsson I, Mellander B E. Electrochim. Acta, 2002, 47(20): 3257.

doi: 10.1016/S0013-4686(02)00243-8     URL    
[83]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology, 2020, 31(13): 132003.

doi: 10.1088/1361-6528/ab5be7     URL    
[84]
Bublil S, Peta G, Alon-Yehezkel H, Elias Y, Golodnitsky D, Fayena-Greenstein M, Aurbach D. J. Electrochem. Soc., 2022, 169(2): 020504.

doi: 10.1149/1945-7111/ac4bf6    
[85]
Peta G, Bublil S, Alon-Yehezkel H, Breuer O, Elias Y, Shpigel N, Fayena-Greenstein M, Golodnitsky D, Aurbach D. J. Electrochem. Soc., 2021, 168(11): 110553.

doi: 10.1149/1945-7111/ac330d    
[86]
Xu X Y, Li Y Y, Cheng J, Hou G M, Nie X K, Ai Q, Dai L N, Feng J K, Ci L J. J. Energy Chem., 2020, 41: 73.

doi: 10.1016/j.jechem.2019.05.003     URL    
[87]
Wu J F, Yu Z Y, Wang Q, Guo X. Energy Storage Mater., 2020, 24: 467.
[88]
Yu X W, Xue L G, Goodenough J B, Manthiram A. ACS Mater. Lett., 2019, 1(1): 132.
[1] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[4] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[5] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[6] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[7] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[8] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[9] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[10] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[11] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[12] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[13] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[14] 张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 钠基固体电解质及其在能源上的应用[J]. 化学进展, 2019, 31(1): 210-222.
[15] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.