English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1534-1543 DOI: 10.7536/PC230319 前一篇   后一篇

• 综述 •

钠离子电池低温电解质的研究进展与挑战

张广相1, 马驰1, 付传凯1,2, 刘子维1, 霍华1,2, 马玉林1,2,*()   

  1. 1 哈尔滨工业大学化工与化学学院 哈尔滨 150001
    2 哈尔滨工业大学空间电源国家重点实验室 哈尔滨 150001
  • 收稿日期:2023-03-21 修回日期:2023-05-07 出版日期:2023-10-24 发布日期:2023-06-12
  • 作者简介:

    马玉林 哈尔滨工业大学教授级高级工程师。从事先进二次电池电解液及电极/电解液界面研究, 包括锂、钠离子电池高、低温电解液,锂、钠离子电池电极/电解质界面,锂离子电池安全性等。先后负责及参与863项目、国家自然科学基金、黑龙江省基金及横向课题等项目20余项, 获国家科技进步二等奖、黑龙江省技术发明一等奖等奖项。

  • 基金资助:
    国家自然科学基金项目(22075064); 中国博士后科学基金项目(2022M710950)

Advances and Challenges of Low-Temperature Electrolyte for Sodium-Ion Batteries

Guangxiang Zhang1, Chi Ma1, Chuankai Fu1,2, Ziwei Liu1, Hua Huo1,2, Yulin Ma1,2,*()   

  1. 1 School of Chemistry and Chemical Engineering, Harbin Institute of Technology,Harbin 150001, China
    2 State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
  • Received:2023-03-21 Revised:2023-05-07 Online:2023-10-24 Published:2023-06-12
  • Contact: *e-mail: mayulin@hit.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22075064); China Postdoctoral Science Foundation(2022M710950)

钠离子电池因资源丰富、成本低廉、安全性高及环境友好等优势,在低速电动汽车、大型储能系统等领域备受关注。电解质作为电池的重要组成部分之一,承担着在正负极间传输离子的作用,对电池的循环寿命、倍率、安全性及自放电等性能具有重要影响。然而,在低温环境下,由于离子电导率下降、电解质与正负极兼容性变差、去溶剂化能升高、电极/电解质界面性质变差等问题,使得钠离子电池难以发挥理想的性能。本文总结了近年来对低温电解质的钠离子溶剂化结构及电极/电解质界面的新认识,并对基于氢键网络破坏、弱溶剂化、快速反应动力学及阴离子干预的低温电解质设计策略进行了系统分析。最后,提出深入理解电解质的钠离子溶剂化结构、电极/电解质界面性质与电解质低温性能之间的关系是未来从电解质角度提升钠离子电池低温性能的关键。

Sodium-ion batteries have attracted ever-increasing attention in the fields of low-speed electric vehicles, and large-scale energy storage systems due to the advantages of abundant resources, low cost, high safety, and environmental friendliness. As one of the important components of sodium-ion batteries, the electrolyte is responsible for ion transfer between the cathode and the anode, which has a significant impact on cycle life, high-rate, safety, and self-discharge performance of sodium-ion batteries. However, it is difficult for sodium-ion batteries to perform well at low temperatures due to the decrease in ionic conductivity, the poor compatibility between the electrolyte and the electrode, the increase of desolvating power, and the poor properties of the electrode/electrolyte interphase. In this paper, the new understanding of the Na+ solvation structure in the electrolyte and the electrode/electrolyte interphase in recent years are summarized. And the design strategies of low-temperature electrolyte based on H-bond network breakdown, weak solvation, rapid reaction kinetics, and anion intervention are systematically analyzed. Finally, it is pointed out that the key to improving the low-temperature performance of sodium-ion batteries from the perspective of electrolyte is to understand the relationship between the Na+ solvation structure, the electrode/electrolyte interface properties, and the low-temperature performance of electrolyte.

Contents

1 Introduction

2 Working principle of sodium-ion batteries and limitation of low-temperature performance of the electrolyte

3 Research status of low-temperature electrolyte for sodium-ion batteries

3.1 Design strategies of low-temperature electrolyte based on the H-bond network breaking method

3.2 Design strategies of low-temperature electrolyte based on weakly solvating

3.3 Design strategies of low-temperature electrolyte based on rapid reaction kinetics

3.4 Design strategies of low-temperature electrolyte based on anionic intervention

3.5 Others

4 Conclusion and outlook

()
图1 钠离子电池工作原理及电解质低温性能的主要限制因素示意图
Fig.1 Schematic diagram of the operating principle of sodium-ion batteries and the main limiting factors for the low-temperature performance of the electrolyte
图2 钠离子电池低温电解质设计策略
Fig.2 Design strategies of low-temperature electrolyte for sodium-ion batteries
图3 基于破坏氢键网络方法的低温电解质设计策略. (a) χDMSO=0.3时溶剂结构模拟[30]; (b) NTP|H2O-DMSO|AC全电池在-50℃下的倍率性能[30], Copyright 2019, Wiley; (c) AC‖Na2CoFe(CN)6 全电池在-30℃下的电化学性能[33], Copyright 2022, Wiley
Fig.3 Design strategies of low-temperature electrolyte based on H-bond network breaking method. (a) Solvent structure simulation with χDMSO=0.3[30]; (b) High-rate performance of NTP|H2O-DMSO|AC full-cell at -50℃[30], Copyright 2019, Wiley; (c) Electrochemical performance of AC‖Na2CoFe(CN)6 full-cell at -30℃[33], Copyright 2022, Wiley.
表1 常见醚类溶剂[35??~38]和羧酸酯类溶剂的物化性质[39??~42]
Table 1 Physicochemical properties of common ether solvents[35??~38] and carboxylate solvents[39??~42]
图4 双离子电池工作原理[52], Copyright 2021, Wiely
Fig.4 Working principle of dual-ion battery[52], Copyright 2021, Wiely
图5 (a) 溶剂化钠离子共插层过程[55]; (b) Bi‖NFPP@C电池在不同温度下的恒流充放电曲线[56], Copyright 2022, Wiely
Fig.5 (a) Co-intercalation process of solvated Na+[55]. (b) Galvanostatic charge/discharge curves of Bi‖NFPP@C cell at different temperat[56], Copyright 2022, Wiely.
[1]
Sawicki M, Shaw L L. RSC Adv., 2015, 5(65): 53129.

doi: 10.1039/C5RA08321D     URL    
[2]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.

doi: 10.1039/C7EE00524E     URL    
[3]
Yin C G, Ma Y L, Cheng X Q, Yin G P. Prog. Chem., 2013, 25(1): 54.
(尹成果, 马玉林, 程新群, 尹鸽平. 化学进展, 2013, 25(1): 54.).
[4]
Zhang L L, Ma Y L, Du C Y, Yin G P. Progress in Chemistry, 2014, 26 (4): 553.
(张玲玲, 马玉林, 杜春雨, 尹鸽平. 化学进展, 2014, 26 (4): 553.).
[5]
Li H, Wu C, Wu F, Bai Y. Acta Chim. Sinica., 2014, 72(01): 21.

doi: 10.6023/A13080830     URL    
(李慧, 吴川, 吴锋, 白莹. 化学学报, 2014, 72(01): 21.).
[6]
Lu Y, Zhao C L, Rong X H, Chen L Q, Hu Y S. Acta Phys. Sin., 2018, 67(12): 39.
(陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 物理学报, 2018, 67(12): 39.).
[7]
Wang Y M, Song S F, Xu C H, Hu N, Molenda J, Lu L. Nano Mater. Sci., 2019, 1(2): 91.
[8]
Guo X Y, Wang Z B, Deng Z, Wang B, Chen X, Ong S P. Chem. Mater., 2020, 32(16): 6875.

doi: 10.1021/acs.chemmater.0c01582     URL    
[9]
Vignarooban K, Kushagra R, Elango A, Badami P, Mellander B E, Xu X, Tucker T G, Nam C, Kannan A M. Int. J. Hydrog. Energy, 2016, 41(4): 2829.

doi: 10.1016/j.ijhydene.2015.12.090     URL    
[10]
Li P Y, Hu N Q, Wang J Y, Wang S C, Deng W W. Nanomaterials, 2022, 12(19): 3529.

doi: 10.3390/nano12193529     URL    
[11]
Rodrigues M T F, Babu G, Gullapalli H, Kalaga K, Sayed F N, Kato K, Joyner J, Ajayan P M. Nat. Energy, 2017, 2(8): 17108.

doi: 10.1038/nenergy.2017.108     URL    
[12]
Gupta A, Manthiram A. Adv. Energy Mater., 2020, 10(38): 2001972.

doi: 10.1002/aenm.v10.38     URL    
[13]
Feng Y, Zhou L M, Ma H A, Wu Z H, Zhao Q, Li H X, Zhang K, Chen J. Energy Environ. Sci., 2022, 15(5): 1711.

doi: 10.1039/D1EE03292E     URL    
[14]
Pan H L, Hu Y S, Chen L Q. Energy Environ. Sci., 2013, 6(8): 2338.

doi: 10.1039/c3ee40847g     URL    
[15]
Yin H, Han C J, Liu Q R, Wu F Y, Zhang F, Tang Y B. Small, 2021, 17(31): e2006627.
[16]
Li Y, Wu F, Li Y, Liu M Q, Feng X, Bai Y, Wu C A. Chem. Soc. Rev., 2022, 51(11): 4484.

doi: 10.1039/D1CS00948F     URL    
[17]
Peljo P, Girault H H. Energy Environ. Sci., 2018, 11(9): 2306.

doi: 10.1039/C8EE01286E     URL    
[18]
Eshetu G G, Elia G A, Armand M, Forsyth M, Komaba S, Rojo T, Passerini S. Adv. Energy Mater., 2020, 10(20): 2000093.

doi: 10.1002/aenm.v10.20     URL    
[19]
Wang M, Wang Q C, Ding X Y, Wang Y S, Xin Y H, Singh P, Wu F, Gao H C. Interdiscip. Mater., 2022, 1(3): 373.
[20]
Jaguemont J, Boulon L, DubÉ Y. Appl. Energy, 2016, 164: 99.

doi: 10.1016/j.apenergy.2015.11.034     URL    
[21]
Zhao Y W, Chen Z, Mo F N, Wang D H, Guo Y, Liu Z X, Li X L, Li Q, Liang G J, Zhi C Y. Adv. Sci., 2021, 8(1): 2002590.

doi: 10.1002/advs.v8.1     URL    
[22]
Zheng X Y, Gu Z Y, Fu J, Wang H T, Ye X L, Huang L Q, Liu X Y, Wu X L, Luo W, Huang Y H. Energy Environ. Sci., 2021, 14(9): 4936.

doi: 10.1039/D1EE01404H     URL    
[23]
Yoo D J, Liu Q A, Cohen O, Kim M, Persson K A, Zhang Z C. ACS Appl. Mater. Interfaces, 2022, 14(9): 11910.

doi: 10.1021/acsami.1c23934     URL    
[24]
Pan K H, Lu H Y, Zhong F P, Ai X P, Yang H X, Cao Y L. ACS Appl. Mater. Interfaces, 2018, 10(46): 39651.

doi: 10.1021/acsami.8b13236     URL    
[25]
Xu K. Chem. Rev., 2004, 104(10): 4303.

doi: 10.1021/cr030203g     URL    
[26]
Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacín M R. Energy Environ. Sci., 2012, 5(9): 8572.

doi: 10.1039/c2ee22258b     URL    
[27]
Yang M R, Luo J, Guo X N, Chen J C, Cao Y L, Chen W H. Batteries, 2022, 8(10): 180.

doi: 10.3390/batteries8100180     URL    
[28]
Bin D A, Wang F, Tamirat A G, Suo L M, Wang Y G, Wang C S, Xia Y Y. Adv. Energy Mater., 2018, 8(17): 1703008.

doi: 10.1002/aenm.v8.17     URL    
[29]
Errougui A, Lahmidi A, Chtita S, El Kouali M, Talbi M. J. Solut. Chem., 2023, 52(2): 176.

doi: 10.1007/s10953-022-01222-7    
[30]
Nian Q S, Wang J Y, Liu S A, Sun T J, Zheng S B, Zhang Y, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2019, 131(47): 17150.

doi: 10.1002/ange.v131.47     URL    
[31]
Jiang P, Lei Z Y, Chen L A, Shao X C, Liang X M, Zhang J, Wang Y C, Zhang J J, Liu Z P, Feng J W. ACS Appl. Mater. Interfaces, 2019, 11(32): 28762.

doi: 10.1021/acsami.9b04849     URL    
[32]
Zhu K J, Sun Z Q, Li Z P, Liu P, Chen X C, Jiao L F. Energy Storage Mater., 2022, 53: 523.
[33]
Zhu K J, Li Z P, Sun Z Q, Liu P, Jin T, Chen X C, Li H X, Lu W B, Jiao L F. Small, 2022, 18(14): 2107662.

doi: 10.1002/smll.v18.14     URL    
[34]
Cheng Y B, Chi X W, Yang J H, Liu Y. J. Energy Storage, 2021, 40: 102701.

doi: 10.1016/j.est.2021.102701     URL    
[35]
Yao Y X, Chen X A, Yan C, Zhang X Q, Cai W L, Huang J Q, Zhang Q A. Angew. Chem. Int. Ed., 2021, 60(8): 4090.

doi: 10.1002/anie.v60.8     URL    
[36]
Ma T, Ni Y X, Wang Q R, Zhang W J, Jin S, Zheng S B, Yang X A, Hou Y P, Tao Z L, Chen J. Angew. Chem. Int. Ed., 2022, 61(39): e202207927.

doi: 10.1002/anie.v61.39     URL    
[37]
Cohn A P, Share K, Carter R, Oakes L, Pint C L. Nano Lett., 2016, 16(1): 543.

doi: 10.1021/acs.nanolett.5b04187     URL    
[38]
Kim H, Hong J, Park Y U, Kim J, Hwang I, Kang K. Adv. Funct. Mater., 2015, 25(4): 534.

doi: 10.1002/adfm.v25.4     URL    
[39]
Su D W, Kretschmer K, Wang G X. Adv. Energy Mater., 2016, 6(2): 1501785.

doi: 10.1002/aenm.v6.2     URL    
[40]
Lai P B, Huang B Y, Deng X D, Li J L, Hua H M, Zhang P, Zhao J B. Chem. Eng. J., 2023, 461: 141904.

doi: 10.1016/j.cej.2023.141904     URL    
[41]
Zhang J, Wang D W, Lv W, Qin L, Niu S Z, Zhang S W, Cao T F, Kang F Y, Yang Q H. Adv. Energy Mater., 2018, 8(26): 1801361.

doi: 10.1002/aenm.v8.26     URL    
[42]
Smart M C, Ratnakumar B V, Chin K B, Whitcanack L D. J. Electrochem. Soc., 2010, 157(12): A1361.

doi: 10.1149/1.3501236     URL    
[43]
Tang Z, Wang H, Wu P F, Zhou S Y, Huang Y C, Zhang R, Sun D, Tang Y G, Wang H Y. Angew. Chem. Int. Ed., 2022, 61(18): e202200475.
[44]
Wang Z Q, Zheng X Y, Liu X Y, Huang Y Y, Huang L Q, Chen Y W, Han M, Luo W. ACS Appl. Mater. Interfaces, 2022, 14(36): 40985.

doi: 10.1021/acsami.2c10915     URL    
[45]
Smart M C, Ratnakumar B V, Behar A, Whitcanack L D, Yu J S, Alamgir M. J. Power Sources, 2007, 165(2): 535.

doi: 10.1016/j.jpowsour.2006.10.038     URL    
[46]
Deng L, Goh K, Yu F D, Xia Y, Jiang Y S, Ke W, Han Y, Que L F, Zhou J, Wang Z B. Energy Storage Mater., 2022, 44: 82.
[47]
Zheng Y Q, Sun M Y, Yu F D, Deng L, Xia Y, Jiang Y S, Que L F, Zhao L, Wang Z B. Nano Energy, 2022, 102: 107693.

doi: 10.1016/j.nanoen.2022.107693     URL    
[48]
Liu Q, Xu R G, Mu D B, Tan G Q, Gao H C, Li N, Chen R J, Wu F. Carbon Energy, 2022, 4(3): 458.

doi: 10.1002/cey2.v4.3     URL    
[49]
Wang D N, Du X Q, Zhang B A. Small Struct., 2022, 3(10): 2200078.

doi: 10.1002/sstr.v3.10     URL    
[50]
Castillo-Martínez E, Carretero-González J, Armand M. Angew. Chem. Int. Ed., 2014, 53(21): 5341.

doi: 10.1002/anie.201402402     pmid: 24757125
[51]
Yin X P, Zhao Y F, Zhang J J. J. Electrochem., 2023, 1.
(殷秀平, 赵玉峰, 张久俊. 电化学, 2023, 1.).
[52]
Chen J W, Peng Y, Yin Y E, Fang Z, Cao Y J, Wang Y G, Dong X L, Xia Y Y. Angew. Chem. Int. Ed., 2021, 60(44): 23858.

doi: 10.1002/anie.v60.44     URL    
[53]
Subramanyan K, Akshay M, Lee Y S, Aravindan V. Adv. Mater. Technol., 2022, 7(12): 2200399.

doi: 10.1002/admt.v7.12     URL    
[54]
Jache B, Binder J O, Abe T, Adelhelm P. Phys. Chem. Chem. Phys., 2016, 18(21): 14299.

doi: 10.1039/C6CP00651E     URL    
[55]
Sun M Y, Yu F D, Xia Y, Deng L, Jiang Y S, Que L F, Zhao L, Wang Z B. Chem. Eng. J., 2022, 430: 132750.

doi: 10.1016/j.cej.2021.132750     URL    
[56]
Li Z, Zhang Y, Zhang J H, Cao Y J, Chen J W, Liu H M, Wang Y G. Angew. Chem. Int. Ed., 2022, 61(13): e202116930.
[57]
Zheng X Y, Cao Z, Luo W, Weng S T, Zhang X L, Wang D H, Zhu Z L, Du H R, Wang X F, Qie L, Zheng H H, Huang Y H. Adv. Mater., 2023, 35(10): 2210115.

doi: 10.1002/adma.v35.10     URL    
[58]
Hu A J, Chen W, Du X C, Hu Y, Lei T Y, Wang H B, Xue L X, Li Y Y, Sun H, Yan Y C, Long J P, Shu C Z, Zhu J, Li B H, Wang X F, Xiong J E. Energy Environ. Sci., 2021, 14(7): 4115.

doi: 10.1039/D1EE00508A     URL    
[59]
Song X N, Meng T, Deng Y M, Gao A M, Nan J M, Shu D, Yi F Y. Electrochim. Acta, 2018, 281: 370.

doi: 10.1016/j.electacta.2018.05.185     URL    
[60]
Xia X M, Xu S T, Tang F, Yao Y, Wang L F, Liu L, He S N, Yang Y X, Sun W P, Xu C, Feng Y Z, Pan H G, Rui X H, Yu Y. Adv. Mater., 2023, 35(11): 2209511.

doi: 10.1002/adma.v35.11     URL    
[61]
Jiang L W, Liu L L, Yue J M, Zhang Q Q, Zhou A X, Borodin O, Suo L M, Li H, Chen L Q, Xu K, Hu Y S. Adv. Mater., 2020, 32(2): e1904427.
[62]
Pahari D, Puravankara S. ACS Sustain. Chem. Eng., 2020, 8(29): 10613.
[63]
Reber D, Kühnel R S, Battaglia C. ACS Mater. Lett., 2019, 1(1): 44.
[64]
Reber D, Takenaka N, Kühnel R S, Yamada A, Battaglia C. J. Phys. Chem. Lett., 2020, 11(12): 4720.

doi: 10.1021/acs.jpclett.0c00806     URL    
[65]
Thenuwara A C, Shetty P P, Kondekar N, Wang C L, Li W Y, McDowell M T. J. Mater. Chem. A, 2021, 9(17): 10992.

doi: 10.1039/D1TA00842K     URL    
[66]
Yu Z X, Shang S L, Seo J H, Wang D W, Luo X Y, Huang Q Q, Chen S R, Lu J, Li X L, Liu Z K, Wang D H. Adv. Mater., 2017, 29(16): 1605561.

doi: 10.1002/adma.v29.16     URL    
[67]
Cai S, Meng W D, Tian H Q, Luo T T, Wang L, Li M, Luo J Y, Liu S. J. Colloid Interface Sci., 2023, 632: 179.

doi: 10.1016/j.jcis.2022.11.037     URL    
[68]
Pan J, Xu S M, Cai T X, Hu L L, Che X L, Dong W J, Shi Z Y, Rai A K, Wang N N, Huang F Q, Dou S X. Nano Lett., 2023, 23(8): 3630.

doi: 10.1021/acs.nanolett.2c04854     URL    
[69]
Lu Y, Alonso J A, Yi Q, Lu L, Wang Z L, Sun C W. Adv. Energy Mater., 2019, 9(28): 1901205.

doi: 10.1002/aenm.v9.28     URL    
[70]
Fertig M P, Skadell K, Schulz M, Dirksen C, Adelhelm P, Stelter M. Batter. Supercaps, 2022, 5(1): e202100131.
[71]
Li Z, Yu R, Weng S T, Zhang Q H, Wang X F, Guo X. Nat. Commun., 2023, 14: 482.

doi: 10.1038/s41467-023-35857-x    
[72]
Du G Y, Tao M L, Li J E, Yang T T, Gao W, Deng J H, Qi Y R, Bao S J, Xu M W. Adv. Energy Mater., 2020, 10(5): 1903351.

doi: 10.1002/aenm.v10.5     URL    
[73]
Yang J F, Zhang M, Chen Z, Du X F, Huang S Q, Tang B, Dong T T, Wu H, Yu Z, Zhang J J, Cui G L. Nano Res., 2019, 12(9): 2230.

doi: 10.1007/s12274-019-2369-9    
[1] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[2] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[3] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[4] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[5] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[6] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[11] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[12] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[13] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[14] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[15] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.