English
新闻公告
More
化学进展 2023, Vol. 35 Issue (11): 1613-1624 DOI: 10.7536/PC230304 前一篇   后一篇

• 综述 •

先进嵌段共聚物光刻胶设计

陈蕾蕾1, 陶永鑫1, 胡欣2,*(), 冯宏博3,*(), 朱宁1,*(), 郭凯1   

  1. 1 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2 南京工业大学材料科学与工程学院 南京 211800
    3 芝加哥大学普利茨克分子工程学院 芝加哥 60637 美国
  • 收稿日期:2023-03-09 修回日期:2023-05-16 出版日期:2023-11-24 发布日期:2023-06-12
  • 通讯作者: 胡欣, 冯宏博, 朱宁

Advanced Design of Block Copolymers for Nanolithography

Chen Leilei1, Tao Yongxin1, Hu Xin2(), Feng Hongbo3(), Zhu Ning1(), Guo Kai1   

  1. 1 College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University,Nanjing 211800, China
    2 College of Materials Science and Engineering, Nanjing Tech University,Nanjing 211800, China
    3 Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA
  • Received:2023-03-09 Revised:2023-05-16 Online:2023-11-24 Published:2023-06-12
  • Contact: Hu Xin, Feng Hongbo, Zhu Ning

嵌段共聚物光刻胶引导自组装是先进制程半导体制造的候选方案之一。第一代嵌段共聚物光刻胶的典型代表是聚苯乙烯-聚甲基丙烯酸甲酯二嵌段共聚物,受限于自身较低的相互作用参数(χ),最小半周期(0.5L0)为11 nm。第二代嵌段共聚物光刻胶的特征是具有高相互作用参数(实现10 nm以下图案化),但是由于两个嵌段的表面能(γ)差异较大,需要引入额外的溶剂退火或者涂层工艺。为了解决上述问题,国内外学者发展了第三代嵌段共聚物光刻胶,不仅具有较高的相互作用参数,还具有接近的表面能(高χγ),适用于工业友好的热退火工艺引导自组装。最近,基于材料基因组计划概念,将多种共变特性赋予单一材料的第四代嵌段共聚物光刻胶问世,可以实现高通量合成建立嵌段共聚物库,通过调控χχN满足不同的应用场景(0.5L0=4~10 nm),还可以免除热退火工艺中涂覆中性层步骤,简化了工艺流程。本文总结了第三代和第四代先进嵌段共聚物光刻胶的设计,并且对相关领域存在的挑战与机遇进行了探讨和展望。

Directed self-assembly (DSA) of block copolymer (BCP) has been identified as the potential strategy for the next-generation semiconductor manufacturing. The typical representative of the first generation (G1) of block copolymer for nanolithography is polystyrene-block-polymethylmethacrylate (PS-b-PMMA). DSA of PS-b-PMMA enables limited half pitch (0.5L0) of 11 nm due to the low Flory-Huggins interaction parameter (χ). The second generation (G2) of BCP is developed with the feature of high χ. Solvent anneal or top-coat is employed for the G2 BCP to form the perpendicular lamellae orientation. Towards industry friendly thermal anneal, high χ BCP with equal surface energy (γ) is reported as the third generation (G3) BCP. Recently, based on Materials Genome Initiative (MGI) concept, optimized design of block copolymers with covarying properties (G4) for nanolithography is presented to meet specific application criteria. G4 BCP achieves not only high χ and equal γ, but also high throughput synthesis, 4~10 nm half pitch patterns, and controlled segregation strength. This review focuses on the advanced design of G3 and G4 BCP for nanolithography. Moreover, the challenges and opportunities are discussed for the further development of DSA of BCP.

Contents

1 Introduction

2 High χ block copolymers with equal γ (G3)

2.1 A-b-B block copolymer

2.2 A-b-(B-r-C) block copolymer

2.3 (A-r-B)-b-C block copolymer

2.4 A-b-B-b-C block copolymer

3 Block copolymers with covarying properties (G4)

4 Conclusion and outlook

()
图1 (a) 热退火密度倍增引导自组装DSA流程图[60];(b) 随着B嵌段体积分数的增加A-b-B二嵌段共聚物体相自组装结构示意图[62];(c) 对称二嵌段共聚物熔体的平均场相图[47]
Fig.1 (a) Schematic of the fabrication process of the chemically patterned substrates and the directed assembly of PS-b-PMMA with density multiplication[60]. Copyright © 2013, American Chemical Society. (b) Schematic illustration of microstructures of diblock A-b-B on increasing the volume fraction of the B block[62]. Copyright © 2014, the Royal Society of Chemistry. (c) Mean-field phase diagram for conformational symmetric diblock melts[47]. Copyright © 1996, American Chemical Society
图2 (a) PS-b-PLGA和PS-b-PDLLA的χ分别与温度倒数的关系图;(b) PS-b-PLGA引导自组装扫描电镜(SEM)图;(c) PS-b-PLGA热退火条件下2倍密度倍增DSA流程示意图[93]
Fig.2 (a) Plots of χ against the inverse of temperature for PS-b-PLGA and PS-b-PDLLA; (b) top-down SEM images of DSA of PS-b-PLGA; (c) schematic illustration of the procedure used to create asymmetric chemical patterns and DSA of lamellae-forming PS-b-PLGA with 2×density multiplication under thermal annealing[93]. Copyright © 2018 American Chemical Society
图3 (a) PDMSB-b-PMMA的结构式;(b) 热退火10 min后PDMSB-b-PMMA薄膜的3D-AFM相位图[94]
Fig.3 (a) The structure of PDMSB-b-PMMA; (b) 3D-AFM phase views of thermally annealed (10 min) PDMSB-b-PMMA thin films[94]. Copyright © 2014, Wiley-VCH GmbH, Weinheim
图4 (a) PS-b-PMHxOHS和PS-b-PMHxS的合成路线;(b) BCP在190℃下热退火3 h后的SAXS谱图;(c) PS100-b-PMHxOHS25的扫描电镜图[95]
Fig.4 (a) Synthesis of PS-b-PMHxOHS和PS-b-PMHxS; (b) SAXS profiles of the BCPs collected after thermal annealing at 190℃ for 3 h; (c) SEM image of PS100-b-PMHxOHS25[95].Copyright © 2016, Springer Nature
图5 PS-b-PPC的合成路线、图案化模板的创建以及热退火条件下5倍密度倍增DSA流程图及其SEM图[97]
Fig.5 Synthesis of PS-b-PPC, schematic illustration of the procedure used to create prepatterned substrates and the DSA of lamellae forming PS-b-PPC system with 5 times density multiplication under thermal annealing, and the top-down SEM images showing DSA[97].Copyright © 2017 American Chemical Society
图6 (a) PS-b-PC的化学结构式;(b) 氢键形成机理示意图;(c) 无中性层PS-b-PC的SEM图[98]
Fig.6 (a) Chemical structure of PS-b-PC;.(b) a schematic diagram of the formation mechanism of hydrogen bonds; (c) top-down SEM images of PS-b-PC with no neutral layer[98]. Copyright © 2019, the Royal Society of Chemistry
图7 (a) PS-b-PMA、PMA-b-PS-b-PMA及其热退火引导自组装SEM图;(b) 动态储能模量(G')的温度依赖性;(c) χ值与温度倒数关系图[100]
Fig.7 (a) Structure of PS-b-PMA and PMA-b-PS-b-PMA, and SEM of DSA; (b) temperature dependence of the dynamic storage modulus; (c) linear dependence of χ as a function of inverse TODT.[100]. Copyright © 2019 American Chemical Society
图8 (a) 高χ近γ嵌段共聚物的结构设计;(b) χ值与温度倒数关系图;(c) PS-b-PGMA的TEM图[101]
Fig.8 (a) Concept for designing a chemically tailored high-χ BCP with balanced surface affinities and increased strengths of segregation; (b) temperature dependences of the effective Flory-Huggins interaction parameter; (c) TEM images of PS-b-PGMA[101]. Copyright © 2019, the Royal Society of Chemistry
图9 (a) PS-b-PI环氧化合成PS-b-(PI-r-PIxn);(b) 环氧化程度对嵌段共聚物相互作用参数(χ)的影响;(c) 环氧化程度对PI-r-PIxn表面能(γ)的影响[103]
Fig.9 (a) Epoxidation of PS-PI to PS-b-(PI-r-PIxn); (b) effective interaction parameter (χ) affected by the degree of epoxidation; (c) effect of degree of epoxidation on the surface energy of PI-r-PIxn[103]. Copyright © 2012 American Chemical Society
图10 (a) 利用烯-硫醇点击化学由PS-b-PB制备PS-b-P(B-r-Bthiol);(b) 巯基功能化反应程度(φ)对γ、L0和χ的影响;(c) LiNe flow DSA工艺流程图;(d) 未添加和添加0.1 wt% BHT的PS-b-P(B-r-BMEA)引导自组装SEM图[105]
Fig.10 (a) Synthetic scheme of thiol-ene click chemistry to prepare PS-b-P(B-r-Bthiol) from PS-b-PB; (b) effects of degree of thiol functionalization (φ) on γ, L0, and χ; (c) schematic of the LiNe DSA process flow; (d) SEM of DSA of PS-b-P(B-r-BMEA) with and without 0.1 wt% BHT[105]. Copyright © 2022, Wiley-VCH GmbH, Weinheim
图11 (a) 酯-酰胺交换反应修饰PS-b-PMMA;(b) 修饰前后对比(无序vs有序,低χ vs高χ);(c) 共聚物薄膜引导自组装SEM图[106]
Fig.11 (a) Ester-amide exchange reaction of PS-b-PMMA with various amines; (b) comparison before and after ester-amide exchange reaction (disorder vs ordered, low χ vs high χ); (c) SEM of DSA of modified PS-b-PMMA[106]. Copyright © 2018, American Chemical Society
图12 (a) (PS-r-PVN)-b-PMMA的结构式;(b) 不同聚合物的χ值比较;(c) 轻度蚀刻的SEM图[107]
Fig.12 (a) Structure of (PS-r-PVN)-b-PMMA block copolymer; (b) comparison of the χ parameter of two VN-containing polymers to PS-PMMA; (c) top-down SEM image of lightly etched[107]. Copyright © 2016 American Chemical Society
图13 (a) P(S-r-PFS)-b-PMMA的合成;(b) 无上涂层和中性层引导自组装;(c) 基于EUV光刻模板引导自组装SEM图[108]
Fig.13 (a) Synthesis steps of P(S-r-PFS)-b-PMMA; (b) DSA without top-coat and neutral brush layer; (c) SEM of DSA based on EUV lithography patterns[108]. Copyright © 2021, the Royal Society of Chemistry
图14 PS-b-PMAA-b-PMMA结构式及其形成10 nm以下垂直取向层状相[109]
Fig.14 Structure of PS-b-PMAA-b-PMMA toward perpendicularly oriented nanodomains with sub-10 nm features[109]. Copyright © 2017, American Chemical Society
图15 (a) 多功能嵌段共聚物A-b-(B-r-C)的设计思路:通过改变B和C获得高χ近γ 嵌段共聚物;(b) 从母体A-b-B’到系列A-b-(B-r-C)的合成示意图;(c) 基于巯基-环氧点击化学合成A-b-(B-r-C)[110]
Fig.15 (a) Design principle for creating a series of BCPs with tunable χN and Δγ = 0 using an A-b-(B-r-C) polymer architecture. By varying the B and C groups, the architecture can form a BCP that has Δγ = 0 at the desired χ value; (b) schematic of the generation of a series of A-b-(B-r-C) polymers from the parent A-b-B'; (c) synthesis of A-b-(B-r-C) via thiol-epoxy click reactions[110]. Copyright © 2022, Springer Nature
图16 (a) 多功能嵌段共聚物自组装薄膜具有增强的刻蚀对比度(使用SIS技术或引入含硅基团);(b) 多功能嵌段共聚物可以形成自身的中性层,免去传统DSA工艺中涂覆中性层的步骤[110]
Fig.16 (a) Schematic of two distinct strategies for enhancing etch contrast of the self-assembled BCP film, using either SIS or silicon-containing thiols; (b) self-brushing DSA process flow leading to DSA with density multiplication[110]. Copyright © 2022, Springer Nature
[1]
Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L, Wan Q. Nanoscale, 2019, 11(3): 1360.
[2]
Cong L Q, Srivastava Y K, Zhang H F, Zhang X Q, Han J G, Singh R. Light Sci. Appl., 2018, 7: 28.
[3]
Zhang S C, Kang L X, Wang X, Tong L M, Yang L W, Wang Z Q, Qi K, Deng S B, Li Q W, Bai X D, Ding F, Zhang J. Nature, 2017, 543(7644): 234.
[4]
van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Nature, 2020, 585(7824): 211.
[5]
Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Nat. Nanotechnol., 2021, 16(11): 1201.
[6]
Quhe R G, Liu J C, Wu J X, Yang J, Wang Y Y, Li Q H, Li T R, Guo Y, Yang J B, Peng H L, Lei M, Lu J. Nanoscale, 2019, 11(2): 532.
[7]
Fischer A C, Forsberg F, Lapisa M, Bleiker S J, Stemme G, Roxhed N, Niklaus F. Microsyst. Nanoeng., 2015, 1: 15005.
[8]
Wang Z R, Li C, Song W H, Rao M Y, Belkin D, Li Y N, Yan P, Jiang H, Lin P, Hu M, Strachan J P, Ge N, Barnell M, Wu Q, Barto A G, Qiu Q R, Stanley Williams R, Xia Q F, Yang J J. Nat. Electron., 2019, 2(3): 115.
[9]
Kang W, Huang Y Q, Zhang X C, Zhou Y, Zhao W S. Proc. IEEE, 2016, 104(10): 2040.
[10]
Myny K. Nat. Electron., 2018, 1(1): 30.
[11]
Theis T N, Wong H S P. Comput. Sci. Eng., 2017, 19(2): 41.
[12]
Kasani S, Curtin K, Wu N Q. Nanophotonics, 2019, 8(12): 2065.
[13]
Chen Y F. Microelectron. Eng., 2015, 135: 57.
[14]
Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E, Faupel F. Adv. Colloid Interface Sci., 2012, 170(1/2): 2.
[15]
Panzarasa G, Soliveri G. Appl. Sci., 2019, 9(7): 1266.
[16]
Fischer J, Wegener M, Laser Photon. Rev., 2013, 7: 22.
[17]
Jung Y S, Ross C A. Nano Lett., 2007, 7(7): 2046.
[18]
Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K, Zheng M J, Duan H G. Int. J. Extrem. Manuf., 2021, 3(3): 032002.
[19]
Hawker C J, Russell T P. MRS Bull., 2005, 30(12): 952.
[20]
Li X O, Gu X S, Liu Y D, Ji S X. Chin. J. Appl. Chem, 2021, 38(9): 1105.
( 李小欧, 顾雪松, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1105.)
[21]
Lu X Y, Ma B Z, Luo H, Qi H, Li Q, Wu G P. Chin. J. Appl. Chem., 2021, 38(9): 1189.
( 陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋. 应用化学, 2021, 38(9): 1189.)
[22]
Tian X, Lai H W, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1199.
( 田昕, 赖翰文, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1199.)
[23]
Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1027. (季生象. 应用化学, 2021, 38( 9): 1027.)
[24]
Gu X S, Li X O, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1091.
( 顾雪松, 李小欧, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1091.)
[25]
Hu X H, Xiong S S. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029.
( 胡晓华, 熊诗圣. 应用化学, 2021, 38(9): 1029.)
[26]
Wang Q Q, Wu L P, Wang J, Wang L Y. Progress in Chemistry, 2017, 29(4): 435.
( 王倩倩, 吴立萍, 王菁, 王力元, 化学进展, 2017, 29(4): 435. )
[27]
Stoykovich M P, Nealey P F. Mater. Today, 2006, 9(9): 20.
[28]
Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Nat. Commun., 2019, 10: 54.
[29]
Feng C, Huang X Y. Acc. Chem. Res., 2018, 51(9): 2314.
[30]
Shen P C, Su C, Lin Y X, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z Y, Mao N N, Wang J T, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J. Nature, 2021, 593(7858): 211.
[31]
Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S Y, Li R T, Chao T A, Chueh W C, Zhang Y F, Fu Q, Yakobson B I, Chang W H, Li L J. Nature, 2020, 579(7798): 219.
[32]
Hailes R L N, Oliver A M, Gwyther J, Whittell G R, Manners I. Chem. Soc. Rev., 2016, 45(19): 5358.
[33]
Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner U. Chem. Soc. Rev., 2015, 44(15): 5076.
[34]
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett., 2015, 4(9): 1044.
[35]
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Sci. Adv., 2016, 2(3): e1501571.
[36]
Jeong S J, Xia G D, Kim B H, Shin D O, Kwon S H, Kang S W, Kim S O. Adv. Mater., 2008, 20(10): 1898.
[37]
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434.
[38]
Ramanathan M, Shrestha L K, Mori T, Ji Q M, Hill J P, Ariga K. Phys. Chem. Chem. Phys., 2013, 15(26): 10580.
[39]
Zhang W A, Mueller A H E. Prog. Polym. Sci., 2013, 38: 1121.
[40]
He W N, Xu J T. Prog. Polym. Sci., 2012, 37: 1350.
[41]
Yi C L, Yang Y Q, Liu B, He J, Nie Z H. Chem. Soc. Rev., 2020, 49(2): 465.
[42]
Sun J T, Hong C Y, Pan C Y. Polym. Chem., 2013, 4(4): 873.
[43]
Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41(18): 5969.
[44]
Willis J D, Beardsley T M, Matsen M W. Macromolecules, 2020, 53(22): 9973.
[45]
Wong C K, Qiang X L, Mueller A H E, Groeschel A H. Prog. Polym. Sci., 2020, 102.
[46]
Verduzco R, Li X Y, Pesek S L, Stein G E. Chem. Soc. Rev., 2015, 44(21): 2405.
[47]
Matsen M W, Bates F S. Macromolecules, 1996, 29(4): 1091.
[48]
Matsen M W, Schick M. Phys. Rev. Lett., 1994, 72(16): 2660.
[49]
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2.
[50]
Jiang K, Wang C, Huang Y Q, Zhang P W. Commun. Comput. Phys., 2013, 14(2): 443.
[51]
Li J F, Zhang H D, Qiu F. Eur. Phys. J. E, 2014, 37(3): 18.
[52]
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Macromolecules, 2020, 53(20), 8757.
[53]
Gröschel A H, Müller A H E. Nanoscale, 2015, 7(28): 11841.
[54]
Bates C M, Bates F S. Macromolecules, 2017, 50(1): 3.
[55]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.
[56]
Matsen M W. Macromolecules, 2012, 45(4): 2161.
[57]
Steube M, Johann T, Barent R D, Müller A H E, Frey H. Prog. Polym. Sci., 2022, 124: 101488.
[58]
Matsen M W. J. Chem. Phys., 2020, 152(11): 110901.
[59]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.
[60]
Liu C C, Ramírez-Hernández A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J, Nealey P F. Macromolecules, 2013, 46(4): 1415.
[61]
Bang J, Kim S H, Drockenmuller E, Misner M J, Russell T P, Hawker C J. J. Am. Chem. Soc., 2006, 128(23): 7622.
[62]
Hu H Q, Gopinadhan M, Osuji C O. Soft Matter, 2014, 10(22): 3867.
[63]
Albert J N L, Epps T H III. Mater. Today, 2010, 13(6): 24.
[64]
Manai G, Houimel H, Rigoulet M, Gillet A, Fazzini P F, Ibarra A, Balor S, Roblin P, Esvan J, Coppel Y, Chaudret B, Bonduelle C, Tricard S. Nat. Commun., 2020, 11: 2051.
[65]
Lai H W, Zhang X H, Huang G C, Liu Y D, Li W H, Ji S X. Polymer, 2022, 257: 125277.
[66]
Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Ellison C J. ACS Nano, 2012, 6(4): 3424.
[67]
Yu B H, Danielsen S P O, Patterson A L, Davidson E C, Segalman R A. Macromolecules, 2019, 52(6): 2560.
[68]
Cummins C, Pino G, Mantione D, Fleury G. Mol. Syst. Des. Eng., 2020, 5(10): 1642.
[69]
Hao H B, Chen S J, Ren J X, Chen X X, Nealey P. Nanotechnology, 2023, 34(20): 205303.
[70]
Li D X, Zhou C, Xiong S S, Qu X P, Craig G S W, Nealey P F. Soft Matter, 2019, 15(48): 9991.
[71]
Li X M, Li J, Wang C X, Liu Y Y, Deng H. J. Mater. Chem. C, 2019, 7(9): 2535.
[72]
Jung H, Shin W H, Park T W, Choi Y J, Yoon Y J, Park S H, Lim J H, Kwon J D, Lee J W, Kwon S H, Seong G H, Kim K H, Park W I. Nanoscale, 2019, 11(17): 8433.
[73]
Tran H, Bergman H M, de la Rosa V R, Maji S, Parenti K R, Hoogenboom R, Campos L M. J. Polym. Sci. A Polym. Chem., 2019, 57(12): 1349.
[74]
Wylie K, Dong L, Chandra A, Nabae Y, Hayakawa T. Macromolecules, 2020, 53(4): 1293.
[75]
Ketkar P M, Epps T H III. Acc. Chem. Res., 2021, 54(23): 4342.
[76]
Ahmed E, Womble C T, Cho J, Dancel-Manning K, Rice W J, Jang S S, Weck M. Polym. Chem., 2021, 12(13): 1967.
[77]
Li J J, Zhou C, Chen X X, Rincon Delgadillo P A, Nealey P F. J. Micro/Nanolith. MEMS MOEMS, 2019, 18(3): 035501.
[78]
Jung D S, Bang J, Park T W, Lee S H, Jung Y K, Byun M, Cho Y R, Kim K H, Seong G H, Park W I. Nanoscale, 2019, 11(40): 18559.
[79]
Li X M, Deng H. ACS Appl. Polym. Mater., 2020, 2(8): 3601.
[80]
Zhu G D, Yang C Y, Yin Y R, Yi Z, Chen X H, Liu L F, Gao C J. J. Membr. Sci., 2019, 589: 117255.
[81]
Arora A, Lin T S, Rebello N J, Av-Ron S H M, Mochigase H, Olsen B D. ACS Macro Lett., 2021, 10(11): 1339.
[82]
Choi Y J, Byun M H, Park T W, Choi S, Bang J, Jung H, Cho J H, Kwon S H, Kim K H, Park W I. ACS Appl. Nano Mater., 2019, 2(3): 1294.
[83]
Ginige G, Song Y, Olsen B C, Luber E J, Yavuz C T, Buriak J M. ACS Appl. Mater. Interfaces, 2021, 13(24): 28639.
[84]
Park J, Staiger A, Mecking S, Winey K I. ACS Nano, 2021, 15(10): 16738.
[85]
Mumtaz M, Takagi Y, Mamiya H, Tajima K, Bouilhac C, Isono T, Satoh T, Borsali R. Eur. Polym. J., 2020, 134: 109831.
[86]
Tao Y X, Chen L L, Liu Y H, Hu X, Zhu N, Guo K. Acta Polym. Sin., 2022, 53: 1445.
( 陶永鑫, 陈蕾蕾, 刘一寰, 胡欣, 朱宁, 郭凯. 高分子学报, 2022, 53: 1445 )
[87]
Yang Z Y, Deng H. J. Photopol. Sci. Technol., 2021, 34(4): 339.
[88]
Li B Y, Li Y C, Lu Z Y. Polymer, 2019, 171: 1.
[89]
Zalusky A S, Olayo-Valles R, Wolf J H, Hillmyer M A. J. Am. Chem. Soc., 2002, 124(43): 12761.
[90]
Olayo-Valles R, Guo S W, Lund M S, Leighton C, Hillmyer M A. Macromolecules, 2005, 38(24): 10101.
[91]
Keen I, Yu A G, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir, 2012, 28(45): 15876.
[92]
Li X, Liu Y D, Wan L, Li Z L, Suh H, Ren J X, Ocola L E, Hu W B, Ji S X, Nealey P F. ACS Macro Lett., 2016, 5(3): 396.
[93]
Zhang X S, He Q B, Chen Q, Nealey P F, Ji S X. ACS Macro Lett., 2018, 7(6): 751.
[94]
Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv. Mater., 2015, 27(2): 261.
[95]
Seshimo T, Maeda R, Odashima R, Takenaka Y, Kawana D, Ohmori K, Hayakawa T. Sci. Rep., 2016, 6: 19481.
[96]
Nakatani R, Takano H, Chandra A, Yoshimura Y, Wang L, Suzuki Y, Tanaka Y, Maeda R, Kihara N, Minegishi S, Miyagi K, Kasahara Y, Sato H, Seino Y, Azuma T, Yokoyama H, Ober C K, Hayakawa T. ACS Appl. Mater. Interfaces, 2017, 9(37): 31266.
[97]
Yang G W, Wu G P, Chen X X, Xiong S S, Arges C G, Ji S X, Nealey P F, Lu X B, Darensbourg D J, Xu Z K. Nano Lett., 2017, 17(2): 1233.
[98]
Zhang B L, Liu W C, Meng L K, Zhang Z P, Zhang L B, Wu X, Dai J Y, Mao G P, Wei Y Y. RSC Adv., 2019, 9(7): 3828.
[99]
Jacobberger R M, Thapar V, Wu G P, Chang T H, Saraswat V, Way A J, Jinkins K R, Ma Z Q, Nealey P F, Hur S M, Xiong S S, Arnold M S. Nat. Commun., 2020, 11: 4151.
[100]
Pang Y Y, Jin X S, Huang G C, Wan L, Ji S X. Macromolecules, 2019, 52(8): 2987.
[101]
Yoshimura Y, Chandra A, Nabae Y, Hayakawa T. Soft Matter, 2019, 15(17): 3497.
[102]
Dong L, Chandra A, Wylie K, Nakatani R, Nabae Y, Hayakawa T. J. Photopol. Sci. Technol., 2020, 33(5): 529.
[103]
Kim S, Nealey P F, Bates F S. ACS Macro Lett., 2012, 1(1): 11.
[104]
Kim S, Nealey P F, Bates F S. Nano Lett., 2014, 14(1): 148.
[105]
Feng H B, Dolejsi M, Zhu N, Griffin P J, Craig G S W, Chen W, Rowan S J, Nealey P F. Adv. Funct. Mater., 2022, 32(46): 2206836.
[106]
Yoshida K, Tian L, Miyagi K, Yamazaki A, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Macromolecules, 2018, 51(20): 8064.
[107]
Zhou S X, Janes D W, Bin Kim C, Willson C G, Ellison C J. Macromolecules, 2016, 49(21): 8332.
[108]
Song S W, Hur Y H, Park Y, Cho E N, Han H J, Jang H, Oh J, Yeom G, Lee J S, Yoon K S, Park C M, Kim I, Kim Y, Jung Y S. J. Mater. Chem. C, 2021, 9(39): 14021.
[109]
Woo S, Jo S, Ryu D Y, Choi S H, Choe Y, Khan A, Huh J, Bang J. ACS Macro Lett., 2017, 6(12): 1386.
[110]
Feng H B, Dolejsi M, Zhu N, Yim S, Loo W, Ma P Y, Zhou C, Craig G S W, Chen W, Wan L, Ruiz R, de Pablo J J, Rowan S J, Nealey P F. Nat. Mater., 2022, 21(12): 1426.
[1] 刘韬, 苗君萍, 王珑珑, 胡云霞. 相转化纳滤膜的膜材料结构设计及调控策略[J]. 化学进展, 2023, 35(8): 1199-1213.
[2] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[3] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[4] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[5] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[6] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[7] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[8] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[9] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[10] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[11] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[12] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
[13] 王璐璐, 黄海瑛, 何天白. 嵌段共聚物溶液自组装制备纳米管状聚集体[J]. 化学进展, 2014, 26(05): 810-819.
[14] 盛玉萍, 闫南, 朱雨田, 安健. 嵌段共聚物在选择性溶剂中自组装过程的计算机模拟[J]. 化学进展, 2014, 26(0203): 358-365.
[15] 付超, 朱雨田, 施德安. 嵌段共聚物的临界条件液相色谱分离与表征[J]. 化学进展, 2014, 26(01): 140-151.
阅读次数
全文


摘要

先进嵌段共聚物光刻胶设计