English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1450-1460 DOI: 10.7536/PC230303 前一篇   后一篇

• 综述 •

基于壳聚糖的新型敷料及其应用

张荃, 段思雨, 霍中元, 孟新旺, 王骏, 许国贺*()   

  1. 河北农业大学 理工系 沧州 061100
  • 收稿日期:2023-03-09 修回日期:2023-05-20 出版日期:2023-10-24 发布日期:2023-07-18
  • 作者简介:

    许国贺 河北农业大学理工学院化工与制药系主任,副教授,硕士生导师。主要从事智能及功能高分子材料的研究。

  • 基金资助:
    河北省省属高校基本科研业务费研究项目(KY2022056); 河北农业大学大学生创新创业训练计划项目(2023114)

New Dressings Based on Chitosan and Its Application

Quan Zhang, Siyu Duan, Zhongyuan Huo, Xinwang Meng, Jun Wang, Guohe Xu*()   

  1. College of Science and Engineering, Hebei Agricultural University, Cangzhou 061100, China
  • Received:2023-03-09 Revised:2023-05-20 Online:2023-10-24 Published:2023-07-18
  • Contact: *e-mail: naokijaffery@aliyun.com
  • Supported by:
    Basic Scientific Research Funds for Universities Affiliated to Hebei Province(KY2022056); Innovation and Entrepreneurship Training Program for Undergraduate Students of Hebei Agricultural University(2023114)

壳聚糖由于具有凝血、抗菌、生物相容性好、可生物降解等优点,在材料学和生物医药等领域表现出巨大的应用潜力。本文介绍了壳聚糖的凝血、抑菌机理,列举了基于壳聚糖的新型敷料的研究进展。按照形态的不同将其分为基于壳聚糖的织物类敷料、基于壳聚糖的水凝胶敷料、基于壳聚糖的海绵状敷料、基于壳聚糖的水胶体敷料、基于壳聚糖的不对称湿润性敷料和基于壳聚糖的冷冻凝胶敷料;总结了基于壳聚糖的新型敷料在抑菌性质、体外凝血性质、防水性质、透气性质和力学性质等方面的实验结果;详细归纳了基于壳聚糖的新型敷料在治疗糖尿病足溃疡、烧伤创面、下腔静脉损伤和内窥镜鼻窦手术等疾病方面的应用。最后,对基于壳聚糖的新型敷料存在的一些问题(如制备过程受外界环境的条件的影响较大、对壳聚糖的部分工作机理还处于初步阶段)和发展做出了展望。

Chitosan has great potential in the fields of materials science and biomedicine because of its advantages such as coagulation, antibacterial, biocompatibility and biodegradation. This paper introduces the coagulation and bacteriostatic mechanism of chitosan, and lists the research progress of new dressings based on chitosan. According to the different morphology, the new dressings can be divided into the following types: fabric dressings based on chitosan, hydrogel dressings based on chitosan, spongy dressings based on chitosan, hydrocolloid dressings based on chitosan, asymmetric wettable dressings based on chitosan and frozen gel dressings based on chitosan. The experimental results of the new dressings based on chitosan in terms of antibacterial properties, in vitro coagulation properties, waterproof properties, breathable properties and mechanical properties were summarized. The application of new dressings based on chitosan in the treatment of diabetic foot ulcer, burn wound, inferior vena cava injury and endoscopic sinus surgery was summarized in detail. Finally, based on some problems existing in the new dressings based on chitosan (for example, the preparation process is greatly affected by the external environment conditions, some working mechanism of chitosan is still in the preliminary stage), the future development of the new dressings and their application are prospected.

Contents

1 Introduction

2 Working mechanism of new dressings based on chitosan

2.1 Hemostasis effect of chitosan

2.2 Bacteriostatic effect of chitosan

3 Research progress of new dressings based on chitosan

3.1 Fabric dressing based on chitosan

3.2 Hydrogel dressing based on chitosan

3.3 Spongy dressing based on chitosan

3.4 Hydrocolloidal dressing based on chitosan

3.5 Asymmetric wettability dressing based on chitosan

3.6 Frozen gel dressing based on chitosan

4 Application of new dressing based on chitosan

4.1 Diabetic foot ulcer

4.2 Burn wound

4.3 Inferior vena cava injury

4.4 Endoscopic sinus surgery

5 Conclusion and outlook

()
图1 壳聚糖结构式
Fig.1 Structural formula for chitosan
图2 壳聚糖促进血小板聚合示意图
Fig.2 Schematic diagram of chitosan’s promotion of platelet polymerization
图3 壳聚糖的抑菌机制
Fig.3 Antibacterial mechanism of chitosan
图4 基于壳聚糖的海绵状敷料的制备示意图
Fig.4 Schematic diagram of the preparation of spongy dressing based on chitosan
表1 基于壳聚糖的不对称膜的制备和优缺点
Table 1 Preparation, advantages and disadvantages of asymmetric membranes based on chitosan
Preparation method Preparation Advantages Disadvantages
Wet-phase inversion method The casting polymer is soaked in a non-solvent coagulant bath to promote the polymer to precipitate, thus forming a film. Easy to operate The top layer of the asymmetric membrane thickness reduction(<1 μm)
Dry/wet-phase
inversion method
Membrane production is initiated by a pre-evaporation process before the cast polymer is immersed in the coagulation bath. Producing a denser top layer The evaporation process uses a volatile solvent; Time-consuming
scCO2-phase inversion method Under the supercritical condition of CO2, the precipitation of polymer solution is promoted to produce an asymmetric membrane. Simple; fast; eco-friendly Professional high-pressure equipment is required.
Electrospinning method A polymer solution is loaded into a syringe and subjected to a high-voltage electric field, which promotes the polymer to be sprayed toward the collector, resulting in nanofibers. The operation is simple; the asymmetric membrane based on chitosan can be optimized by adjusting the parameters; a variety of polymers can be used. A professional DC power supply and injection pump are required, and the control requirements for processing variables and environmental conditions are demanding.
Bioprinting method Asymmetric membranes can be produced by printing different layers containing the respective skin cells (keratinocytes om top, fibroblasts on bottom). Asymmetric membranes based on chitosan can be customized to the specific needs of the patient. A professional 3D printer is required; a sterile environment is required; The number of polymers and solvents available is limited.
图5 基于壳聚糖的冷冻凝胶的制备示意图
Fig.5 Schematic of the preparation of frozen gel dressing based on chitosan
表2 基于壳聚糖的新型敷料的对比
Table 2 Comparison of novel dressing based on chitosan
Type of dressing Preparation technology Advantages ref
Fabric dressing The fabric is thoroughly soaked in a chitosan solution. It is easy to prepare, soft, tailoring and biocompatibility. 39~42
Hydrogel dressing Cross-linking of positively charged chitosan with negatively charged ions, and polymers can be used to synthesize chitosan-based hydrogel dressings. The treatment effect is good, with super stretching, fast self-healing and good antibacterial activity. 45~47
Spongy dressing The chitosan solution is stirred in an acidic environment to foam, then cross-linked and transformed into a chitosan-based spongy dressing by freeze-drying technology. With excellent permeability and fluid absorption capacity, the material is soft and can be stored for a longer time, and is easier to carry. 53,54
Hydrocolloidal dressing The polymer elastomer and chitosan are heated together. Plasticizer, viscosifying resin, antioxidant and crosslinking agent are added to make it fully crosslinked. It has good water vapor permeability, effective antibacterial activity and a good enzymatic degradation effect. 57,58
Asymmetric wettability dressing Wet-phase inversion method; dry/wet-phase inversion method; scCO2-phrase inversion method; Electrospinning method; Bioprinting method It has lower clotting index, high hydrophobic and hydrophilic activity and antibacterial activity, and can effectively protect against water, blood and bacterial contamination. 63
Frozen gel dressing Using water as the solvent, in a sub-zero environment, most of the water turns into ice crystals and a small part remains in the liquid phase. Chitosan and other polymers in the liquid phase are concentrated and cross-linked to form polymer networks. When the ice crystals melt, frozen gels with highly intercommunicating microporous structures can be obtained. It has high porosity, rapid water absorption, high blood-sucking ability, excellent mechanical strength and fatigue resistance, whole blood coagulation ability and red blood cell and platelet adhesion ability 69,72,73
[1]
He Y, Zhao W W, Dong Z X, Ji Y J, Li M, Hao Y P, Zhang D M, Yuan C Q, Deng J, Zhao P, Zhou Q H. Int. J. Biol. Macromol., 2021, 167: 182.

doi: 10.1016/j.ijbiomac.2020.11.168     URL    
[2]
Winter G D. J. Wound Care, 1995, 4(8): 366.

pmid: 7553187
[3]
Nuutila K, Eriksson E. Adv. Wound Care, 2021, 10(12): 685.

doi: 10.1089/wound.2020.1232     URL    
[4]
Li H J, Tan C, Li L. Mater. Des., 2018, 159: 20.

doi: 10.1016/j.matdes.2018.08.023     URL    
[5]
No H K, Meyers S P. J. Food Sci., 1995, 4(2): 27.
[6]
Sharma S, Kumar A, Deepak, Kumar R, Rana N K, Koch B. Int. J. Biol. Macromol., 2018, 116: 37.

doi: S0141-8130(18)31527-7     pmid: 29733929
[7]
Veronica Z, Salaberria A M, Teodoro P, Ana A V, Syjit K, Jalel L, CM F S. Biomacromolecules, 2018, 7: 3000.
[8]
Sanandiya N D, Lee S, Rho S, Lee H, Kim I S, Hwang D S. Carbohydr. Polym., 2019, 208: 77.

doi: 10.1016/j.carbpol.2018.12.017     URL    
[9]
Wei X H, Ding S, Liu S S, Yang K, Cai J J, Li F, Wang C L, Lin S, Tian F. Carbohydr. Polym., 2021, 264: 118028.

doi: 10.1016/j.carbpol.2021.118028     URL    
[10]
Acevedo C A, Olguín Y, Briceño M, Forero J C, Osses N, Díaz-CalderÓn P, Jaques A, Ortiz R. Mater. Sci. Eng. C, 2019, 99: 875.

doi: 10.1016/j.msec.2019.01.135     URL    
[11]
Zarei F, Marjani A, Soltani R. Eur. Polym. J., 2019, 119: 400.

doi: 10.1016/j.eurpolymj.2019.07.043     URL    
[12]
Kumar S, Mukherjee A, Dutta J. Trends Food Sci. Technol., 2020, 97: 196.

doi: 10.1016/j.tifs.2020.01.002     URL    
[13]
Bano I, Arshad M, Yasin T, Ghauri M A. Int. J. Biol. Macromol., 2019, 124: 155.

doi: 10.1016/j.ijbiomac.2018.11.073     URL    
[14]
Tabriz A, Ur Rehman Alvi M A, Khan Niazi M B, Batool M, Bhatti M F, Laeeq Khan A, Khan A U, Jamil T, Ahmad N M. Carbohydr. Polym., 2019, 207: 17.

doi: 10.1016/j.carbpol.2018.11.066     URL    
[15]
Zhang W J, Li Q, Mao Q, He G H. Carbohydr. Polym., 2019, 209: 215.

doi: 10.1016/j.carbpol.2019.01.032     URL    
[16]
Huang H, Li Y, Zhao L, Yu Y, Xu J, Yin X Z, Chen S H, Wu J, Yue H S, Wang H, Wang L X. Cellulose, 2019, 26(4): 2599.

doi: 10.1007/s10570-019-02274-7    
[17]
Chen Y. Curr. Org. Chem., 2018, 22(7): 619.

doi: 10.2174/138527282207180521093837    
[18]
Tamer T, Maurice C, Katarina V, Mohamed A H, M O A, Mohamed S M, Švík Š, Rastislav J, L'ubomír O, Csaba B, Ahmad B A, Ladislav Š. Materials, 2018, 11(4): 1.

doi: 10.3390/ma11010001     URL    
[19]
Pan H T, Fu C H, Huang L L, Jiang Y, Deng X Y, Guo J, Su Z Q. Mar. Drugs, 2018, 16(6): 198.

doi: 10.3390/md16060198     URL    
[20]
Silva L V, Batista G A T, Pereira D C A A, Neves E F, Charlie D S L, Silva D M N F, Fernandes F L, Guilherme M. Environ. Sci. Pollut. Res., 2019, 26(11): 10641.

doi: 10.1007/s11356-019-04536-0    
[21]
Bahramzadeh E, Yilmaz E, Adali T. Int. J. Biol. Macromol., 2019, 123: 1257.

doi: S0141-8130(18)34808-6     pmid: 30521908
[22]
Hassan M M. Int. J. Biol. Macromol., 2018, 118: 1685.

doi: 10.1016/j.ijbiomac.2018.07.013     URL    
[23]
Kumar D, Kumar P, Pandey J. Int. J. Biol. Macromol., 2018, 115: 341.

doi: 10.1016/j.ijbiomac.2018.04.084     URL    
[24]
Zhang X H, Liu D H, Jin T Z, Chen W J, He Q, Zou Z P, Zhao H H, Ye X Q, Guo M M. Food Hydrocoll., 2021, 114: 106570.

doi: 10.1016/j.foodhyd.2020.106570     URL    
[25]
Xue H, Hu L C, Xiong Y, Zhu X W, Wei C Y, Cao F Q, Zhou W, Sun Y, Endo Y, Liu M F, Liu Y, Liu J, Abududilibaier A, Chen L, Yan C C, Mi B B, Liu G H. Carbohydr. Polym., 2019, 226: 115302.

doi: 10.1016/j.carbpol.2019.115302     URL    
[26]
Biranje S S, Madiwale P V, Patankar K C, Chhabra R, Bangde P, Dandekar P, Adivarekar R V. Carbohydr. Polym., 2020, 239: 116106.

doi: 10.1016/j.carbpol.2020.116106     URL    
[27]
Lan G Q, Li Q, Lu F, Yu K, Lu B T, Bao R, Dai F Y. Cellulose, 2020, 27(1): 385.

doi: 10.1007/s10570-019-02795-1    
[28]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.

doi: 10.1038/s41467-018-04998-9     pmid: 30018305
[29]
Liu C Y, Yao W H, Tian M, Wei J N, Song Q L, Qiao W H. Biomaterials, 2018, 179: 83.

doi: 10.1016/j.biomaterials.2018.06.037     URL    
[30]
Zhong Y J, Seidi F, Li C C, Wan Z M, Jin Y C, Song J L, Xiao H N. Biomacromolecules, 2021, 22(4): 1654.

doi: 10.1021/acs.biomac.1c00086     URL    
[31]
Arun K S K. M, Gundhavi D M. Appl. Surf. Sci. Adv., 2023, 13: 100362, DOI: 10.1016/J.APSADV.2022.100362.
[32]
Rostamitabar M, Ghahramani A, Seide G, Jockenhoevel S, Ghazanfari S. Cellulose, 2022, 29(11): 6261.

doi: 10.1007/s10570-022-04630-6    
[33]
Huang H, Sun X W, Zhao Y. Transfus. Apher. Sci., 2021, 60(1): 102964.

doi: 10.1016/j.transci.2020.102964     URL    
[34]
Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S. Carbohydr. Polym., 2003, 53(3): 337.

doi: 10.1016/S0144-8617(03)00076-6     URL    
[35]
Naderi Z, Azizian J. J. Photochem. Photobiol. B Biol., 2018, 185: 206.

doi: 10.1016/j.jphotobiol.2018.06.014     URL    
[36]
Xu Q, Hu E L, Qiu H Y, Liu L, Li Q, Lu B T, Yu K, Lu F, Xie R Q, Lan G Q, Zhang Y S. Carbohydr. Polym., 2023, 315: 120967.

doi: 10.1016/j.carbpol.2023.120967     URL    
[37]
Wang W J, Xue C H, Mao X Z. Int. J. Biol. Macromol., 2020, 164: 4532.

doi: 10.1016/j.ijbiomac.2020.09.042     URL    
[38]
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi M S, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Carbohydr. Polym., 2020, 164: 4532.
[39]
Akram A M, Omar R A, Ashfaq M. Polym. Bull., 2023, 80(5): 5071.

doi: 10.1007/s00289-022-04300-4    
[40]
Zhu T, Wu J R, Zhao N, Cai C, Qian Z C, Si F F, Luo H, Guo J, Lai X, Shao L Q, Xu J. Adv. Healthcare Mater., 2018, 7(7): 1701086.

doi: 10.1002/adhm.v7.7     URL    
[41]
Wang Y M, Zhou P W, Xiao D D, Zhu Y Z, Zhong Y, Zhang J X, Sui X F, Feng X L, Xu H, Mao Z P. Carbohydr. Polym., 2019, 221: 202.

doi: 10.1016/j.carbpol.2019.05.082     URL    
[42]
Yu L S, Shang X Q, Chen H, Xiao L P, Zhu Y H, Fan J. Nat. Commun., 2019, 10: 1932.

doi: 10.1038/s41467-019-09849-9    
[43]
Sivakumar P, Prakash C, Ramesh Babu V, Saravanan D. J. Nat. Fibers, 2022, 19(14): 8044.

doi: 10.1080/15440478.2021.1958434     URL    
[44]
Anbazhagan S, Kandasamy S, MyeongHyeon W. Int. J. Biol. Macromol., 2022, 220: 1556.

doi: 10.1016/j.ijbiomac.2022.09.045     URL    
[45]
Fang Q Q, Wang X F, Zhao W Y, Tan W Q. Syn. Syst. Biotechno., 2020, 8(3): 1.
[46]
Zhao C, Chen R M, Chen Z P, Lu Q, Zhu H X, Bu Q, Yin J L, He H. ACS Appl. Mater. Interfaces, 2021, 13(43): 51578.

doi: 10.1021/acsami.1c18221     URL    
[47]
Mirhaji S S, Soleimanpour M, Derakhshankhah H, Jafari S, Mamashli F, Rooki M, Karimi M R, Nedaei H, Pirhaghi M, Motasadizadeh H, Ghasemi A, Nezamtaheri M S, Saadatpour F, Goliaei B, Delattre C, Saboury A A. Int. J. Biol. Macromol., 2023, 241: 124529.

doi: 10.1016/j.ijbiomac.2023.124529     URL    
[48]
Neufeld L, Bianco-Peled H. Int. J. Biol. Macromol., 2017, 101: 852.

doi: S0141-8130(16)30783-8     pmid: 28366853
[49]
Yang E K, Hou W, Liu K, Yang H, Wei W Y, Kang H F, Dai H L. Carbohydr. Polym., 2022, 291: 119631.

doi: 10.1016/j.carbpol.2022.119631     URL    
[50]
Tannaz K, Fatemeh M, Hamid K, Mehdi F. J. Drug. Deliv. Sci. Tec., 2023, 80: 104134, DOI: 10.1016/J.JDDST.2022.104134.
[51]
Lu J W, Fan X K, Hu J W, Li J, Rong J J, Wang W J, Chen Y, Liu W Y, Chen J, Chen Y,. Mater. Des., 2023, 226: 111604, DOI: 10.1016/J.MATDES.2023.111604.
[52]
Suneetha M, Won S, Zo S M, Han S S. Gels, 2023, 9(3): 184. DOI: 10.3390/gels9030184.
[53]
Feng C, Chen Z Y, Jing J P, Sun M M, Tian J, Han J, Li W B, Ma L. J. Electroanal. Chem., 2020, 874: 114524.

doi: 10.1016/j.jelechem.2020.114524     URL    
[54]
Chen Y Y, Wu L, Li P P, Hao X, Yang X, Xi G H, Liu W, Feng Y K, He H C, Shi C C. Macromol. Biosci., 2020, 20(4): 1900370.

doi: 10.1002/mabi.v20.4     URL    
[55]
Fernando D A B M C, Diuana C M M, Coutinho D M M R, Figueiredo D B R R, Gomes A G. J. Oral Maxillofac. Surg., 2018, 22(3): 329.

doi: 10.1007/s12663-023-01866-y    
[56]
Zheng C Y, Zeng Q Y, Pimpi S, Wu W D, Han K, Dong K, Lu T L. J. Mater. Chem. B, 2020, 8(25): 5395.

doi: 10.1039/D0TB00906G     URL    
[57]
Shi Y T, Yu W W, Liang X Q, Cheng J, Cao Y F, Liu M S, Fang Y, Yang Z, Liu H B, Wei H, Zhao G H. Carbohydr. Polym., 2023, 307: 120590.

doi: 10.1016/j.carbpol.2023.120590     URL    
[58]
Le L T T, Giang N N, Chien P N, Trinh X T, Long N V, Van Anh L T, Nga P T, Zhang X R, Nam S Y, Heo C Y. Vivo, 2023, 37(3): 1052.

doi: 10.21873/invivo.13180     URL    
[59]
Le V A T, Trinh T X, Chien P N, Giang N N, Zhang X R, Nam S Y, Heo C Y. Polymers, 2022, 14(5): 919.

doi: 10.3390/polym14050919     URL    
[60]
Hiranpattanakul P, Jongjitpissamai T, Aungwerojanawit S, Tachaboonyakiat W. Res. Chem. Intermed., 2018, 44(8): 4913.

doi: 10.1007/s11164-018-3344-x    
[61]
Liu J, Shen H. Int. Wound J., 2022, 19(8): 2012.

doi: 10.1111/iwj.v19.8     URL    
[62]
Lu Z, Gao J T, He Q F, Wu J, Liang D H, Yang H, Chen R. Carbohydr. Polym., 2017, 156: 460.

doi: 10.1016/j.carbpol.2016.09.051     URL    
[63]
Li Q, Lu F, Zhou G F, Yu K, Lu B T, Xiao Y, Dai F Y, Wu D Y, Lan G Q. Biomacromolecules, 2017, 18(11): 3766.

doi: 10.1021/acs.biomac.7b01180     URL    
[64]
Miguel S P, Moreira A F, Correia I J. Int. J. Biol. Macromol., 2019, 127: 460.

doi: S0141-8130(18)36649-2     pmid: 30660567
[65]
Wang Y M, Xiao D D, Zhong Y, Zhang L P, Chen Z Z, Sui X F, Wang B J, Feng X L, Xu H, Mao Z P. Cellulose, 2020, 27(6): 3443.

doi: 10.1007/s10570-020-02969-2    
[66]
Liang D H, Lu Z, Yang H, Gao J T, Chen R. ACS Appl. Mater. Interfaces, 2016, 8(6): 3958.

doi: 10.1021/acsami.5b11160     URL    
[67]
Liu Z N, Chen X Q, Li C. J. Biomed. Mater. Res., 2022, 17: 5.
[68]
Kumar A, Mishra R, Reinwald Y, Bhat S. Mater. Today, 2010, 13(11): 42.
[69]
Kirsebom H, Mattiasson B. Polym. Chem., 2011, 2(5): 1059.

doi: 10.1039/C1PY00014D     URL    
[70]
Tripathi A, Melo J S. J. Chem. Sci., 2019, 131(9): 92.

doi: 10.1007/s12039-019-1670-1    
[71]
Kao H H, Kuo C Y, Chen K S, Chen J P. Int. J. Mol. Sci., 2019, 20(18): 4527.

doi: 10.3390/ijms20184527     URL    
[72]
Le W T, Kankkunen A, Rojas O J, Yazdani M R. Sol. Energy Mater. Sol. Cells, 2023, 256: 112337.

doi: 10.1016/j.solmat.2023.112337     URL    
[73]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.

doi: 10.1038/s41467-018-04998-9     pmid: 30018305
[74]
Huang Y, Zhao X, Zhang Z Y, Liang Y P, Yin Z H, Chen B J, Bai L, Han Y, Guo B L. Chem. Mater., 2020, 32(15): 6595.

doi: 10.1021/acs.chemmater.0c02030     URL    
[75]
Savina I N, Zoughaib M, Yergeshov A A. Gels, 2021, 7(3): 79.

doi: 10.3390/gels7030079     URL    
[76]
Shi M Y, Jiang L J, Yu C J, Dong X R, Yu Q Y, Yao M M, He S S, Yue Z W, Yao F L, Zhang H, Sun H, Li J J. Sci. China Technol. Sci., 2022, 65(5): 1029.

doi: 10.1007/s11431-021-1986-9    
[77]
Xuan H Y, Du Q, Li R M, Shen X N, Zhou J, Li B Y, Jin Y, Yuan H H. Int. J. Mol. Sci., 2023, 24(2): 1389.

doi: 10.3390/ijms24021389     URL    
[78]
Armstrong D G, Boulton A J M, Bus S A. N Engl J. Med., 2017, 376(24): 2367.

doi: 10.1056/NEJMra1615439     URL    
[79]
Yazdanpanah L, Shahbazian H, Nazari I, Arti H R, Ahmadi F, Mohammadianinejad S E, Cheraghian B, Hesam S. Int. J. Endocrinol., 2018, 2018: 76316591.
[80]
Bus S A, Van N J. Diabetes Metab. Res. Rev., 2016, 1: 195.
[81]
Wang Y F, Zhang M F, Hou H, Yin M L, Ma Z P, Chen K F, Huang Q Z. Surf. Innov., 2023, 11(4): 213.

doi: 10.1680/jsuin.22.00037     URL    
[82]
Hadisi Z, Nourmohammadi J, Nassiri S M. Int. J. Biol. Macromol., 2018, 107: 2008.

doi: S0141-8130(17)31820-2     pmid: 29037870
[83]
Kshersagar J, Kshirsagar R, Desai S, Bohara R, Joshi M. Cell Tissue Bank., 2018, 19(3): 423.

doi: 10.1007/s10561-018-9688-z     pmid: 29508105
[84]
Garude K, Srinivasan S, Mody N B, Ghanghurde B, Saldanha J, Vartak A, Abhyankar S. Indian J. Plast. Surg., 2017, 50(3): 317.

doi: 10.4103/ijps.IJPS_124_17     URL    
[85]
Dariush S, Nazanin P, Nooshin B, Hrali A. B. Mater. Sci., 2018, 41(3): 72.

doi: 10.1007/s12034-018-1601-7    
[86]
El-Feky G S, Sharaf S S, El Shafei A, Hegazy A A. Carbohydr. Polym., 2017, 158: 11.

doi: 10.1016/j.carbpol.2016.11.054     URL    
[87]
Massand S, Cheema F, Brown S, Davis W J, Burkey B, Glat P M. J. Wound Care, 2017, 26(sup4): S26.

doi: 10.12968/jowc.2017.26.Sup4.S26     URL    
[88]
Saeed S M, Mirzadeh H, Zandi M, Barzin J. Prog. Biomater., 2017, 6(1/2): 39.

doi: 10.1007/s40204-017-0062-1     URL    
[89]
Abadi A D, Vaheb M, Tofighian T. Sci. Transl. Med., 2018, 1: 1.
[90]
Curry N S, Davenport R. Br. J. Haematol., 2019, 184(4): 508.

doi: 10.1111/bjh.2019.184.issue-4     URL    
[91]
Xie H, Teach J S, Burke A P, Lucchesi L D, Wu P C, Sarao R C. Am. J. Surg., 2007, 21(2): 193.
[92]
Sun P, Wu H L, He H, Zhang L W, Liu Y F, Zhang C, Lou C Y, Li J G, Bai H L. Drug Deliv., 2022, 29(1): 1994.

doi: 10.1080/10717544.2022.2092240     URL    
[93]
Li X Z, Zhao S C, Cai X L, Wang Y F, Chen J, Ma F X, Zhang H. J. Biol. Regul. Homeost. Agents, 2018, 32(3): 537.
[94]
Kozuma A, Sasaki M, Seki K, Toyoshima T, Nakano H, Mori Y. Oral Maxillofac. Surg., 2017, 21(2): 193.

doi: 10.1007/s10006-017-0611-8     pmid: 28332067
[95]
Katle E J, Hatlebakk J G, Grimstad T, Kvaloy J T, Karmhus Steinsvag S. Rhinol. J., 2017, 55(1): 27.
[96]
Xu M, Chen D S, Zhou H J, Zhang W W, Xu J, Chen L. Sci. Rep., 2017, 7: 9479.

doi: 10.1038/s41598-017-08375-2    
[97]
Zhou J C, Zhang J J, Zhang W, Ke Z Y, Zhang B. Eur. Arch. Oto Rhino Laryngol., 2017, 274(9): 3269.

doi: 10.1007/s00405-017-4584-x     URL    
[98]
Zhou J, Chen Y Y, Luo M M, Deng F, Lin S, Wu W C, Li G Q, Nan K H. Drug Dev. Ind. Pharm., 2019, 45(4): 568.

doi: 10.1080/03639045.2019.1569025     URL    
[1] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 汪忠华, 吴亦初, 吴中山, 朱冉冉, 杨阳, 吴范宏. 先进人工智能技术在新药研发中的应用[J]. 化学进展, 2023, 35(10): 1505-1518.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[7] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[8] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[9] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
阅读次数
全文


摘要

基于壳聚糖的新型敷料及其应用