English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1438-1449 DOI: 10.7536/PC230302 前一篇   后一篇

• 综述 •

hgcA/B基因介导的汞甲基化分子机制及其应用

褚博伟1,2,3, 郭瑛瑛1,2,*(), 胡立刚1,3, 刘艳伟1,2, 阴永光1,2,3, 蔡勇4   

  1. 1 中国科学院生态环境研究中心环境纳米技术与健康效应实验室 北京 100085
    2 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085
    3 中国科学院大学 北京 100049
    4 美国佛罗里达国际大学化学与生物化学系 迈阿密 33199
  • 收稿日期:2023-03-07 修回日期:2023-05-06 出版日期:2023-10-24 发布日期:2023-05-30
  • 基金资助:
    国家自然科学基金项目(21906168); 中国科学院前沿科学重点研究项目(QYZDB-SSW-DQC018)

Mechanism of hgcA/B Mediated Mercury Methylation and Application as Biomarkers

Bowei Chu1,2,3, Yingying Guo1,2,*(), Ligang Hu1,3, Yanwei Liu1,2, Yongguang Yin1,2,3, Yong Cai4   

  1. 1 Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    3 University of Chinese Academy of Sciences,Beijing 100049, China
    4 Department of Chemistry and Biochemistry, Florida International University, Miami 33199, United States
  • Received:2023-03-07 Revised:2023-05-06 Online:2023-10-24 Published:2023-05-30
  • Contact: *e-mail: yyguo@rcees.ac.cn
  • Supported by:
    National Natural Science Foundation of China(21906168); Key Projects for Frontier Sciences of the Chinese Academy of Sciences(QYZDB-SSW-DQC018)

作为一种强神经毒性物质,环境中的甲基汞(MeHg)主要由产甲烷菌、硫酸盐还原菌、铁还原菌等厌氧微生物产生,可通过水生食物链积累并作用于人体。汞甲基化基因hgcA/B明确以后,不仅扩大了可探知的汞甲基化微生物范围,也为汞甲基化生物分子机制的探索提供了新的方向。本文1) 概述了hgcA/B及其表达产物HgcA、HgcB的预测结构和生物体内的汞甲基化分子机制,2) 讨论了基于hgcA/B的环境汞甲基化研究进展,3) 总结了现有hgcA/B研究存在的不足,4) 对汞甲基化基因领域的研究方向进行了展望。

As a potent neurotoxin, methylmercury (MeHg) in the environment is primarily synthesized by anaerobic microorganisms such as methanogens, sulfate-reducing bacteria, and iron-reducing bacteria, which can bioaccumulate through aquatic trophic levels and affect human health. The identification of mercury methylation gene pair, i.e., hgcA and hgcB, not only broadens our understanding of potential mercury methylators but also opens up new avenues for investigating the molecular mechanism of biological mercury methylation. In this review, we outline the predicted structures of hgcA and hgcB genes and their expressed proteins HgcA and HgcB as well as their molecular role in mediating mercury methylation, discuss recent advances in environmental mercury methylation studies using hgcA and hgcB as biomarkers, summarize current limitations and challenges in hgcA and hgcB research, and prospect the research direction of mercury methylation gene field.

Contents

1 Introduction

2 Discovery of mercury methylation gene hgcA/hgcB and its functional validation

3 Predicted structures of HgcA and HgcB

4 Biological mercury methylation processes involving HgcAB

5 Progress of hgcA/B-based environmental mercury methylation study

5.1 hgcA and hgcB can be used to identify new mercury methylation organisms and processes

5.2 Methylation of mercury in other media

5.3 The molecular biology techniques commonly used in the study of mercury methylation mediated by hgcA/B

5.4 The application of hgcA/B in ecological risk assessment

6 Limitations of current mercury methylation gene research

6.1 Lack of detailed molecular structures of HgcA and HgcB

6.2 Identification of HgcA and HgcB-interacting proteins

6.3 The relationship between the mercury methylation process mediated by hgcA/B and other metabolic pathways is not clear

7 Conclusion and perspectives

()
图1 HgcA、HgcB和HgcAB复合体的预测结构。(a)HgcAB复合体预测结构[31];(b)Marinimicrobia编码的HgcA和HgcB蛋白预测结构[37];(c)AlphaFold软件预测的HgcA和HgcB蛋白结构[29,30]。
Fig. 1 Predicted structures of HgcA, HgcB, and HgcAB complex. (a) predicted structure of HgcAB complex [31]; (b) predicted structure of HgcA and HgcB protein encoded by Marinimicrobia [37]; (c) predicted structure of HgcA and HgcB protein by AlphaFold [29,30]. Adapted with permission from Ref. [31,37] under License CC BY 4.0
图2 HgcA、HgcB蛋白在汞甲基化过程中负责甲基和电子转移 [23,43]
Fig. 2 The function of HgcA and HgcB in the transfer of methyl group and electron in mercury methylation process[23,43]
表1 hgcA常用引物及适用范围
Table 1 Common primers and scope of application of hgcA
图3 hgcA/B介导的生物汞甲基化中的甲基转移和Hg(Ⅱ)结合过程
Fig. 3 Methyl transfer and Hg (Ⅱ) binding process in biogenic mercury methylation mediated by hgcA/B
[1]
Pacyna J M. Sci. Total Environ., 2020, 738: 139955.

doi: 10.1016/j.scitotenv.2020.139955     URL    
[2]
Clarkson T W, Magos L. Crit. Rev. Toxicol., 2006, 36(8): 609.

doi: 10.1080/10408440600845619     pmid: 16973445
[3]
Boening D W. Chemosphere, 2000, 40(12): 1335.

pmid: 10789973
[4]
Wood J M. Science, 1974, 183: 1049.

pmid: 4812035
[5]
Reinfelder J R, Fisher N S, Luoma S N, Nichols J W, Wang W X. Sci. Total Environ., 1998, 219(2/3): 117.

doi: 10.1016/S0048-9697(98)00225-3     URL    
[6]
Harada M. Crit. Rev. Toxicol., 1995, 25: 1.

doi: 10.3109/10408449509089885     pmid: 7734058
[7]
Cheng J P, Fujimura M, Bo D D. J. Environ. Sci., 2015, 38: 36.

doi: 10.1016/j.jes.2015.05.027     URL    
[8]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.

doi: 10.1021/es305071v     URL    
[9]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007     URL    
[10]
Ceccatelli S, DarÉ E, Moors M. Chem. Biol. Interact., 2010, 188(2): 301.

doi: 10.1016/j.cbi.2010.04.007     URL    
[11]
Wood J M, Kennedy F S, Rosen C G. Nature, 1968, 220(5163): 173.

doi: 10.1038/220173a0    
[12]
Jensen S, Jernelöv A. Nature, 1969, 223(5207): 753.

doi: 10.1038/223753a0    
[13]
Compeau G C, Bartha R. Appl. Environ. Microbiol., 1985, 50(2): 498.

doi: 10.1128/aem.50.2.498-502.1985     URL    
[14]
Fleming E J, Mack E E, Green P G, Nelson D C. Appl. Environ. Microbiol., 2006, 72(1): 457.

doi: 10.1128/AEM.72.1.457-464.2006     URL    
[15]
Shao D D, Kang Y, Wu S C, Wong M H. Sci. Total Environ., 2012, 424: 331.

doi: 10.1016/j.scitotenv.2011.09.042     URL    
[16]
Devereux R, Winfrey M R, Winfrey J, Stahl D A. FEMS Microbiol. Ecol., 1996, 20(1): 23.
[17]
Macalady J L, Mack E E, Nelson D C, Scow K M. Appl. Environ. Microbiol., 2000, 66(4): 1479.

doi: 10.1128/AEM.66.4.1479-1488.2000     URL    
[18]
Gilmour C C, Elias D A, Kucken A M, Brown S D, Palumbo A V, Schadt C W, Wall J D. Appl. Environ. Microbiol., 2011, 77(12): 3938.

doi: 10.1128/AEM.02993-10     URL    
[19]
Ma M, Du H X, Wang D Y. Crit. Rev. Environ. Sci. Technol., 2019, 49: 1893.

doi: 10.1080/10643389.2019.1594517     URL    
[20]
Ma M, Du H X, Wang D Y, Sun T. J. Soils Sediments, 2018, 18(3): 1100.

doi: 10.1007/s11368-017-1827-9     URL    
[21]
Gilmour C C, Podar M, Bullock A L, Graham A M, Brown S D, Somenahally A C, Johs A, Hurt R A, Bailey K L, Elias D A. Environ. Sci. Technol., 2013, 47(20): 11810.

doi: 10.1021/es403075t     URL    
[22]
Kerin E J, Gilmour C C, Roden E, Suzuki M T, Coates J D, Mason R P. Appl. Environ. Microbiol., 2006, 72(12): 7919.

doi: 10.1128/AEM.01602-06     URL    
[23]
Parks J M, Johs A, Podar M, Bridou R, Hurt R A, Smith S D, Tomanicek S J, Qian Y, Brown S D, Brandt C C, Palumbo A V, Smith J C, Wall J D, Elias D A, Liang L Y. Science, 2013, 339(6125): 1332.

doi: 10.1126/science.1230667     URL    
[24]
Choi S C, Chase T, Bartha R. Appl. Environ. Microbiol., 1994, 60(4): 1342.

doi: 10.1128/aem.60.4.1342-1346.1994     URL    
[25]
Choi S C, Chase T, Bartha R. Appl. Environ. Microbiol., 1994, 60(11): 4072.

doi: 10.1128/aem.60.11.4072-4077.1994     URL    
[26]
Doukov T I, Iverson T M, Seravalli J, Ragsdale S W, Drennan C L. Science, 2002, 298: 567.

doi: 10.1126/science.1075843     URL    
[27]
Lin H, Hurt R A, Johs A, Parks J M, Morrell-Falvey J L, Liang L Y, Elias D A, Gu B H. Environ. Sci. Technol. Lett., 2014, 1(5): 271.

doi: 10.1021/ez500107r     URL    
[28]
Date S S, Parks J M, Rush K W, Wall J D, Ragsdale S W, Johs A. Appl. Environ. Microbiol., 2019, 85(13): e00438-19.
[29]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A W, Kavukcuoglu K, Kohli P, Hassabis D. Nature, 2021, 596: 583.

doi: 10.1038/s41586-021-03819-2    
[30]
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. Nucleic Acids Res., 2022, 50: D439.

doi: 10.1093/nar/gkab1061     URL    
[31]
Cooper C J, Zheng K Y, Rush K W, Johs A, Sanders B C, Pavlopoulos G A, Kyrpides N C, Podar M, Ovchinnikov S, Ragsdale S W, Parks J M. Commun. Biol., 2020, 3: 320.

doi: 10.1038/s42003-020-1047-5    
[32]
Smith S D, Bridou R, Johs A, Parks J M, Elias D A, Hurt R A, Brown S D, Podar M, Wall J D. Appl. Environ. Microbiol., 2015, 81: 3205.

doi: 10.1128/AEM.00217-15     URL    
[33]
Carugo O, Cemazar M, Zahariev S, Hudaky I, Gaspari Z, Perczel A, Pongor S. Protein Eng., 2003, 16: 637.

doi: 10.1093/protein/gzg088     URL    
[34]
Beinert H, Holm R H, Munck E. Science, 1997, 277: 653.

doi: 10.1126/science.277.5326.653     pmid: 9235882
[35]
Gionfriddo C M, Tate M T, Wick R R, Schultz M B, Zemla A, Thelen M P, Schofield R, Krabbenhoft D P, Holt K E, Moreau J W. Nat. Microbiol., 2016, 1: 12.
[36]
Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14331.

doi: 10.1073/pnas.0601420103     URL    
[37]
Lin H Y, Ascher D B, Myung Y, Lamborg C H, Hallam S J, Gionfriddo C M, Holt K E, Moreau J W. ISME J., 2021, 15: 1810.

doi: 10.1038/s41396-020-00889-4    
[38]
Ludwig M L, Matthews R G. Annu. Rev. Biochem., 1997, 66: 269.

pmid: 9242908
[39]
Desimone R E, Penley M W, Charbonneau L, Smith S G, Wood J M, Hill H A O, Pratt J M, Ridsdale S, Williams R J P. Biochim. Biophys. Acta, 1973, 304: 851.
[40]
Zhou J, Riccardi D, Beste A, Smith J C, Parks J M. Inorg. Chem., 2014, 53(2): 772.

doi: 10.1021/ic401992y     URL    
[41]
Demissie T B, Garabato B D, Ruud K, Kozlowski P M. Angew. Chem. Int. Edit., 2016, 55: 11503.

doi: 10.1002/anie.v55.38     URL    
[42]
Nzuza N, Padayachee T, Chen W P, Gront D, Nelson D R, Syed K. Curr. Issues Mol. Biol., 2021, 43: 1374.

doi: 10.3390/cimb43030098     URL    
[43]
Qian C, Johs A, Chen H M, Mann B F, Lu X, Abraham P E, Hettich R L, Gu B H. J. Proteome Res., 2016, 15(10): 3540.

pmid: 27463218
[44]
Pak K R, Bartha R. Appl. Environ. Microbiol., 1998, 64(3): 1013.

doi: 10.1128/AEM.64.3.1013-1017.1998     URL    
[45]
Hamelin S, Amyot M, Barkay T, Wang Y P, Planas D. Environ. Sci. Technol., 2011, 45(18): 7693.

doi: 10.1021/es2010072     URL    
[46]
Yu R Q, Reinfelder J R, Hines M E, Barkay T. Appl. Environ. Microbiol., 2013, 79(20): 6325.

doi: 10.1128/AEM.01556-13     URL    
[47]
Fu Q, Fan X C, Sun J H, Tan H W, Wang Y, Ouyang J, Na N. Small, 2020, 16(33): 2000072.

doi: 10.1002/smll.v16.33     URL    
[48]
Tan S, Xu X W, Cheng H, Wang J J, Wang X. Environ. Res., 2022, 204: 10.
[49]
Yang T T, Liu Y, Tan S, Wang W X, Wang X. Environ. Pollut., 2021, 277: 10.
[50]
Schartup A T, Balcom P H, Soerensen A L, Gosnell K J, Calder R S D, Mason R P, Sunderland E M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(38): 11789.

doi: 10.1073/pnas.1505541112     URL    
[51]
Lehnherr I, St Louis V L, Hintelmann H, Kirk J L. Nat. Geosci., 2011, 4(5): 298.

doi: 10.1038/ngeo1134    
[52]
Capo E, Peterson B D, Kim M, Jones D S, Acinas S G, Amyot M, Bertilsson S, Björn E, Buck M, Cosio C, Elias D A, Gilmour C, Goñi-Urriza M, Gu B H, Lin H Y, Liu Y R, McMahon K, Moreau J W, Pinhassi J, Podar M, Puente-Sánchez F, Sánchez P, Storck V, Tada Y Y, Vigneron A, Walsh D A, Vandewalle-Capo M, Bravo A G, Gionfriddo C M. Mol. Ecol. Resour., 2023, 23(1): 190.

doi: 10.1111/men.v23.1     URL    
[53]
McDaniel E A, Peterson B D, Stevens S L R, Tran P Q, Anantharaman K, McMahon K D. mSystems, 2020, 5(4): 00299-20.
[54]
Zhang C J, Liu Y R, Cha G H, Liu Y, Zhou X Q, Lu Z Y, Pan J, Cai M W, Li M. ISME J., 2023, 17(3): 478.

doi: 10.1038/s41396-023-01360-w    
[55]
Gilmour C C, Bullock A L, McBurney A, Podar M, Elias D A. mBio, 2018, 9(2): 02403-17.
[56]
Goñi-Urriza M, Klopp C, Ranchou-Peyruse M, Ranchou-Peyruse A, Monperrus M, Khalfaoui-Hassani B, Guyoneaud R. Res. Microbiol., 2020, 171(1): 3.

doi: S0923-2508(19)30121-4     pmid: 31655199
[57]
Podar M, Gilmour C C, Brandt C C, Soren A, Brown S D, Crable B R, Palumbo A V, Somenahally A C, Elias D A. Sci. Adv., 2015, 1(9): e1500675.

doi: 10.1126/sciadv.1500675     URL    
[58]
Cai Y. Biogeochemistry of Environmentally Important Trace Elements, 2003, 835: 1.
[59]
Barkay T, Gillman M, Turner R R. Appl. Environ. Microbiol., 1997, 63(11): 4267.

doi: 10.1128/aem.63.11.4267-4271.1997     URL    
[60]
Golding G R, Kelly C A, Sparling R, Loewen P C, Rudd J W M, Barkay T. Limnol. Oceanogr., 2002, 47(4): 967.

doi: 10.4319/lo.2002.47.4.0967     URL    
[61]
Zhao L, Meng B, Feng X B. Ecotox. Environ. Safe, 2020, 195: 9.
[62]
Rothenberg S E, Feng X B, Li P. Environ. Pollut., 2011, 159(4): 1017.

doi: 10.1016/j.envpol.2010.12.024     pmid: 21276645
[63]
Meng B, Feng X B, Qiu G L, Cai Y, Wang D Y, Li P, Shang L H, Sommar J. J. Agric. Food Chem., 2010, 58(8): 4951.

doi: 10.1021/jf904557x     URL    
[64]
Tang W L, Liu Y R, Guan W Y, Zhong H, Qu X M, Zhang T. Sci. Total Environ., 2020, 714: 136827.

doi: 10.1016/j.scitotenv.2020.136827     URL    
[65]
Qiu G L, Feng X B, Li P, Wang S F, Li G H, Shang L H, Fu X W. J. Agric. Food Chem., 2008, 56(7): 2465.

doi: 10.1021/jf073391a     URL    
[66]
Meng M, Li B, Shao J J, Wang T, He B, Shi J B, Ye Z H, Jiang G B. Environ. Pollut., 2014, 184: 179.

doi: 10.1016/j.envpol.2013.08.030     pmid: 24056187
[67]
Liu Y R, Yu R Q, Zheng Y M, He J Z. Appl. Environ. Microbiol., 2014, 80(9): 2874.

doi: 10.1128/AEM.04225-13     URL    
[68]
Liu Y R, Johs A, Bi L, Lu X, Hu H W, Sun D, He J Z, Gu B H. Environ. Sci. Technol., 2018, 52(22): 13110.

doi: 10.1021/acs.est.8b03052     URL    
[69]
Lei P, Tang C, Wang Y J, Wu M J, Kwong R W M, Jiang T, Zhong H. Sci. Total Environ., 2021, 778: 146325.

doi: 10.1016/j.scitotenv.2021.146325     URL    
[70]
Rothenberg S E, Anders M, Ajami N J, Petrosino J F, Balogh E. Sci. Total Environ., 2016, 572: 608.

doi: 10.1016/j.scitotenv.2016.07.017     URL    
[71]
Zhou X Q, Qu X M, Yang Z M, Zhao J T, Hao Y Y, Feng J, Huang Q Y, Liu Y R. J. Hazard. Mater., 2022, 439: 129578.

doi: 10.1016/j.jhazmat.2022.129578     URL    
[72]
Li Y Y, Dai S S, Zhao J T, Hu Z C, Liu Q, Feng J, Huang Q Y, Gao Y X, Liu Y R. J. Hazard. Mater., 2023, 448: 130983.

doi: 10.1016/j.jhazmat.2023.130983     URL    
[73]
Wang J, Xiang Y P, Tian X S, Zhang C, Gong G Q, Xue J P, Jiang T, Wang D Y, Wang Y M. J. Environ. Sci., 2022, 119: 139.

doi: 10.1016/j.jes.2022.05.008     URL    
[74]
Zhao J Y, Ye Z H, Zhong H. Environ. Pollut., 2018, 242: 1921.

doi: 10.1016/j.envpol.2018.07.072     URL    
[75]
Li Z Y, Ma Z W, van der Kuijp T J, Yuan Z W, Huang L. Sci. Total Environ., 2014, 468/469: 843.

doi: 10.1016/j.scitotenv.2013.08.090     URL    
[76]
Jones D S, Johnson N W, Mitchell C P J, Walker G M, Bailey J V, Pastor J, Swain E B. Environ. Sci. Technol., 2020, 54(22): 14265.

doi: 10.1021/acs.est.0c02513     URL    
[77]
Yu R Q, Reinfelder J R, Hines M E, Barkay T. ISME J., 2018, 12(7): 1826.

doi: 10.1038/s41396-018-0106-0    
[78]
Wang Y W, Roth S, Schaefer J K, Reinfelder J R, Yee N. FEMS Microbiol. Lett., 2020, 367(23): fnaa196.
[79]
Bravo A G, Peura S, Buck M, Ahmed O, Mateos-Rivera A, Herrero Ortega S, Schaefer J K, Bouchet S, Tolu J, Björn E, Bertilsson S. Appl. Environ. Microbiol., 2018, 84(23): e01774-18.
[80]
Branfireun B A, Cosio C, Poulain A J, Riise G, Bravo A G. Sci. Total Environ., 2020, 745: 140906.

doi: 10.1016/j.scitotenv.2020.140906     URL    
[81]
Liem-Nguyen V, Skyllberg U, Björn E. Environ. Sci. Technol., 2017, 51(7): 3678.

doi: 10.1021/acs.est.6b04622     URL    
[82]
Chiasson-Gould S A, Blais J M, Poulain A J. Environ. Sci. Technol., 2014, 48(6): 3153.

doi: 10.1021/es4038484     URL    
[83]
Lei P, Zhang J, Zhu J J, Tan Q G, Kwong R W M, Pan K, Jiang T, Naderi M, Zhong H. Environ. Sci. Technol., 2021, 55(15): 10811.

doi: 10.1021/acs.est.0c08395     URL    
[84]
Bravo A G, Zopfi J, Buck M, Xu J Y, Bertilsson S, Schaefer J K, PotÉ J, Cosio C. ISME J., 2018, 12(3): 802.

doi: 10.1038/s41396-017-0007-7    
[85]
Ji X N, Liu C B, Pan G. Ecotox. Environ. Safe, 2020, 188: 9.
[86]
Sunderland E M, Krabbenhoft D P, Moreau J W, Strode S A, Landing W M. Glob. Biogeochem. Cycles, 2009, 23(2): GB2010.
[87]
Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard O F X. Mar. Chem., 2007, 107(1): 49.

doi: 10.1016/j.marchem.2007.01.018     URL    
[88]
Kirk J L, St Louis V L, Hintelmann H, Lehnherr I, Else B, Poissant L. Environ. Sci. Technol., 2008, 42(22): 8367.

doi: 10.1021/es801635m     URL    
[89]
Bowman K L, Collins R E, Agather A M, Lamborg C H, Hammerschmidt C R, Kaul D, Dupont C L, Christensen G A, Elias D A. Limnol. Oceanogr., 2020, 65: S310.
[90]
Wang K, Liu G L, Cai Y. Crit. Rev. Environ. Sci. Technol., 2022, 52(22): 3997.

doi: 10.1080/10643389.2021.2008753     URL    
[91]
Celo V, Lean D R S, Scott S L. Sci. Total Environ., 2006, 368(1): 126.

doi: 10.1016/j.scitotenv.2005.09.043     URL    
[92]
Hu H Y, Lin H, Zheng W, Tomanicek S J, Johs A, Feng X B, Elias D A, Liang L Y, Gu B H. Nat. Geosci., 2013, 6(9): 751.

doi: 10.1038/ngeo1894    
[93]
Capo E, Cosio C, GascÓn Díez E, Loizeau J L, Mendes E, Adatte T, Franzenburg S, Bravo A G. Water Res., 2023, 229: 119368.

doi: 10.1016/j.watres.2022.119368     URL    
[94]
Tada Y Y, Marumoto K, Takeuchi A. Front. Microbiol., 2020, 11: 1369.

doi: 10.3389/fmicb.2020.01369     URL    
[95]
Lamborg C H, Hammerschmidt C R, Bowman K L, Swarr G J, Munson K M, Ohnemus D C, Lam P J, Heimbürger L E, Rijkenberg M J A, Saito M A. Nature, 2014, 512(7512): 65.

doi: 10.1038/nature13563    
[96]
Cossa D, Knoery J, Bǎnaru D, Harmelin-Vivien M, Sonke J E, Hedgecock I M, Bravo A G, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida L E. Environ. Sci. Technol., 2022, 56(7): 3840.

doi: 10.1021/acs.est.1c03044     URL    
[97]
Gorokhova E, Soerensen A L, Motwani N H. PLoS One, 2020, 15(3): e0230310.

doi: 10.1371/journal.pone.0230310     URL    
[98]
Zhang B L, Chen T, Guo J M, Wu M H, Yang R Q, Chen X M, Wu X K, Zhang W, Kang S C, Liu G X, Dyson P. Sci. Total Environ., 2020, 708: 135226.

doi: 10.1016/j.scitotenv.2019.135226     URL    
[99]
Haynes K M, Kane E S, Potvin L, Lilleskov E A, Kolka R K, Mitchell C P J. Glob. Biogeochem. Cycles, 2017, 31(2): 233.

doi: 10.1002/gbc.v31.2     URL    
[100]
Liu C T, Liu J L, Zhou C Y, Huang X Y, Wang H M. Geoderma, 2021, 403: 115375.

doi: 10.1016/j.geoderma.2021.115375     URL    
[101]
An Y W, Zhang R, Yang S, Wang Y Q, Lei Y, Peng S H, Song L Y. Waste Manag., 2022, 145: 102.

doi: 10.1016/j.wasman.2022.04.038     URL    
[102]
Yang J, Takaoka M, Sano A, Matsuyama A, Yanase R. Int. J. Environ. Res. Public Health, 2018, 15(6): 1252.

doi: 10.3390/ijerph15061252     URL    
[103]
Liu J B, Bao Z, Wang C L, Wei J Y, Wei Y S, Chen M X. Water Res., 2022, 226: 119204.

doi: 10.1016/j.watres.2022.119204     URL    
[104]
Schaefer J K, Kronberg R M, Morel F M M, Skyllberg U. Environ. Microbiol. Rep., 2014, 6(5): 441.

doi: 10.1111/emi4.2014.6.issue-5     URL    
[105]
Christensen G A, Wymore A M, King A J, Podar M, Hurt R A, Santillan E U, Soren A, Brandt C C, Brown S D, Palumbo A V, Wall J D, Gilmour C C, Elias D A. Appl. Environ. Microbiol., 2016, 82(19): 6068.

doi: 10.1128/AEM.01271-16     URL    
[106]
Gionfriddo C M, Wymore A M, Jones D S, Wilpiszeski R L, Lynes M M, Christensen G A, Soren A, Gilmour C C, Podar M, Elias D A. Front. Microbiol., 2020, 11: 541554.

doi: 10.3389/fmicb.2020.541554     URL    
[107]
Christensen G A, Gionfriddo C M, King A J, Moberly J G, Miller C L, Somenahally A C, Callister S J, Brewer H, Podar M, Brown S D, Palumbo A V, Brandt C C, Wymore A M, Brooks S C, Hwang C, Fields M W, Wall J D, Gilmour C C, Elias D A. Environ. Sci. Technol., 2019, 53(15): 8649.

doi: 10.1021/acs.est.8b06389     URL    
[108]
Vigneron A, Cruaud P, AubÉ J, Guyoneaud R, Goñi-Urriza M. Npj Biofilms Microbiomes, 2021, 7: 83.

doi: 10.1038/s41522-021-00255-y    
[109]
Capo E, Feng C Y, Bravo A G, Bertilsson S, Soerensen A L, Pinhassi J, Buck M, Karlsson C, Hawkes J, Bjorn E. Environ. Sci. Technol., 2022, 56: 13119.

doi: 10.1021/acs.est.2c03784     URL    
[110]
Liu J B, He X L, Zhong H, Lei P, Zhang J Y, Xu Y F, Wei Y S. Bioresour. Technol., 2022, 347: 126394.

doi: 10.1016/j.biortech.2021.126394     URL    
[111]
Liu J B, He X L, Xu Y F, Zuo Z, Lei P, Zhang J Y, Yin Y G, Wei Y S. J. Hazard. Mater., 2021, 406: 124310.

doi: 10.1016/j.jhazmat.2020.124310     URL    
[112]
Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M, Guyoneaud R. Environ. Sci. Pollut. Res., 2015, 22(18): 13764.

doi: 10.1007/s11356-015-4273-5     URL    
[113]
Nou X, Kadner R J. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(13): 7190.

doi: 10.1073/pnas.130013897     URL    
[114]
Schaefer J K, Morel F M M. Nat. Geosci., 2009, 2(2): 123.

doi: 10.1038/ngeo412    
[115]
Schaefer J K, Rocks S S, Zheng W, Liang L Y, Gu B H, Morel F M M. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(21): 8714.

doi: 10.1073/pnas.1105781108     URL    
[116]
Kung Y, Ando N, Doukov T I, Blasiak L C, Bender G, Seravalli J, Ragsdale S W, Drennan C L. Nature, 2012, 484(7393): 265.

doi: 10.1038/nature10916    
[117]
Qian C, Chen H M, Johs A, Lu X, An J, Pierce E M, Parks J M, Elias D A, Hettich R L, Gu B H. Proteomics, 2018, 18(17): 1700479.

doi: 10.1002/pmic.v18.17     URL    
[118]
Ekstrom E B, Morel F M M. Environ. Sci. Technol., 2008, 42(1): 93.

doi: 10.1021/es0705644     URL    
[119]
Ekstrom E B, Morel F M M, Benoit J M. Appl. Environ. Microbiol., 2003, 69(9): 5414.

doi: 10.1128/AEM.69.9.5414-5422.2003     URL    
[120]
Gionfriddo C M, Soren A B, Wymore A M, Hartnett D S, Podar M, Parks J M, Elias D A, Gilmour C C. Appl. Environ. Microbiol., 2023, 89(4): e01768-22.DOI:10.1128/aem.01768-22.
[1] 阴永光, 李雁宾, 马旭, 刘景富, 江桂斌. 天然有机质介导的汞生物地球化学循环:结合作用与分子转化[J]. 化学进展, 2013, 25(12): 2169-2177.
[2] 冯新斌,仇广乐,付学吾,何天容,李平,王少锋. 环境汞污染*[J]. 化学进展, 2009, 21(0203): 436-457.