English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1294-1303 DOI: 10.7536/PC230229 前一篇   后一篇

• 综述 •

可降解聚烯烃的设计与合成

于慧萍1,2, 秦亚伟1, 董金勇1,2,*()   

  1. 1 中国科学院化学研究所 北京 100190
    2 中国科学院大学 北京 100049
  • 收稿日期:2023-03-01 修回日期:2023-04-13 出版日期:2023-09-24 发布日期:2023-08-06
  • 作者简介:

    董金勇 中国科学院化学研究所研究员,中国科学院大学岗位教授。主要从事聚烯烃高性能化及烯烃配位聚合的基础和应用研究工作。

  • 基金资助:
    国家自然科学基金项目(51973224); 国家自然科学基金项目(52173013)

Design and Synthesis of Degradable Polyolefins

Huiping Yu1,2, Yawei Qin1, Jinyong Dong1,2()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2023-03-01 Revised:2023-04-13 Online:2023-09-24 Published:2023-08-06
  • Contact: *e-mail: jydong@iccas.ac.cn
  • Supported by:
    The National Natural Science Foundations of China(51973224); The National Natural Science Foundations of China(52173013)

聚烯烃是日常生活中应用十分广泛的一类高分子材料。然而,聚烯烃产量的急剧增加以及材料难以降解导致了大量塑料垃圾。目前对聚烯烃的回收普遍存在能耗大、回收产品利用率低、附加值低、在回收过程中产生其他废弃物等问题。开发聚烯烃替代品的可降解材料,可以从根源上解决聚烯烃废塑料的问题。本文总结了聚烯烃的降解机理,并综述了四类可降解聚烯烃的合成方式,包括长链双官能单体缩聚、与极性单体共聚、无环二烯易位聚合以及开环聚合,总结了这些策略的优势以及面临的挑战,并对未来可降解聚烯烃的发展前景进行了展望。

Polyolefin is thermoplastic universal plastic widely used in daily life. However, the overuse of polyolefin plastic and lack of degradability has led to a large amount of plastic waste, as well as growing land and marine pollution problems. The overwhelming majority of post-consumer polyolefin plastic is not recycled. Obstacles to the recycling of waste plastic include high energy consumption, low utilization rate of recycled products, low added value, and other wastes generated in the recycling process. Polyolefins degrade very slowly in the environment, and the addition of co-degraders can also cause environmental pollution. A feasible alternative is to redesign and synthesize degradable polyolefins, which can solve waste plastic problem from the source. The synthesis of degradable polyolefins has been extensively studied over the past half century. This paper summarizes the degradation mechanism of polyolefins, including oxidative degradation and co-degradation technology. Meanwhile we review four approaches to synthesizing degradable polyolefins, which cover condensation of long-chain bifunctional monomers, copolymerization with polar monomers, acyclic diene metathesis, and ring-opening polymerization. Among them, olefin metathesis polymerization has significantly expanded the types of degradable polyolefins due to the superior tolerance of the catalysts to functional groups, such as polyester, polyacetal, polycarbonate, polyphosphoester. We discuss the forward-looking synthetic approaches offered by current research and the challenges that these degradable materials face in truly replacing polyolefin materials. Finally, we propose our perspective on the opportunities and challenges in this field.

Contents

1 Introduction

2 Degradation mechanism of polyolefin

2.1 Oxidative degradation

2.2 Co-degradation technology

3 Synthesis of degradable polyolefins

3.1 Polycondensation of long chain difunctional monomers

3.2 Copolymerization with polar monomers

3.3 Acyclic diene metathesis

3.4 Ring-opening polymerization

4 Conclusion and outlook

()
图1 聚烯烃的热氧化降解机理
Fig.1 Thermo-oxidative degradation mechanism of polyolefins
图2 光催化剂在光氧化降解过程中的降解机理
Fig.2 Degradation mechanism of photocatalyst in photo-oxidative degradation process
图3 (a)具有不同亚甲基序列长度的聚酯材料与LLDPE、聚己二酸/对苯二甲酸丁二醇酯(PBAT)在力学性能、结晶性、O2阻隔性的比较;(b)固定x时聚酯 PE s x y过冷温度ΔT和熔化焓ΔHm对二酸链长的依赖性[22]
Fig.3 (a) Comparison of mechanical properties, crystallinity and O2 barrier between polyester materials with different methylene sequence lengths and LLDPE, polyadipate/butylene terephthalate (PBAT); (b) diacid chain length dependence of supercooling temperature ΔT and melting enthalpies ΔHm of polyester PE s x y with fixed x.[22] Copyright 2021, ACS.
表1 通过ADMET反应合成的可降解聚合物总结
Table 1 Summary of representative degradable polymers via ADMET
图4 (a)基于衣康酸和10-十一烯醇的高分子量聚酯的合成、功能化和可控降解[48];(b)通过ADMET反应制备木糖基聚醚/聚酯[50]
Fig.4 (a)Synthesis, functionalization and controlled degradation of high molecular weight polyesters based on iticonic acid and 10-undecenol[48]. Copyright 2014, ACS. (b) Xylose-based polyethers and polyesters via ADMET polymerization toward polyethylene-like materials[50]. Copyright 2021, ACS
图5 通过各种链生长机制的开环聚合合成可降解聚合物及代表性单体。(a) 环烯酮缩醛和硫代内酯的自由基ROP;(b) 阴离子/阳离子/金属/有机催化ROP,以阴离子催化ROP机理为代表;(c) 环烯烃单体的ROMP
Fig.5 Synthetic degradable polymers through ring-opening polymerization via various chain-growth mechanisms. (a) Radical ROP of cyclic ketene acetals and thionolactone; (b) Anionic/cationic/metal/organo-catalyzed ROP, anion catalyzed ROP mechanism is represented; (c) ROMP of cyclic olefin monomers
图6 (a)环酰基硅烷单体与环辛烯的开环易位聚合;(b)酰基硅烷共聚物的固态光降解照射GPC研究[64] Copyright 2021, ACS
Fig.6 (a) ROMP of cycloacylsilane monomer with cycloctene; (b) Irradiation studies of acylsilane copolymers in the solid state and GPC traces[64]. Copyright 2021, ACS.
[1]
Zhang F, Wang F, Wei X Y, Yang Y, Xu S M, Deng D H, Wang Y Z. J. Energy Chem., 2022, 69: 369.

doi: 10.1016/j.jechem.2021.12.052     URL    
[2]
Pan J S, Ai X Q, Ma C F, Zhang G Z. Acc. Chem. Res., 2022, 55(11): 1586.

doi: 10.1021/acs.accounts.2c00187     URL    
[3]
Liu Z Y. China Plastics Industry, 2022, 50(04): 1.
(刘朝艳. 塑料工业, 2022, 50(04): 1.).
[4]
Jehanno C, Alty J W, Roosen M, De Meester S, Dove A P, Chen E Y X, Leibfarth F A, Sardon H. Nature, 2022, 603(7903): 803.

doi: 10.1038/s41586-021-04350-0    
[5]
Gong J, Chen X C, Tang T. Prog. Polym. Sci., 2019, 94: 1.

doi: 10.1016/j.progpolymsci.2019.04.001     URL    
[6]
Liu X H, Xu S M, Zhang F, Wang X L, Wang Y Z. Acta Polym. Sin., 2022, 9: 1005.
(刘雪辉, 徐世美, 张帆, 汪秀丽, 王玉忠. 高分子学报, 2022, 9: 1005.).
[7]
Coates G W, Getzler Y D Y L. Nat. Rev. Mater., 2020, 5(7): 501.

doi: 10.1038/s41578-020-0190-4    
[8]
Williams P T, Williams E A. Energy Fuels, 1999, 13(1): 188.

doi: 10.1021/ef980163x     URL    
[9]
Luo X, Zhan J H, Zhang S C. Energy Environmental Protection, 2023, 37(1): 194.
(骆希, 詹佳慧, 张士成. 能源环境保护, 2023, 37(1): 194.).
[10]
Bhaskar T, Murai K, Matsui T, Brebu M A, Uddin M A, Muto A, Sakata Y, Murata K. J. Anal. Appl. Pyrolysis, 2003, 70(2): 369.

doi: 10.1016/S0165-2370(02)00183-3     URL    
[11]
Mo Y, Zhao L, Wang Z H, Chen C L, Tan G Y A, Wang J Y. Waste Manag., 2014, 34(4): 763.

doi: 10.1016/j.wasman.2014.01.005     URL    
[12]
Pifer A, Sen A. Angew. Chem. Int. Ed., 1998, 37(23): 3306.

doi: 10.1002/(SICI)1521-3773(19981217)37:23【-逻*辑*与-】lt;3306::AID-ANIE3306【-逻*辑*与-】gt;3.0.CO;2-B     pmid: 29711403
[13]
Hoff A, Jacobsson S. J. Appl. Polym. Sci., 1982, 27(7): 2539.

doi: 10.1002/app.1982.070270723     URL    
[14]
Bren M, Janezic D, Bren U. J. Phys. Chem. A., 2007, 112(2): 166.

doi: 10.1021/jp709766c     URL    
[15]
Bäckström E, Odelius K, Hakkarainen M. Ind. Eng. Chem. Res., 2017, 56(50): 14814.

doi: 10.1021/acs.iecr.7b04091     URL    
[16]
Andler R, Tiso T, Blank L, Andreeßen C, Zampolli J, D’Afonseca V, Guajardo C, Díaz-Barrera A. Rev. Environ. Sci. Bio/technology, 2022, 21(4): 829.

doi: 10.1007/s11157-022-09631-2    
[17]
Tofa T S, Laxman Kunjali K, Paul S, Dutta J. Environ. Chem. Lett., 2019, 17(3): 1341.

doi: 10.1007/s10311-019-00859-z    
[18]
Gong T. Fine Specialty Chem., 2014, 22(6): 11.
(宫涛. 精细与专用化学品, 2014, 22(6): 11.).
[19]
Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong K H. Prog. Polym. Sci., 2011, 36(8): 1015.

doi: 10.1016/j.progpolymsci.2010.12.002     URL    
[20]
Stempfle F, Ortmann P, Mecking S. Chem. Rev., 2016, 116(7): 4597.

doi: 10.1021/acs.chemrev.5b00705     pmid: 27023340
[21]
Häußler M, Eck M, Rothauer D, Mecking S. Nature, 2021, 590(7846): 423.

doi: 10.1038/s41586-020-03149-9    
[22]
Zhou L Z, Qin P K, Wu L B, Li B G, Dubois P. ACS Sustain. Chem. Eng., 2021, 9(51): 17362.

doi: 10.1021/acssuschemeng.1c06752     URL    
[23]
Huang Q G, Wang F, Yu H C, Nan F, Wang Q C. CN201710933085.2, 2017.
[24]
Pemba A G, Flores J A, Miller S A. Green Chem., 2013, 15(2): 325.

doi: 10.1039/c2gc36588j     URL    
[25]
Ortmann P, Heckler I, Mecking S. Green Chem., 2014, 16(4): 1816.

doi: 10.1039/c3gc42592d     URL    
[26]
Zhang X S, Zuo X B, Ortmann P, Mecking S, Alamo R G. Macromolecules, 2019, 52(13): 4934.

doi: 10.1021/acs.macromol.9b00922     URL    
[27]
Busch H, Schiebel E, Sickinger A, Mecking S. Macromolecules, 2017, 50(20): 7901.

doi: 10.1021/acs.macromol.7b01368     URL    
[28]
Kocen A L, Cui S L, Lin T W, LaPointe A M, Coates G W. J. Am. Chem. Soc., 2022, 144(28): 12613.

doi: 10.1021/jacs.2c04499     URL    
[29]
Brubaker M M, Coffman D D, Hoehn H H. J. Am. Chem. Soc., 1952, 74(6): 1509.

doi: 10.1021/ja01126a047     URL    
[30]
Sommazzi A, Garbassi F. Prog. Polym. Sci., 1997, 22(8): 1547.

doi: 10.1016/S0079-6700(97)00009-9     URL    
[31]
Drent E, Budzelaar P H M. Chem. Rev., 1996, 96(2): 663.

pmid: 11848769
[32]
Drent E, van Dijk R, van Ginkel R, van Oort B, Pugh R I. Chem. Commun., 2002(9): 964.
[33]
Newsham D K, Borkar S, Sen A, Conner D M, Goodall B L. Organometallics, 2007, 26(15): 3636.

doi: 10.1021/om700523m     URL    
[34]
Baur M, Lin F, Morgen T O, Odenwald L, Mecking S. Science, 2021, 374(6567): 604.

doi: 10.1126/science.abi8183     URL    
[35]
Tang S, Seidel F W, Nozaki K. Angew. Chem. Int. Ed., 2021, 60(51): 26506.

doi: 10.1002/anie.v60.51     URL    
[36]
Schrock R R, Murdzek J S, Bazan G C, Robbins J, DiMare M, O'Regan M. J. Am. Chem. Soc., 1990, 112(10): 3875.

doi: 10.1021/ja00166a023     URL    
[37]
Schrock R R, Feldman J, Cannizzo L F, Grubbs R H. Macromolecules, 1987, 20(5): 1169.

doi: 10.1021/ma00171a053     URL    
[38]
Bielawski C W, Grubbs R H. Prog. Polym. Sci., 2007, 32(1): 1.

doi: 10.1016/j.progpolymsci.2006.08.006     URL    
[39]
Scholl M, Ding S, Lee C W, Grubbs R H. Org. Lett., 1999, 1(6): 953.

pmid: 10823227
[40]
Schwab P, Grubbs R H, Ziller J W. J. Am. Chem. Soc., 1996, 118(1): 100.

doi: 10.1021/ja952676d     URL    
[41]
Schwab P, France M B, Ziller J W, Grubbs R H. Angew. Chem. Int. Ed. Engl., 1995, 34(18): 2039.

doi: 10.1002/anie.v34:18     URL    
[42]
Atallah P, Wagener K B, Schulz M D. Macromolecules, 2013, 46(12): 4735.

doi: 10.1021/ma400067b     URL    
[43]
Schulz M D, Wagener K B. Macromol. Chem. Phys., 2014, 215(20): 1936.

doi: 10.1002/macp.v215.20     URL    
[44]
Shearouse W C, Lillie L M, Reineke T M, Tolman W B. ACS Macro Lett., 2015, 4(3): 284.

doi: 10.1021/acsmacrolett.5b00099     URL    
[45]
Tee H T, Lieberwirth I, Wurm F R. Macromolecules, 2019, 52(3): 1166.

doi: 10.1021/acs.macromol.8b02474     URL    
[46]
Mutlu H, Barner-Kowollik C. Polym. Chem., 2016, 7(12): 2272.

doi: 10.1039/C5PY01937K     URL    
[47]
Vert M. Biomacromolecules, 2005, 6(2): 538.

doi: 10.1021/bm0494702     URL    
[48]
Lv A, Li Z L, Du F S, Li Z C. Macromolecules, 2014, 47(22): 7707.

doi: 10.1021/ma5020066     URL    
[49]
Lv A, Cui Y, Du F S, Li Z C. Macromolecules, 2016, 49(22): 8449.

doi: 10.1021/acs.macromol.6b01325     URL    
[50]
Piccini M, Lightfoot J, Dominguez B C, Buchard A. ACS Appl. Polym. Mater., 2021, 3(11): 5870.

doi: 10.1021/acsapm.1c01095     URL    
[51]
Parkhurst R R, Balog S, Weder C, Simon Y C. RSC Adv., 2014, 4(96): 53967.

doi: 10.1039/C4RA08788G     URL    
[52]
Haider T P, Suraeva O, Lieberwirth I, Paneth P, Wurm F R. Chem. Sci., 2021, 12(48): 16054.

doi: 10.1039/D1SC05509G     URL    
[53]
Geiselhart C M, Xue W W, Barner-Kowollik C, Mutlu H. Macromolecules, 2021, 54(4): 1775.

doi: 10.1021/acs.macromol.1c00010     URL    
[54]
Cameron D J A, Shaver M P. Chem. Soc. Rev., 2011, 40(3): 1761.

doi: 10.1039/c0cs00091d     pmid: 21082079
[55]
Delplace V, Nicolas J. Nat. Chem., 2015, 7(10): 771.

doi: 10.1038/nchem.2343     pmid: 26391076
[56]
Cassidy H G. J. Am. Chem. Soc., 1949, 71(2): 402.

doi: 10.1021/ja01170a009     URL    
[57]
Zeng T Y, Xia L, Zhang Z, Hong C Y, You Y Z. Polym. Chem., 2021, 12(2): 165.

doi: 10.1039/D0PY00200C     URL    
[58]
Abel B A, Snyder R L, Coates G W. Science, 2021, 373(6556): 783.

doi: 10.1126/science.abh0626     URL    
[59]
Huang J, OlsÉn P, Svensson Grape E, Inge A K, Odelius K. Macromolecules, 2022, 55(2): 608.

doi: 10.1021/acs.macromol.1c02225     URL    
[60]
Myers D, Witt T, Cyriac A, Bown M, Mecking S, Williams C K. Polym. Chem., 2017, 8(37): 5780.

doi: 10.1039/C7PY00985B     URL    
[61]
Shieh P, Zhang W X, Husted K E L, Kristufek S L, Xiong B Y, Lundberg D J, Lem J, Veysset D, Sun Y C, Nelson K A, Plata D L, Johnson J A. Nature, 2020, 583(7817): 542.

doi: 10.1038/s41586-020-2495-2    
[62]
Liang Y F, Sun H, Cao W, Thompson M P, Gianneschi N C. ACS Macro Lett., 2020, 9(10): 1417.

doi: 10.1021/acsmacrolett.0c00401     URL    
[63]
Haider T, Shyshov O, Suraeva O, Lieberwirth I, von Delius M, Wurm F R. Macromolecules, 2019, 52(6): 2411.

doi: 10.1021/acs.macromol.9b00180     URL    
[64]
Huang B R, Wei M F, Vargo E, Qian Y W, Xu T, Dean Toste F. J. Am. Chem. Soc., 2021, 143(43): 17920.

doi: 10.1021/jacs.1c06836     URL    
[65]
Si G F, Tan C, Chen M, Chen C L. Angew. Chem. Int. Ed., 2022, 61(29): e202203796.

doi: 10.1002/anie.v61.29     URL    
[1] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[2] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[3] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[4] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[5] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[6] 高晗, 徐军, 胡欣, 朱宁, 郭凯. 聚酯酰胺的合成[J]. 化学进展, 2018, 30(11): 1634-1645.
[7] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[8] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[9] 荣雷, 宁英男, 高金苹, 毛国梁, 马志. 基于叶立德同源聚合的聚烯烃功能化研究[J]. 化学进展, 2014, 26(08): 1369-1377.
[10] 齐美洲, 傅智盛, 范志强. 茂金属催化剂的负载化[J]. 化学进展, 2014, 26(05): 737-748.
[11] 张勇杰, 李化毅, 董金勇, 胡友良. 端基功能化聚烯烃的合成与应用[J]. 化学进展, 2014, 26(01): 110-124.
[12] 赵巧玲, 马志*. 原子力显微镜在聚烯烃研究中的应用[J]. 化学进展, 2012, (10): 2011-2018.
[13] 许茸, 陈春霞*. 有机小分子催化ε-己内酯开环聚合反应[J]. 化学进展, 2012, 24(08): 1519-1525.
[14] 李光, 白如科. 叠氮聚合物的合成[J]. 化学进展, 2011, 23(8): 1692-1699.
[15] 李启蒸, 张国艺, 袁聪, 魏柳荷, 马志. 聚烯烃/聚酯(聚醚)共聚物的合成及其应用[J]. 化学进展, 2011, 23(6): 1174-1180.
阅读次数
全文


摘要

可降解聚烯烃的设计与合成