English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 968-982 DOI: 10.7536/PC230224 前一篇   后一篇

• 综述 •

亚临界或超临界反应的凝聚态化学

张媛1, 郑贝宁2, 吴小峰1, 黄科科1, 冯守华1,*()   

  1. 1 吉林大学无机合成与制备化学国家重点实验室 长春 130012
    2 吉林大学物理学院 长春 130012
  • 收稿日期:2023-02-28 修回日期:2023-06-02 出版日期:2023-06-24 发布日期:2023-06-10
  • 作者简介:

    冯守华 中国科学院院士。主要研究方向为无机功能材料的合成化学、新概念半导体合成、生物水热化学等。创新发展了功能无机材料的水热合成新路线,制备并发现新的三重混合价态和原子尺度pn结,揭示了功能无机材料水热合成反应的规律,第一次在原子晶体中验证了单分子整流模型。近年来基于复合固体的界面特性,围绕电荷、轨道、自旋、晶格等固体合成化学中的关键科学问题,调控复合固体结构、设计高效能源材料,指导新型无机功能材料的精准化学合成。

  • 基金资助:
    国家自然科学基金项目(21831003); 国家自然科学基金项目(22090044); 吉林省科技厅项目(20200802003GH)

Condensate Matter Chemistry of Subcritical or Supercritical Reactions

Yuan Zhang1, Beining Zheng2, Xiaofeng Wu1, Keke Huang1, Shouhua Feng1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,Changchun 130012, China
    2 College of Physics, Jilin University,Changchun 130012, China
  • Received:2023-02-28 Revised:2023-06-02 Online:2023-06-24 Published:2023-06-10
  • Contact: *e-mail: shfeng@jlu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(21831003); The National Natural Science Foundation of China(22090044); The Jilin Province Science and Technology Development Plan(20200802003GH)

通过化学反应形成确定的和复杂的原子分子凝聚态,其原子分子间相互作用的多维度复合与协同,拓展了物质结构模式,体系性能发生突变,表现出凝聚态化学的某些特性。在特定条件下或在超临界条件下的歧化反应,产生锰金属离子以三种氧化态的形式聚集成的复杂调制结构。本文从凝聚态化学角度出发,详细介绍了在亚/超临界水热条件下,原子尺度pn结固体的生成,量子IV特性与电场诱导超流现象,讨论了化学反应驱动的凝聚态转变问题。本文同时介绍了凝聚态流体的基本性质和各级凝聚尺度中气体分子参与的化学反应,包括化学键修复反应、水热反应、人工降雨和肿瘤的消退,以及超临界条件下凝聚态化学反应的机理和潜在应用。

Through chemical reactions, definite and complex atomic and molecular condensed matter is formed. The multi-dimensional composite and synergy of the interactions between atoms and molecules expand the structure pattern of matter, and the properties of the system change dramatically, showing some characteristics of condensed matter chemistry. Under certain conditions or under supercritical disproportionation reaction, manganese metal ions are aggregated into complex modulated structures in the form of three oxidation states. In this paper, from the perspective of condensed matter chemistry, the formation of atomic-scale pn junction solids under subcritical hydrothermal conditions, quantum IV properties and electric field induced superflow phenomenon are introduced in detail, and chemical reaction driven condensed matter transition is discussed. This paper also introduces the basic properties of condensed fluid and chemical reactions involving gas molecules at all levels of condensed scale, including chemical bond repair reaction, hydrothermal reaction, artificial rainfall, tumor regression, as well as the mechanism and potential applications of condensed matter chemical reactions under supercritical conditions.

Contents

1 Introduction

2 Concept and properties of supercritical fluid

2.1 Area of supercritical fluid on phase diagram

2.2 Critical phenomena in state transition

2.3 Properties of supercritical water

2.4 Properties of supercritical CO2

2.5 Properties of supercritical alcohol system

3 Solid formation under subcritical/supercritical conditions

3.1 Hydrothermal disproportionation under subcritical condition

3.2 Triple valence state and modulation structure of Mn

3.3 Atomic-scale pn junction and quantum IV effect

4 Application of supercritical fluid reaction

4.1 Chemical reaction

4.2 Industrial production

4.3 Environmental protection

4.4 C1 transformation and origin of life

4.5 Supercritical gases in astrophysics and planetary science

5 Future application direction of subcritical/supercritical system

5.1 Bose-Einstein condensation

5.2 Biocondensed matter-amino acid polymer and protein

5.3 Cancer treatment and tumor regression

5.4 Conclusion and prospect

()
图1 凝聚态科学包括为新技术提供动力的材料设计以及对基础学科的探索[1](图示为二维自旋不平衡的费米气中费米极化子的凝聚)
Fig.1 Condensed matter science includes the design of materials that power new technologies and the exploration of fundamental disciplines[1] (The graph represents Fermi polarons condensed in a two-dimensional, spin-imbalanced Fermi gas)
图2 一维极化子凝聚态相动力学中的KPZ物理[2]
Fig.2 KPZ physics in the phase dynamics of a 1D polariton condensate[2]
图3 超临界CO2流体辅助球磨法合成Si/Fe3O4/C复合材料示意图[4]
Fig.3 Schematic illustration of the synthesis of the Si/Fe3O4/C composites by the supercritical fluid-assisted ball-milling method[4]
表1 气体、超临界流体和液体的密度、黏度和扩散率值范围
Table 1 Density, viscosity and diffusivity range of gas, supercritical fluid and liquid
图4 过热的自由焓图示意图,起伏的箭头代表玻璃化过程中过热状态的亚稳态释放[9]
Fig.4 Schematic free enthalpy diagram illustrates the superheating conditions. The undulated arrow represents the slow metastability release of the superheated state by vitrification[9]
图5 人工降雨过程[11]
Fig.5 Artificial rainfall process[11]
图6 LCKMO单晶的(a)Mn的K边X射线近边吸收谱,(b)近红外吸收光谱,(c)激光诱导发射谱和(d)外延薄膜的X射线光电子能谱都确证了Mn5+的存在
Fig.6 The presence of Mn5+ has been confirmed by (a) Mn K-edge XANES spectroscopy, (b) near-infrared absorption spectra, (c) laser-induced emission and (d) X-ray photoelectron spectroscopy of LCKMO single crystal
图7 晶体在[001]方向的三倍超晶格结构透射电镜照片和选区电子衍射图
Fig.7 TEM images and SAED patterns of a triple superlattice structure of a crystal in the [001] direction
图8 L a 1 - x - yCaxKyMnO3钙钛矿单晶的Ⅳ曲线
Fig.8 Ⅳ curve of La1-x-yCaxKyMnO3 perovskite single crystal
图9 分子间拉伸模式的振荡周期与对应的连续氢键寿命[21]
Fig.9 Oscillation period of the intermolecular stretching mode, tosci plotted against the continuous H-bond lifetime, τ H B [21]
图10 超高碱性的水热环境下制备得到的厘米级CuO晶片
Fig.10 Centimeter-level CuO wafers prepared in ultra-alkaline hydrothermal condition
图11 气凝胶的制备过程[23]
Fig.11 Preparation of aerogel[23]
图12 在超临界CO2中溶解咖啡因[30]
Fig.12 Solubility of Caffeine in Supercritical C O 2 [30]
图13 高温降解反应的催化超临界酯化过程模型[38]
Fig.13 A process model for catalytic supercritical interesterification considering degradation reactions at high temperatures[38]
图14 苯酚的生成路径[45]
Fig.14 Proposed Mechanism of Phenol Formation[45]
图15 木星、土星、天王星和海王星的内部示意图[47]
Fig.15 Schematic representation of the interiors of Jupiter, Saturn, Uranus, and Neptune[47]
图16 两个自旋相反的电子通过激子电子相互作用而成对
Fig.16 Two electrons with opposite spins are paired by the interaction of exciton and electrons
图17 通过超临界流体技术工艺制备的生物相容性吲哚菁绿包封的丝素纳米颗粒具有很高的PTT效率[66]
Fig.17 The design of indocyanine green-encapsulated silk fibroin nanoparticles using supercritical fluid technology which exhibits excellent photothermal stability and high PTT efficiency[66]
[1]
Koschorreck M, Pertot D, Vogt E, Fröhlich B, Feld M, Köhl M. Nature, 2012, 485: 619.

doi: 10.1038/nature11151    
[2]
Fontaine Q, Squizzato D, Baboux F, Amelio I, Lemaître A, Morassi M. Nature, 2022, 608(7924): 687.

doi: 10.1038/s41586-022-05001-8    
[3]
Kazan A. Microfluid. Nanofluidics, 2022, 26(9): 68.

doi: 10.1007/s10404-022-02574-8    
[4]
Hu L Y, Lu Z H, Chen F, Zhang J, Xia Y, Zhang W K, Gan Y P, He X P, Song W L, Huang H. Energy Fuels, 2023, 37(11): 8042.

doi: 10.1021/acs.energyfuels.3c01074     URL    
[5]
Counsell J F, Everett D H. Nature, 1960, 188(4750): 576.

doi: 10.1038/188576a0    
[6]
Girard E, Tassaing T, Marty J D, Destarac M. Chem. Rev., 2016, 116(7): 4125.

doi: 10.1021/acs.chemrev.5b00420     URL    
[7]
Cockrell C, Brazhkin V V, Trachenko K. Phys. Rep., 2021, 941: 1.

doi: 10.1016/j.physrep.2021.10.002     URL    
[8]
Yu L, Hao B L, Chen X S. Miracles on the Edge: Phase Transitions and Critical Phenomena(4th Ed), Beijing: Science Press, 2016.
( 于渌, 郝柏林, 陈晓松. 边缘奇迹:相变与临界现象, 北京: 科学出版社, 2016.).
[9]
Willart J F, HÉdoux A, Guinet Y, Danède F, Paccou L, Capet F, Descamps M. J. Phys. Chem. B, 2006, 110(23): 11040.

doi: 10.1021/jp061784r     URL    
[10]
[2023-02-01]https://baike.baidu.com/item/人工降水/382136.
[11]
Blazina T, Läderach A, Jones G D, Sodemann H, Wernli H, Kirchner J W, Winkel L H E. Environ. Sci. Technol., 2017, 51(1): 108.

doi: 10.1021/acs.est.6b03063     pmid: 27959548
[12]
Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987.
[13]
Duan J S, Shim Y, Kim H J. J. Chem. Phys., 2006, 124(20): 204504.

doi: 10.1063/1.2194012     URL    
[14]
Johnston K P, Harrison K L, Clarke M J, Howdle S M, Heitz M P, Bright F V, Carlier C, Randolph T W. Science, 1996, 271(5249): 624.

doi: 10.1126/science.271.5249.624     URL    
[15]
Qi Y H, Xu Q, Wang Y, Yan B, Ren Y M, Chen Z M. ACS Nano, 2016, 10(2): 2903.

doi: 10.1021/acsnano.6b00001     URL    
[16]
Kawamoto H, Ryoritani M, Saka S. J. Anal. Appl. Pyrolysis, 2008, 81(1): 88.

doi: 10.1016/j.jaap.2007.09.006     URL    
[17]
Reiter J, Strittmatter H, Wiemann L O, Schieder D, Sieber V. Green Chem., 2013, 15(5): 1373.

doi: 10.1039/c3gc40295a     URL    
[18]
Teong S P, Lim J, Zhang Y G. ChemSusChem, 2017, 10(16): 3198.

doi: 10.1002/cssc.201701153     pmid: 28730737
[19]
Chara O, McCarthy A N, Grigera J R. Phys. Lett. A, 2011, 375(3): 572.

doi: 10.1016/j.physleta.2010.11.061     URL    
[20]
Larrea JimÉnez J, Crone S P G, Fogh E, Zayed M E, Lortz R, Pomjakushina E, Conder K, Läuchli A M, Weber L, Wessel S, Honecker A, Normand B, Rüegg C, Corboz P, Rønnow H M, Mila F. Nature, 2021, 592(7854): 370.

doi: 10.1038/s41586-021-03411-8    
[21]
Schienbein P, Marx D. Angew. Chem. Int. Ed., 2020, 59(42): 18578.

doi: 10.1002/anie.v59.42     URL    
[22]
Zhang Y, Yuan L, Zhong X, Huang K K, Feng S H. Inorg. Chem., 2018, 57(6): 2957.

doi: 10.1021/acs.inorgchem.7b03095     pmid: 29513528
[23]
Huang C G, Cheng X, Chen B Y, Wang J W, Dai Y, Yue S T, Huang H. Nano Lett., 2022, 22(23): 9290.

doi: 10.1021/acs.nanolett.2c02768     URL    
[24]
Li L, Dai T J, Liu K, Chang K C, Zhang R, Lin X N, Liu H J, Lai Y C, Kuo T P. Nanoscale, 2021, 13(33): 14035.

doi: 10.1039/D1NR03356E     URL    
[25]
Wang X F, Chang K C, Zhang Z W, Liu Q, Li L, Ma S H, Zhang M. Carbon, 2021, 173: 97.

doi: 10.1016/j.carbon.2020.10.084     URL    
[26]
Li L, Chang K C, Lin X N, Zhang R, Lou J H. Adv. Electron. Mater., 2019, 5(12): 1900580.

doi: 10.1002/aelm.v5.12     URL    
[27]
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311(5760): 484.

doi: 10.1126/science.1114736     pmid: 16439654
[28]
Palmer M V, Ting S S T. Food Chem., 1995, 52(4): 345.

doi: 10.1016/0308-8146(95)93280-5     URL    
[29]
Kazlas P T, Novak R D, Robey R J. 1994. US5288511-A.
[30]
Reddy V, Saharay M. J. Phys. Chem. B, 2019, 123(45): 9685.

doi: 10.1021/acs.jpcb.9b08351     URL    
[31]
Danan H N, Esposito P. Ther. Deliv., 2014, 5(2): 205.

doi: 10.4155/tde.13.146     pmid: 24483197
[32]
Tabernero A, Martín del Valle E M, Galán M A. Chem. Eng. Process. Process. Intensif., 2012, 60: 9.

doi: 10.1016/j.cep.2012.06.004     URL    
[33]
Chattopadhyay P, Gupta R B. Ind. Eng. Chem. Res., 2001, 40(16): 3530.

doi: 10.1021/ie010040r     URL    
[34]
Hua M F, Hua X F. Nano Micro Lett., 2014, 6(1): 20.

doi: 10.1007/BF03353764     URL    
[35]
Sun W, Zheng L, Wang Y Q, Jia W H, Guo W Z, Liu Z R, Ding X, Wu L, Fang T. J. CO2 Util., 2022, 58: 101912.
[36]
Lu D G, Peng C H. Atomic Energy Science and Technology, 2009, 43: 743.
( 陆道纲, 彭常宏. 原子能科学技术, 2009, 43: 743.).

doi: 10.7538/yzk.2009.43.08.0743    
[37]
Schulenberg T, Starflinger J. Nucl. Eng. Technol., 2007, 39(4): 249.

doi: 10.5516/NET.2007.39.4.249     URL    
[38]
Brondani L N, Simões S S, Celante D, Castilhos F. Ind. Eng. Chem. Res., 2019, 58(2): 816.

doi: 10.1021/acs.iecr.8b04715    
[39]
Cao C Q, Zhang Y, Li L H, Wei W W, Wang G Y, Bian C. Int. J. Hydrog. Energy, 2019, 44(30): 15737.

doi: 10.1016/j.ijhydene.2018.10.006     URL    
[40]
Qian L L, Wang S Z, Ren M M, Wang S. Chem. Eng. J., 2019, 366: 223.

doi: 10.1016/j.cej.2019.02.046     URL    
[41]
Top S, Akgün M, Kıpçak E, Bilgili M S. Water Res., 2020, 185: 116279.

doi: 10.1016/j.watres.2020.116279     URL    
[42]
Zhang X, Li L F, Du Z F, Hao X L, Cao L, Luan Z D, Wang B, Xi S C, Lian C, Yan J, Sun W D. Sci. Bull., 2020, 65(11): 958.

doi: 10.1016/j.scib.2020.03.023     pmid: 36747429
[43]
Alargov D K, Deguchi S, Tsujii K, Horikoshi K. Orig. Life Evol. Biosphere, 2002, 32(1): 1.

doi: 10.1023/A:1013906319253     URL    
[44]
Holm N G, Charlou J L. Earth Planet. Sci. Lett., 2001, 191(1/2): 1.

doi: 10.1016/S0012-821X(01)00397-1     URL    
[45]
Tian G, Yuan H M, Mu Y, He C, Feng S H. Org. Lett., 2007, 9(10): 2019.

pmid: 17444651
[46]
Stern J C, Sutter B, Freissinet C, Navarro-Gonzalez R, McKay C P, Archer P D, et al. Proc. Natl Acad. Sci. U. S. A., 2015, 112(14): 4245.

doi: 10.1073/pnas.1420932112     URL    
[47]
Guillot T. Science, 1999, 286(5437): 72.

pmid: 10506563
[48]
Guillot T. Planet. Space Sci., 1999, 47(10-11): 1183.

doi: 10.1016/S0032-0633(99)00043-4     URL    
[49]
Brazhkin V V, Fomin Y D, Lyapin A G, Ryzhov V N, Trachenko K. Phys. Rev. E, 2012, 85(3): 031203.

doi: 10.1103/PhysRevE.85.031203     URL    
[50]
Bolmatov D, Brazhkin V V, Trachenko K. Nat. Commun., 2013, 4: 2331.

doi: 10.1038/ncomms3331     pmid: 23949085
[51]
Cannon K M, Parman S W, Mustard J F. Nature, 2017, 552(7683): 88.

doi: 10.1038/nature24657     URL    
[52]
Elkins-Tanton L T. Earth Planet. Sci. Lett., 2008, 271(1/4): 181.

doi: 10.1016/j.epsl.2008.03.062     URL    
[53]
Lammer H, Chassefière E, Karatekin Ö, Morschhauser A, Niles P B, Mousis O, Odert P, Möstl U V, Breuer D, Dehant V, Grott M, Gröller H, Hauber E, Binh San Pham L. Space Sci. Rev., 2013, 174(1-4): 113.

doi: 10.1007/s11214-012-9943-8     URL    
[54]
Trachenko K, Brazhkin V V, Bolmatov D. Phys. Rev. E, 2014, 89(3): 032126.

doi: 10.1103/PhysRevE.89.032126     URL    
[55]
Allender D, Bray J, Bardeen J. Phys. Rev. B, 1973, 7(3): 1020.

doi: 10.1103/PhysRevB.7.1020     URL    
[56]
Zhao Z X, Han R S, Han R Q, Liu F S. Chinese Science Bulletin, 1979, 15: 686.
( 赵忠贤, 韩汝珊, 韩汝琦, 刘福绥. 科学通报, 1979, 15: 686.).
[57]
Feng S H, Yuan H M, Shi Z, Chen Y, Wang Y W, Huang K K, Hou C M, Li J X, Pang G S, Hou Y. J. Mater. Sci., 2008, 43(7): 2131.

doi: 10.1007/s10853-007-1988-9     URL    
[58]
Buča B, Jaksch D. Phys. Rev. Lett., 2019, 123(26): 260401.

doi: 10.1103/PhysRevLett.123.260401     URL    
[59]
Dogra N, Landini M, Kroeger K, Hruby L, Donner T, Esslinger T. Science, 2019, 366(6472): 1496.

doi: 10.1126/science.aaw4465     URL    
[60]
Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, Blatt R. Nature, 2011, 470(7335): 486.

doi: 10.1038/nature09801    
[61]
Beige A, Braun D, Tregenna B, Knight P L. Phys. Rev. Lett., 2000, 85(8): 1762.

pmid: 10970608
[62]
Barontini G, Hohmann L, Haas F, Estève J, Reichel J. Science, 2015, 349(6254): 1317.

doi: 10.1126/science.aaa0754     pmid: 26383948
[63]
Vollbrecht K G H, Muschik C A, Cirac J I. Phys. Rev. Lett., 2011, 107(12): 120502.

doi: 10.1103/PhysRevLett.107.120502     URL    
[64]
Muñoz J M, Wang X, Hewitt T, Kowalczyk A U, Sawant R, Barontini G. Phys. Rev. Lett., 2020, 125(2): 020403.

doi: 10.1103/PhysRevLett.125.020403     URL    
[65]
Gouveia B, Kim Y, Shaevitz J W, Petry S, Stone H A, Brangwynne C P. Nature, 2022, 609(7926): 255.

doi: 10.1038/s41586-022-05138-6    
[66]
Chen B Q, Kankala R K, He G Y, Yang D Y, Li G P, Wang P, Wang S B, Zhang Y S, Chen A Z. ACS Biomater. Sci. Eng., 2018, 4(10): 3487.

doi: 10.1021/acsbiomaterials.8b00705     URL    
[67]
Boija A, Klein I A, Young R A. Cancer Cell, 2021, 39(2): 174.

doi: 10.1016/j.ccell.2020.12.003     pmid: 33417833
[1] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[2] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[3] 翁西伦, 鲍宗必, 罗飞, 苏宝根, 杨亦文, 任其龙. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展, 2014, 26(0203): 415-423.
[4] 倪敏, 徐琴琴, 徐刚, 王恩俊, 银建中. 超临界流体输运技术在缓/控释药物制备中的应用[J]. 化学进展, 2011, 23(8): 1611-1617.
[5] 朱礼洋, 文明芬, 段五华, 徐景明, 朱永(贝睿). 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7): 1308-1315.
[6] 戚朝荣 江焕峰. 超临界二氧化碳介质中的有机反应*[J]. 化学进展, 2010, 22(07): 1274-1285.
[7] 王连鸳 徐文浩 杨基础. 超临界甲醇在化学反应中的应用[J]. 化学进展, 2010, 22(05): 796-802.
[8] 卫俊杰,苏宝根,邢华斌,张海,杨启炜,任其龙. 碳氢表面活性剂在超临界CO2中形成微乳液的研究进展*[J]. 化学进展, 2009, 21(6): 1141-1148.
[9] 银建中 周丹 王爱琴. 超临界CO2微乳/反胶束体系热力学行为与应用*[J]. 化学进展, 2009, 21(12): 2505-2514.
[10] 陈可平 梁丽芸 谭必恩. 亲二氧化碳碳氢聚合物及其应用*[J]. 化学进展, 2009, 21(10): 2199-2204.
[11] 张怀平,陈鸣才. 超临界二氧化碳中的聚合反应*[J]. 化学进展, 2009, 21(09): 1869-1879.
[12] 时静雅,武培怡. 傅立叶变换红外光谱技术在超临界CO2作用聚合物体系中的应用[J]. 化学进展, 2009, 21(05): 1023-1033.
[13] 银建中,张宪阵,徐琴琴,张传杰,王爱琴. 超临界流体沉积技术在纳米复合材料制备中的应用*[J]. 化学进展, 2009, 21(04): 606-614.
[14] 晏波,韦朝海. 超临界水气化有机物制氢研究*[J]. 化学进展, 2008, 20(10): 1553-1561.
[15] 张腾云,范洪波,钟理. 超临界CO2中醇类的分子氧氧化*[J]. 化学进展, 2008, 20(09): 1270-1275.