English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1486-1491 DOI: 10.7536/PC230222 前一篇   后一篇

• 综述 •

生物大分子液-液相分离研究方法

赵楚斌1,2, 汪海林1,2,*()   

  1. 1 国科大杭州高等研究院 杭州 310024
    2 中国科学院生态环境研究中心 北京 100085
  • 收稿日期:2023-02-28 修回日期:2023-05-23 出版日期:2023-10-24 发布日期:2023-08-07
  • 基金资助:
    国家自然科学基金项目(21927807); 国家自然科学基金项目(22021003)

Research Methods for Liquid-Liquid Phase Separation of Biological Macromolecules

Chubin Zhao1,2, Hailin Wang1,2,*()   

  1. 1 Hangzhou Institute for Advance Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
    2 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
  • Received:2023-02-28 Revised:2023-05-23 Online:2023-10-24 Published:2023-08-07
  • Contact: *e-mail: hlwang@rcees.ac.cn
  • Supported by:
    National Natural Science Foundation of China(21927807); National Natural Science Foundation of China(22021003)

生物大分子液-液相分离是一种普遍存在的生物物理现象,是近年来生命科学领域的新兴研究热点。生物大分子通过多价相互作用不断富集,当分子浓度达到溶液中的溶解阈值,就会以液-液相分离的形式从溶液中析出。这一现象与细胞内许多重要的生物学过程(如无膜细胞器的形成等)息息相关。随着相分离相关研究的不断深入,其研究方法也在不断发展与完善。本文从相分离的原理与特点出发,对目前常用的一些相分离研究方法进行了介绍,为后续相分离研究提供方法依据,促进相分离技术和方法的进一步发展。

The liquid-liquid phase separation of biological macromolecules is widely observed in various biological systems, and has become an emerging research focus of life science in recent years. Biological macromolecules are continuously enriched through multivalent interaction. When the molecular concentration reaches the dissolution threshold in solution, they will be precipitated from solution in the form of liquid-liquid phase separation. It is closely related to many important biological processes in cells (such as the formation of membraneless organelles). With the deepening of research on phase separation, its research methods are also developing and improving. Based on the principle and characteristics of phase separation, this paper introduces some commonly used research methods of phase separation. It provides the method basis for the subsequent phase separation research and promotes the further development of phase separation techniques and methods.

Contents

1 Principle and characteristics of liquid-liquid separation

2 Imaging technique for liquid-liquid phase separation

2.1 Optical microimaging

2.2 Single-molecule fluorescence imaging

2.3 Fluorescence correlation spectroscopy

3 Theoretical prediction for liquid-liquid separation

3.1 Phase separation prediction and modeling

3.2 Databases of phase separation related proteins

4 Conclusion and outlook

()
[1]
Banani S F, Lee H O, Hyman A A, Rosen M K. Nat. Rev. Mol. Cell Biol., 2017, 18(5): 285.

doi: 10.1038/nrm.2017.7    
[2]
Gao Y F, Li P L. Chinese Journal of Cell Biology, 2019, 41(2): 185.
(郜一飞, 李丕龙. 中国细胞生物学学报, 2019, 41(2): 185.).
[3]
Li P L, Banjade S, Cheng H C, Kim S, Chen B Y, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, Rosen M K. Nature, 2012, 483(7389): 336.

doi: 10.1038/nature10879    
[4]
Strom A R, Emelyanov A V, Mir M, Fyodorov D V, Darzacq X, Karpen G H. Nature, 2017, 547(7662): 241.

doi: 10.1038/nature22989     URL    
[5]
Wu M, Xu G, Han C, Luan P F, Xing Y H, Nan F, Yang L Z, Huang Y K, Yang Z H, Shan L, Yang L, Liu J Q, Chen L L. Science, 2021, 373(6554): 547.

doi: 10.1126/science.abf6582     URL    
[6]
Larson A G, Elnatan D, Keenen M M, Trnka M J, Johnston J B, Burlingame A L, Agard D A, Redding S, Narlikar G J. Nature, 2017, 547(7662): 236.

doi: 10.1038/nature22822     URL    
[7]
Guo Y E, Manteiga J C, Henninger J E, Sabari B R, Dall’Agnese A, Hannett N M, Spille J H, Afeyan L K, Zamudio A V, Shrinivas K, Abraham B J, Boija A, Decker T M, Rimel J K, Fant C B, Lee T I, Cisse I I, Sharp P A, Taatjes D J, Young R A. Nature, 2019, 572(7770): 543.

doi: 10.1038/s41586-019-1464-0    
[8]
Su X L, Ditlev J A, Hui E F, Xing W M, Banjade S, Okrut J, King D S, Taunton J, Rosen M K, Vale R D. Science, 2016, 352(6285): 595.

doi: 10.1126/science.aad9964     URL    
[9]
Du M J, Chen Z J. Science, 2018, 361(6403): 704.

doi: 10.1126/science.aat1022     URL    
[10]
Banjade S, Rosen M K. eLife, 2014, 3: e04123.

doi: 10.7554/eLife.04123     URL    
[11]
Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X J, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A. Cell, 2018, 174(3): 688.

doi: S0092-8674(18)30731-1     pmid: 29961577
[12]
Alberti S, Gladfelter A, Mittag T. Cell, 2019, 176(3): 419.

doi: S0092-8674(18)31649-0     pmid: 30682370
[13]
Iserman C, Desroches Altamirano C, Jegers C, Friedrich U, Zarin T, Fritsch A W, Mittasch M, Domingues A, Hersemann L, Jahnel M, Richter D, Guenther U P, Hentze M W, Moses A M, Hyman A A, Kramer G, Kreysing M, Franzmann T M, Alberti S. Cell, 2020, 181(4): 818.

doi: 10.1016/j.cell.2020.04.009     URL    
[14]
Jain A, Vale R D. Nature, 2017, 546(7657): 243.

doi: 10.1038/nature22386     URL    
[15]
Peng A, Weber S C. Non Coding RNA, 2019, 5(4): 50.

doi: 10.3390/ncrna5040050     URL    
[16]
Cohen T J, Guo J L, Hurtado D E, Kwong L K, Mills I P, Trojanowski J Q, Lee V M Y. Nat. Commun., 2011, 2: 252.

doi: 10.1038/ncomms1255     pmid: 21427723
[17]
Alberti S, Dormann D. Annu. Rev. Genet., 2019, 53: 171.

doi: 10.1146/annurev-genet-112618-043527     pmid: 31430179
[18]
Ávila J, Lim F, Moreno F, Belmonte C, Cuello A C. Mol. Neurobiol., 2002, 25(3): 213.

doi: 10.1385/MN:25:3     URL    
[19]
Dong X W, Bera S, Qiao Q, Tang Y M, Lao Z H, Luo Y, Gazit E, Wei G H. J. Phys. Chem. Lett., 2021, 12(10): 2576.

doi: 10.1021/acs.jpclett.1c00208     URL    
[20]
Alberti S, Saha S, Woodruff J B, Franzmann T M, Wang J, Hyman A A. J. Mol. Biol., 2018, 430(23): 4806.

doi: S0022-2836(18)30667-3     pmid: 29944854
[21]
Babinchak W M, Surewicz W K. J. Mol. Biol., 2020, 432(7): 1910.

doi: S0022-2836(20)30225-4     pmid: 32169484
[22]
Zhang X X. Optical Instruments, 2015, 37(6): 550.
(张祥翔. 光学仪器, 2015, 37(6): 550.).
[23]
Guan Y J, Ma X C. J. Sun Yat Sen Univ. Med. Sci., 2022, 43(3): 504.
(关苑君, 马显才. 中山大学学报(医学科学版), 2022, 43(3): 504.).
[24]
Kanaan N M, Hamel C, Grabinski T, Combs B. Nat. Commun., 2020, 11: 2809.

doi: 10.1038/s41467-020-16580-3    
[25]
Fu Y, Zhuang X W. Nat. Chem. Biol., 2020, 16(9): 955.

doi: 10.1038/s41589-020-0524-y    
[26]
Babinchak W M, Surewicz W K. Bio-Protoc., 2020, 10(2): e3489.
[27]
Shin Y, Brangwynne C P. Science, 2017, 357(6357): eaaf4382.
[28]
GuillÉn-Boixet J, Kopach A, Holehouse A S, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina I R E A, Wang J, Mateju D, Poser I, Maharana S, Ruer-Gruß M, Richter D, Zhang X J, Chang Y T, Guck J, Honigmann A, Mahamid J, Hyman A A, Pappu R V, Alberti S, Franzmann T M. Cell, 2020, 181(2): 346.

doi: 10.1016/j.cell.2020.03.049     URL    
[29]
Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S. Proc. Natl. Acad. Sci. U. S. A., 1996, 93(13): 6264.

doi: 10.1073/pnas.93.13.6264     URL    
[30]
Förster T. Ann. Phys., 1948, 437(1/2): 55.

doi: 10.1002/andp.v437:1/2     URL    
[31]
Mitrea D M, Cika J A, Guy C S, Ban D, Banerjee P R, Stanley C B, Nourse A, Deniz A A, Kriwacki R W. eLife, 2016, 5: e13571.

doi: 10.7554/eLife.13571     URL    
[32]
Wen J T, Hong L, Krainer G, Yao Q Q, Knowles T P J, Wu S, Perrett S. J. Am. Chem. Soc., 2021, 143(33): 13056.

doi: 10.1021/jacs.1c03078     URL    
[33]
Mitrea D M, Cika J A, Stanley C B, Nourse A, Onuchic P L, Banerjee P R, Phillips A H, Park C G, Deniz A A, Kriwacki R W. Nat. Commun., 2018, 9: 842.

doi: 10.1038/s41467-018-03255-3     pmid: 29483575
[34]
Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29.

pmid: 4818131
[35]
Ghosh A, Enderlein J. Curr. Opin. Struct. Biol., 2021, 70: 123.

doi: 10.1016/j.sbi.2021.06.018     URL    
[36]
Chiantia S, Ries J, Schwille P. Biochim. Biophys. Acta BBA Biomembr., 2009, 1788(1): 225.
[37]
He H T, Marguet D. Annu. Rev. Phys. Chem., 2011, 62: 417.

doi: 10.1146/physchem.2011.62.issue-1     URL    
[38]
Wang Z L, Zhang H Z, Jian L, Ding B, Huang K Y, Zhang W L, Xiao Q, Huang S H. Biophys. Rep., 2022, 8(2): 100.

doi: 10.52601/bpr.2022.210047     URL    
[39]
Bracha D, Walls M T, Wei M T, Zhu L, Kurian M, Avalos J L, Toettcher J E, Brangwynne C P. Cell, 2018, 175(6): 1467.

doi: S0092-8674(18)31404-1     pmid: 30500534
[40]
Shakya A, King J T. Biophys. J., 2018, 115(10): 1840.

doi: 10.1016/j.bpj.2018.09.022     URL    
[41]
Loman A, Dertinger T, Koberling F, Enderlein J. Chem. Phys. Lett., 2008, 459(1/6): 18.

doi: 10.1016/j.cplett.2008.05.018     URL    
[42]
Peng S J, Li W P, Yao Y R, Xing W J, Li P L, Chen C L. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(44): 27124.

doi: 10.1073/pnas.2008447117     URL    
[43]
Best R B. Curr. Opin. Struct. Biol., 2017, 42: 147.

doi: 10.1016/j.sbi.2017.01.006     URL    
[44]
Whitford P C, Noel J K, Gosavi S, Schug A, Sanbonmatsu K Y, Onuchic J N. Proteins Struct. Funct. Bioinform., 2009, 75(2): 430.

doi: 10.1002/prot.v75:2     URL    
[45]
Zhang P C, Fang W Y, Bao L, Kang W B. Acta Phys. Sin., 2020, 69(13): 278.
(张鹏程, 方文玉, 鲍磊, 康文斌. 物理学报, 2020, 69(13): 278.).
[46]
Ruff K M, Harmon T S, Pappu R V. J. Chem. Phys., 2015, 143(24): 243123.

doi: 10.1063/1.4935066     URL    
[47]
Feric M, Vaidya N, Harmon T S, Mitrea D M, Zhu L, Richardson T M, Kriwacki R W, Pappu R V, Brangwynne C P. Cell, 2016, 165(7): 1686.

doi: 10.1016/j.cell.2016.04.047     URL    
[48]
You K Q, Huang Q, Yu C Y, Shen B Y, Sevilla C, Shi M L, Hermjakob H, Chen Y, Li T T. Nucleic Acids Res., 2020, 48(D1): D354.

doi: 10.1093/nar/gkz847     URL    
[49]
Hou C, Wang X X, Xie H T, Chen T Y, Zhu P Y, Xu X F, You K Q, Li T T. Nucleic Acids Res., 2023, 51(D1): D460.

doi: 10.1093/nar/gkac783     URL    
[50]
Meszaros B, Erdos G, Szabo B, Schad E, Tantos A, Abukhairan R, Horvath T, Murvai N, Kovacs O P, Kovacs M, Tosatto S C E, Tompa P, Dosztanyi Z, Pancsa R. Nucleic Acids Res., 2020, 48(D1): D360.
[51]
Wang X, Zhou X, Yan Q L, Liao S F, Tang W Q, Xu P Y, Gao Y, Li Q, Dou Z H, Yang W S, Huang B F, Li J H, Zhang Z Q. Bioinformatics, 2022, 38(7): 2010.

doi: 10.1093/bioinformatics/btac026     URL    
[52]
Li Q, Peng X J, Li Y Q, Tang W Q, Zhu J A, Huang J, Qi Y F, Zhang Z Q. Nucleic Acids Res., 2020, 48(D1): D320.

doi: 10.1093/nar/gkz778     URL    
[53]
Ning W S, Guo Y P, Lin S F, Mei B, Wu Y, Jiang P R, Tan X D, Zhang W Z, Chen G W, Peng D, Chu L, Xue Y. Nucleic Acids Res., 2020, 48(D1): D288.

doi: 10.1093/nar/gkz1027     URL    
[54]
Sun Y P, Zhang S Q, Hu J J, Tao Y Q, Xia W C, Gu J G, Li Y C, Cao Q, Li D, Liu C. iScience, 2022, 25(1): 103701.

doi: 10.1016/j.isci.2021.103701     URL    
[55]
Li X F, van der Gucht J, Erni P, de Vries R. J. Colloid Interface Sci., 2023, 632: 357.

doi: 10.1016/j.jcis.2022.11.071     URL    
[56]
Girelli A, Rahmann H, Begam N, Ragulskaya A, Reiser M, Chandran S, Westermeier F, Sprung M, Zhang F J, Gutt C, Schreiber F. Phys. Rev. Lett., 2021, 126(13): 138004.

doi: 10.1103/PhysRevLett.126.138004     URL    
[57]
Zhang X J, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung H K H, Becher I, Poser I, Müller C W, Hyman A A, Savitski M M, Mahamid J. Cell, 2023, 186(9): 1877.

doi: 10.1016/j.cell.2023.03.015     URL    
[58]
Yu M, Heidari M, Mikhaleva S, Tan P S, Mingu S, Ruan H, Reinkemeier C D, Obarska-Kosinska A, Siggel M, Beck M, Hummer G, Lemke E A. Nature, 2023, 617(7959): 162.

doi: 10.1038/s41586-023-05990-0    
[1] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[2] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[3] 任彦荣, 田菲菲, 周鹏*. 计算肽学[J]. 化学进展, 2012, (9): 1674-1682.
[4] 杨立江, 邵强, 高毅勤*. 分子模拟中的增强抽样方法[J]. 化学进展, 2012, 24(06): 1199-1213.
[5] 闫燕, 杨启炜, 邢华斌*, 苏宝根, 任其龙. 离子液体表/界面性质与结构[J]. 化学进展, 2012, 24(05): 659-673.
[6] 林英武. 计算机辅助蛋白质分子理性设计:从肌红蛋白到一氧化氮还原酶[J]. 化学进展, 2012, 24(05): 784-789.
[7] 郑燕升, 卓志昊, 莫倩, 李军生. 离子液体的分子模拟与量化计算[J]. 化学进展, 2011, 23(9): 1862-1870.
[8] 王明华 王剑平. 分子模拟在生物传感器研究中的应用[J]. 化学进展, 2010, 22(05): 845-851.
[9] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
[10] 章爱娟,谢韵,周健. 蛋白质界面取向的实验控制与表征* [J]. 化学进展, 2009, 21(0708): 1408-1417.
[11] 张阳,杨基础,于养信,李以圭. 分子模拟在超临界流体领域中的应用[J]. 化学进展, 2005, 17(06): 955-962.
[12] 曹斌,高金森,徐春明. 分子模拟技术在石油相关领域的应用[J]. 化学进展, 2004, 16(02): 291-.
[13] 杨频,宋宇飞. 金属配合物键合DNA的研究进展*[J]. 化学进展, 2000, 12(01): 32-.
[14] 蒋华良,胡增建,陈建忠,顾健德,朱维良,陈凯先,嵇汝运. 配体-受体相互作用的计算机模拟及其在药物设计中的应用[J]. 化学进展, 1998, 10(04): 427-.
[15] 李以圭,李春喜. 电解质溶液的分子热力学模型研究进展[J]. 化学进展, 1996, 8(02): 155-.
阅读次数
全文


摘要

生物大分子液-液相分离研究方法