English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 983-996 DOI: 10.7536/PC230221 前一篇   

• 综述 •

高压条件下的气体及其参与的化学反应

刘鹏, 周勇, 刘亮余, 陈阳, 刘晓旸*()   

  1. 吉林大学化学学院 无机合成与制备化学国家重点实验室 长春 130031
  • 收稿日期:2023-02-28 修回日期:2023-06-07 出版日期:2023-06-24 发布日期:2023-06-10
  • 基金资助:
    国家自然科学基金项目(22171101)

Gases under High Pressure and Their Associated Chemical Reactions

Peng Liu, Yong Zhou, Liangyu Liu, Yang Chen, Xiaoyang Liu()   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University,Changchun 130031, China
  • Received:2023-02-28 Revised:2023-06-07 Online:2023-06-24 Published:2023-06-10
  • Contact: *e-mail: liuxy@jlu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22171101)

高压下的气体研究是一个非常重要的研究方向,对许多学科领域具有重要意义。本文介绍了气体在高压条件下所具有的特殊物理和化学性质及其参与的化学反应。高压下气体的行为与其在环境条件下有很大不同,在极端压力下,气体会发生结构转变,电磁性质发生变化,并显示出有趣的相变。气体的化学反应也会发生变化,并发生新的反应路径。理解高压对气体反应的影响对于提高我们对新化合物合成的了解至关重要。此外,本文还介绍了高压下气体的实际意义。高压下气体所表现出的独特性质使其在其他学科领域得到应用,本文特别介绍了高压条件下气体在高温超导体、极端高能材料和行星科学等方面的应用。总之,对高压下气体的研究为了解物质的基本特性提供了宝贵的见解,理解这些现象对于推动凝聚态物理、材料科学和化学等学科的发展至关重要。最后,对高压条件下气体的进一步研究做出了展望。

The study of gases under high pressure is a very important research direction, which is of great significance to many disciplines. This paper introduces the special physical and chemical properties of gases and the chemical reactions they participate in under high pressure conditions. Gases behave very differently at high pressure than they do under ambient conditions. At extreme pressures, gases undergo structural transformations, change their electromagnetic properties, and exhibit interesting phase transitions. The chemical reactions of the gases also change and new reaction paths occur. Understanding the effect of high pressure on gas reactions is critical to improving our understanding of the synthesis of new compounds. In addition, the paper also introduces the practical significance of gas under high pressure. The unique properties of gas under high pressure make it widely used in other disciplines. This paper especially introduces the application of gas under high pressure in high-temperature superconductors, extremely high-energy materials and planetary science. In conclusion, the study of gases at high pressure provides valuable insights into the fundamental properties of matter, and understanding these phenomena is critical to advancing disciplines such as condensed matter physics, materials science, and chemistry. Finally, the prospect of further research on gases under high pressure is given.

Contents

1 Introduction

2 Simple gas under high pressure

2.1 Argon and hydrogen under high pressure

2.2 Metallization of xenon under high pressure

2.3 Unique structure of Xe-H2 compounds under high pressure

2.4 Chemical reaction of xenon and fluorine under high pressure

3 Gases with superconductivity under high pressure

3.1 Overview of superconductivity

3.2 High-temperature superconductors predicted at high pressure

3.3 High temperature superconductivity of lanthanide polyhydrides under high pressure

3.4 Second group of lanthanide polyhydride superconductors under high pressure

4 Extreme energy materials

4.1 Nitrogen under high pressure

4.2 Hydrogen under high pressure

5 Applications of planetary science

5.1 Applications of helium in Planetary Science

5.2 Missing xenon paradox

6 Conclusion and outlook

()
图1 (A) 在 265 GPa 下旋转 DAC ±10° 收集的X 射线衍射图的 LeBail 全谱拟合。插图为Ar(H2)2 结晶的原始图像。掩蔽区域(半透明蓝色)是来自金刚石的饱和衍射峰;(B) Ar(H2)2 的 EOS;(C) Ar(H2)2 在压力下的晶胞参数。六个样品用于确定晶胞参数a。六个样品中的三个用于确定 a、c 和晶胞体积。这是由于在压力下形成的 Ar(H2)2 晶体的优选取向[34]
Fig.1 (A) LeBail full-profile fitting of XRD pattern collected with rotating DAC by ±10° at 265 GPa. (Inset) Caked raw image. Masked regions (semitransparent blue) are saturated diffraction peaks from diamond. (B) EOS of Ar(H2)2. (C) Cell parameters of Ar(H2)2 at pressures. Six samples were used to determine cell parameter a. Three of the six samples were used to determine both a, c, and unit cell volume. This is due to preferred orientations of Ar(H2)2 crystals formed under pressure[34].Copyright (2017) National Academy of Sciences, U.S.A
图2 上图:超导元素固体及其实验临界温度 (Tc) 周期表。下图:超导二元氢化物周期表(0~300 GPa)。蓝色表示理论预测,红色表示实验结果[66]
Fig.2 Top: Periodic table of superconducting elemental solids and their experimental critical temperature(Tc). Bottom: Periodic table of superconducting binary hydrides (0~300 GPa). Theoretical predictions indicated in blue and experimental results in red[66]. Copyright 2020, Elsevier Science Direct
图3 REH6 (a)、REH9 (b) 和 REH10 (c) 的包合物结构。小球和大球分别代表 H 和 RE 原子。图片分别描绘了 REH6、REH9 和 REH10 的以 RE 为中心的 H24、H29 和 H32 笼。每个具有 Oh 或 D4h 对称性的 H24 或 H32 笼包含六个正方形和八个六边形或六个正方形和十二个六边形。一个 H29 笼子由6个不规则正方形、6个五边形和6个六边形组成[96]
Fig.3 Clathrate structures of REH6 (a), REH9 (b), and REH10 (c). The small and large spheres represent H and RE atoms, respectively. The middle panel depicts the RE-centered H24, H29, and H32 cages of REH6, REH9, and REH10, respectively. Each H24 or H32 cage with Oh or D4h symmetry contains six squares and eight hexagons or six squares and twelve hexagons. One H29 cage consists of six irregular squares, six pentagons, and six hexagons[96]. Copyright 2017, American Physical Society
图4 各种 Ce-H 相合成和稳定性的压力温度路径。a 从 9 GPa 开始,铈与氢反应形成 F m 3 - m - C e H 2,在高达 33 GPa 时保持稳定。b 在 33 GPa 激光加热下,H2 介质中的 F m 3 - m - C e H 2 反应生成 β - P m 3 - n - C e H 3 。 β - P m 3 - n - C e H 3 在高达 80 GPa 时保持稳定。c β - P m 3 - n - C e H 3 在 H2 介质中 80~100 GPa 的激光加热导致 P 6 3 / m m c - C e H 9 超氢化物的出现。发现超氢化物相在我们研究中达到的最大压力(100 GPa)下是稳定的。d 完全减压后, β - P m 3 - n - C e H 3 和 I 4 1 m d - C e 2 H 5 在环境条件下被回收[100]
Fig.4 Pressure temperature path for the synthesis and stability of various Ce-H phases. a Starting at 9 GPa, cerium reacts with hydrogen to form F m 3 - m - C e H 2, which remained stable up to 33 GPa. b At 33 GPa with laser heating, F m 3 - m - C e H 2 in H2 medium reacted to form β - P m 3 - n - C e H 3 . β - P m 3 - n - C e H 3 remained stable up to 80 GPa. c Laser heating of β - P m 3 - n - C e H 3 in H2 medium at 80~100 GPa resulted in the occurrence of the P 6 3 / m m c - C e H 9 superhydride. The superhydride phase was found to be stable up to the maximum pressure reached in our studies i.e. 100 GPa. d After complete decompression, β - P m 3 - n - C e H 3 and I 4 1 m d - C e 2 H 5 were recovered at ambient conditions[100]. Copyright 2019, Nature Communications
图5 理论上预测的高压下 Ce-H 系统中稳定相的压力组成相图。红色横条表示各相的稳定性范围;该相图是在进化结构预测方法 USPEX 的基础上创建的。实验发现的 P63/mmc-CeH9 预计在 78 GPa 到至少 250 GPa 时保持稳定[100]
Fig.5 Pressure-composition phase diagram of theoretically predicted stable phases in the Ce-H system at high pressures. Red horizontal bars show the range of stability of each phase; this phase diagram was created on the basis of the evolutionary structure prediction method USPEX. The experimentally discovered P63/mmc-CeH9 is predicted to be stable from 78 GPa up to at least 250 GPa[100]. Copyright 2019, Nature Communications
图6 在 0 K(静态条件)(黑色)、10 000 K(蓝色)、20 000 K(绿色)和 50 000 K(红色)以及沿着 ρ1/ρ0 = 4 的预压缩 Hugoniot 计算的电子能隙,其中 ρ1 是预压缩的 密度和 ρ0 = 0.1233 g·cm-3(灰色)[137]
Fig.6 Calculated electronic energy gap at 0 K (static conditions) (black), 10 000 K (blue), 20 000 K (green), and 50 000 K (red) and along a precompressed Hugoniot with ρ1/ρ0 = 4, where ρ1 is the precompressed density and ρ0 = 0.1233 g·cm-3 (gray)[137]. Copyright 2008 National Academy of Sciences, U.S.A
[126]
Castelvecchi D. Nature, 2017, 542(7639): 17.

doi: 10.1038/nature.2017.21379    
[127]
Silvera I F, Wijngaarden R J. Phys. Rev. Lett., 1981, 47(1): 39.

doi: 10.1103/PhysRevLett.47.39     URL    
[128]
Hemley R J, Mao H K. Phys. Rev. Lett., 1988, 61(7): 857.

pmid: 10039448
[129]
Lorenzana H E, Silvera I F, Goettel K A. Phys. Rev. Lett., 1989, 63(19): 2080.

pmid: 10040757
[130]
Eremets M I, Troyan I A. Nat. Mater., 2011, 10(12): 927.

doi: 10.1038/nmat3175     pmid: 22081083
[131]
Howie R T, Guillaume C L, Scheler T, Goncharov A F, Gregoryanz E. Phys. Rev. Lett., 2012, 108(12): 125501.

doi: 10.1103/PhysRevLett.108.125501     URL    
[132]
Goncharov A F, Howie R T, Gregoryanz E. Low Temp. Phys., 2013, 39(5): 402.

doi: 10.1063/1.4807051     URL    
[133]
Alfè D, Gillan M J, Price G D. Earth Planet. Sci. Lett., 2002, 195(1/2): 91.

doi: 10.1016/S0012-821X(01)00568-4     URL    
[134]
Chabrier G, Saumon D, Hubbard W B, Lunine J I. Astrophys. J. Lett., 1992, 391: 817.

doi: 10.1086/171390     URL    
[135]
Young D A, McMahan A K, Ross M. Phys. Rev. B, 1981, 24(9): 5119.

doi: 10.1103/PhysRevB.24.5119     URL    
[136]
Weir S T, Mitchell A C, Nellis W J. Phys. Rev. Lett., 1996, 76(11): 1860.

pmid: 10060539
[137]
Stixrude L, Jeanloz R. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(32): 11071.

doi: 10.1073/pnas.0804609105     URL    
[138]
Ichimaru S. Rev. Mod. Phys., 1982, 54(4): 1017.

doi: 10.1103/RevModPhys.54.1017     URL    
[139]
Klepeis J E, Schafer K J, Barbee T W III, Ross M. Science, 1991, 254(5034): 986.

pmid: 17731520
[140]
Pfaffenzeller O, Hohl D, Ballone P. Phys. Rev. Lett., 1995, 74(13): 2599.

pmid: 10057968
[141]
Fortney J J, Hubbard W B. Astrophys. J. Lett., 2004, 608(2): 1039.

doi: 10.1086/apj.2004.608.issue-2     URL    
[142]
Olson P, Christensen U R. Earth Planet. Sci. Lett., 2006, 250(3/4): 561.

doi: 10.1016/j.epsl.2006.08.008     URL    
[143]
Ramsay W. Proc. R. Soc. Lond., 1903, 71(467/476): 421.

doi: 10.1098/rspl.1902.0121     URL    
[144]
Sanloup C, Schmidt B C, Perez E M C, Jambon A, Gregoryanz E, Mezouar M. Science, 2005, 310(5751): 1174.

doi: 10.1126/science.1119070     URL    
[145]
Mahaffy P R, Niemann H B, Alpert A, Atreya S K, Demick J, Donahue T M, Harpold D N, Owen T C. J. Geophys. Res., 2000, 105(E6): 15061.
[146]
Owen T, Mahaffy P, Niemann H B, Atreya S, Donahue T, Bar-Nun A, de Pater I. Nature, 1999, 402(6759): 269.

doi: 10.1038/46232    
[147]
Dewaele A, Worth N, Pickard C J, Needs R J, Pascarelli S, Mathon O, Mezouar M, Irifune T. Nat. Chem., 2016, 8(8): 784.

doi: 10.1038/nchem.2528     pmid: 27442284
[148]
Zhu L, Liu H Y, Pickard C J, Zou G T, Ma Y M. Nat. Chem., 2014, 6(7): 644.

doi: 10.1038/nchem.1925     pmid: 24950336
[1]
Mao H K, Chen X J, Ding Y, Li B, Wang L. Rev. Mod. Phys., 2018, 90(1): 015007.

doi: 10.1103/RevModPhys.90.015007     URL    
[2]
Liu X Y. Progress in Chemistry, 2020, 32(8): 1184.
( 刘晓旸. 化学进展, 2020, 32(8): 1184.).

doi: 10.7536/PC200435    
[3]
Liu X Y. Progress in Chemistry, 2009, 21(7/8): 1373.
( 刘晓旸. 化学进展, 2009, 21(7/8): 1373.).
[4]
Eswarappa Prameela S, Pollock T M, Raabe D, Meyers M A, Aitkaliyeva A, Chintersingh K L, Cordero Z C, Graham-Brady L. Nat. Rev. Mater., 2022, 8(2): 81.

doi: 10.1038/s41578-022-00496-z    
[5]
Helled R, Mazzola G, Redmer R. Nat. Rev. Phys., 2020, 2(10): 562.

doi: 10.1038/s42254-020-0223-3    
[6]
Hirose K, Wood B, Vočadlo L. Nat. Rev. Earth Environ., 2021, 2(9): 645.

doi: 10.1038/s43017-021-00203-6    
[7]
McMillan P F. Nat. Mater., 2002, 1(1): 19.

pmid: 12618843
[8]
Horvath-Bordon E, Riedel R, Zerr A, McMillan P F, Auffermann G, Prots Y, Bronger W, Kniep R, Kroll P. Chem. Soc. Rev., 2006, 35(10): 987.

pmid: 17003902
[9]
Zhang X, Zhao Y, Yang G. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12(3): e1582.
[10]
Miao M S, Sun Y H, Zurek E, Lin H Q. Nat. Rev. Chem., 2020, 4(10): 508.

doi: 10.1038/s41570-020-0213-0    
[11]
Lobanov S S, Chen P N, Chen X J, Zha C S, Litasov K D, Mao H K, Goncharov A F. Nat. Commun., 2013, 4: 2446.

doi: 10.1038/ncomms3446     pmid: 24026399
[12]
McMillan P F. Chem. Soc. Rev., 2006, 35(10): 855.

pmid: 17003892
[13]
Akahama Y, Kawamura H, Häusermann D, Hanfland M, Shimomura O. Phys. Rev. Lett., 1995, 74(23): 4690.

pmid: 10058574
[14]
Shimizu K, Suhara K, Ikumo M, Eremets M I, Amaya K. Nature, 1998, 393(6687): 767.

doi: 10.1038/31656    
[15]
Eremets M, Gregoryanz E, Struzhkin V, Mao H K, Hemley R, Mulders N, Zimmerman N. Phys. Rev. Lett., 2000, 85(13): 2797.

pmid: 10991236
[16]
Somayazulu M, Dera P, Goncharov A F, Gramsch S A, Liermann P, Yang W G, Liu Z X, Mao H K, Hemley R J. Nat. Chem., 2010, 2(1): 50.

doi: 10.1038/nchem.445     pmid: 21124380
[17]
Mao W L, Mao H K, Meng Y, Eng P J, Hu M Y, Chow P, Cai Y Q, Shu J F, Hemley R J. Science, 2006, 314(5799): 636.

doi: 10.1126/science.1132884     URL    
[18]
Ginzburg V L. Physics-Uspekhi, 1999, 42(4): 353.

doi: 10.1070/PU1999v042n04ABEH000562     URL    
[19]
Mukhin K N, Sustavov A F, Tikhonov V N. Physics-Uspekhi, 2003, 46(5): 493.

doi: 10.1070/PU2003v046n05ABEH001288     URL    
[20]
Ashcroft N W. Phys. Rev. Lett., 2004, 92(18): 187002.

doi: 10.1103/PhysRevLett.92.187002     URL    
[21]
Carlsson A E, Ashcroft N W. Phys. Rev. Lett., 1983, 50(17): 1305.

doi: 10.1103/PhysRevLett.50.1305     URL    
[22]
Zurek E, Hoffmann R, Ashcroft N W, Oganov A R, Lyakhov A O. Proc. Natl. Acad. Sci. USA, 2009, 106(42): 17640.

doi: 10.1073/pnas.0908262106     pmid: 19805046
[23]
Kleppe A K, Amboage M, Jephcoat A P. Sci. Rep., 2014, 4: 4989.

doi: 10.1038/srep04989    
[24]
Somayazulu M S, Finger L W, Hemley R J, Mao H K. Science, 1996, 271(5254): 1400.

doi: 10.1126/science.271.5254.1400     URL    
[25]
Strobel T A, Somayazulu M, Sinogeikin S V, Dera P, Hemley R J. J. Am. Chem. Soc., 2016, 138(42): 13786.

doi: 10.1021/jacs.6b06986     URL    
[26]
Strobel T A, Chen X J, Somayazulu M, Hemley R J. J. Chem. Phys., 2010, 133(16): 164512.

doi: 10.1063/1.3505299     URL    
[27]
Strobel T A, Somayazulu M, Hemley R J. Phys. Rev. Lett., 2009, 103(6): 065701.

doi: 10.1103/PhysRevLett.103.065701     URL    
[28]
Loubeyre P, Letoullec R, Pinceaux J P. Phys. Rev. Lett., 1992, 69(8): 1216.

pmid: 10047157
[29]
Hemley R J. Annu. Rev. Phys. Chem., 2000, 51: 763.

pmid: 11031299
[30]
Bernard S, Loubeyre P, ZÉrah G. Europhys. Lett., 1997, 37(7): 477.

doi: 10.1209/epl/i1997-00175-8     URL    
[31]
Yao Y, Klug D D. Phys. Rev. B, 2011, 83(2): 020105.

doi: 10.1103/PhysRevB.83.020105     URL    
[32]
Matsumoto N, Nagara H. J. Phys.: Condens. Matter, 2007, 19(36): 365237.

doi: 10.1088/0953-8984/19/36/365237     URL    
[33]
Chacham H, Koiller B. Phys. Rev. B, 1995, 52(9): 6147.

pmid: 9981829
[34]
Ji C, Goncharov A F, Shukla V, Jena N K, Popov D, Li B, Wang J Y, Meng Y, Prakapenka V B, Smith J S, Ahuja R, Yang W G, Mao H K. Proc. Natl. Acad. Sci. USA, 2017, 114(14): 3596.

doi: 10.1073/pnas.1700049114     URL    
[35]
Ulivi L, Bini R, Loubeyre P, Letoullec R, Jodl H. Phys. Rev. B, 1999, 60(9): 6502.

doi: 10.1103/PhysRevB.60.6502     URL    
[36]
Mao H K, Hemley R J. Rev. Mod. Phys., 1994, 66(2): 671.

doi: 10.1103/RevModPhys.66.671     URL    
[37]
Goncharov A F, Eggert J H, Mazin I I, Hemley R J, Mao H K. Phys. Rev. B, 1996, 54(22): R15590.

doi: 10.1103/PhysRevB.54.R15590     URL    
[38]
LeSar R, Ekberg S A, Jones L H, Mills R L, Schwalbe L A, Schiferl D. Solid State Commun., 1979, 32(2): 131.

doi: 10.1016/0038-1098(79)91073-1     URL    
[39]
Dias R P, Silvera I F. Science, 2017, 355(6326): 715.

doi: 10.1126/science.aal1579     URL    
[40]
Hemley R J, Ashcroft N W. Phys. Today, 1998, 51(8): 26.
[41]
Wigner E, Huntington H B. J. Chem. Phys., 1935, 3(12): 764.

doi: 10.1063/1.1749590     URL    
[42]
Asaumi K, Mori T, Kondo Y. Phys. Rev. Lett., 1982, 49(11): 837.

doi: 10.1103/PhysRevLett.49.837     URL    
[43]
Caldwell W A, Nguyen J H, Pfrommer B G, Mauri F, Louie S G, Jeanloz R. Science, 1997, 277(5328): 930.

doi: 10.1126/science.277.5328.930     URL    
[44]
Chacham H, Zhu X J, Louie S G. Phys. Rev. B, 1992, 46(11): 6688.

pmid: 10002369
[45]
Goettel K A, Eggert J H, Silvera I F, Moss W C. Phys. Rev. Lett., 1989, 62(6): 665.

pmid: 10040297
[46]
Itie J P, Le Toullec R. J. Phys. Colloques, 1984, 45(C8): C8.
[47]
Jephcoat A P, Mao H K, Finger L W, Cox D E, Hemley R J, Zha C S. Phys. Rev. Lett., 1987, 59(23): 2670.

pmid: 10035618
[48]
Ray A K, Trickey S B, Weidman R S, Kunz A B. Phys. Rev. Lett., 1980, 45(11): 933.

doi: 10.1103/PhysRevLett.45.933     URL    
[49]
Reichlin R, Brister K E, McMahan A K, Ross M, Martin S, Vohra Y K, Ruoff A L. Phys. Rev. Lett., 1989, 62(6): 669.

pmid: 10040298
[50]
Ross M, McMahan A K. Phys. Rev. B, 1980, 21(4): 1658.

doi: 10.1103/PhysRevB.21.1658     URL    
[51]
Syassen K. Phys. Rev. B, 1982, 25(10): 6548.

doi: 10.1103/PhysRevB.25.6548     URL    
[52]
Zisman A N, Aleksandrov I V, Stishov S M. Phys. Rev. B, 1985, 32(1): 484.

pmid: 9936693
[53]
Hanni M, Lantto P, Runeberg N, Jokisaari J, Vaara J. J. Chem. Phys., 2004, 121(12): 5908.
[54]
Asaumi K. Phys. Rev. B, 1984, 29(12): 7026.

doi: 10.1103/PhysRevB.29.7026     URL    
[55]
Khriachtchev L, Lignell A, Juselius J, Räsänen M, Savchenko E. J. Chem. Phys., 2005, 122(1): 014510.

doi: 10.1063/1.1827592     URL    
[56]
Bartlett N. Proc. Chem. Soc., 1962, (June): 197.
[57]
Grochala W. Chem. Soc. Rev., 2007, 36(10): 1632.

doi: 10.1039/b702109g     URL    
[58]
Tramšek M, Žemva B. Acta Chim. Slov., 2006, 53(2): 105.
[59]
Brown E C, Cohen A, Benny Gerber R. J. Chem. Phys., 2005, 122(17): 171101.

doi: 10.1063/1.1903943     URL    
[60]
Pauling L. Proc. Natl. Acad. Sci. USA, 1976, 73(5): 1403.

pmid: 16592315
[61]
Dixon D A, de Jong W A, Peterson K A, Christe K O, Schrobilgen G J. J. Am. Chem. Soc., 2005, 127(24): 8627.

doi: 10.1021/ja0423116     URL    
[62]
Jortner J, Rice S A, Wilson E G. J. Chem. Phys., 1963, 38(9): 2302.

doi: 10.1063/1.1733966     URL    
[63]
Kim M, Debessai M, Yoo C S. Nat. Chem., 2010, 2(9): 784.

doi: 10.1038/nchem.724    
[64]
Agron P A, Begun G M, Levy H A, Mason A A, Jones C G, Smith D F. Science, 1963, 139(3557): 842.

pmid: 17798193
[65]
Meissner W, Ochsenfeld R. Naturwissenschaften, 1933, 21(44): 787.
[66]
Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R, Eremets M. Phys. Rep., 2020, 856: 1.

doi: 10.1016/j.physrep.2020.02.003     URL    
[67]
London F, London H, Lindemann F A. Proc. R. Soc. Lond., 1935, 149(866): 71.
[68]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 106(1): 162.

doi: 10.1103/PhysRev.106.162     URL    
[69]
Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 108(5): 1175.

doi: 10.1103/PhysRev.108.1175     URL    
[70]
Bednorz J G, Müller K A. Z. Physi. B Condens. Matter, 1986, 64(2): 189.

doi: 10.1007/BF01303701     URL    
[71]
Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W. Phys. Rev. Lett., 1987, 58(9): 908.

pmid: 10035069
[72]
Schilling A, Cantoni M, Guo J D, Ott H R. Nature, 1993, 363(6424): 56.

doi: 10.1038/363056a0    
[73]
Chu C W, Gao L, Chen F, Huang Z J, Meng R L, Xue Y Y. Nature, 1993, 365(6444): 323.

doi: 10.1038/365323a0    
[74]
Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J, Mao H K. Phys. Rev. B., 1994, 50(6): 4260.

pmid: 9976724
[75]
Kamihara Y, Watanabe T, Hirano M, Hosono H. J. Am. Chem. Soc., 2008, 130(11): 3296.

doi: 10.1021/ja800073m     pmid: 18293989
[76]
Ginzburg V L. Contemp. Phys., 1992, 33(1): 15.

doi: 10.1080/00107519208219137     URL    
[77]
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I. Nature, 2015, 525(7567): 73.

doi: 10.1038/nature14964    
[78]
Li Y W, Hao J, Liu H Y, Li Y L, Ma Y M. J. Chem. Phys., 2014, 140(17): 174712.

doi: 10.1063/1.4874158     URL    
[79]
Goncharov A F, Hemley R J. Chem. Soc. Rev., 2006, 35(10): 899.

doi: 10.1039/b607523c     URL    
[80]
Shimizu H, Nakamichi Y, Sasaki S. J. Chem. Phys., 1991, 95(3): 2036.
[81]
Endo S, Ichimiya N, Koto K, Sasaki S, Shimizu H. Phys. Rev. B, 1994, 50(9): 5865.

pmid: 9976954
[82]
Endo S, Honda A, Sasaki S, Shimizu H, Shimomura O, Kikegawa T. Phys. Rev. B, 1996, 54(2): R717.

doi: 10.1103/physrevb.54.r717     pmid: 9985417
[83]
Sakashita M, Yamawaki H, Fujihisa H, Aoki K, Sasaki S, Shimizu H. Phys. Rev. Lett., 1997, 79(6): 1082.

doi: 10.1103/PhysRevLett.79.1082     URL    
[84]
Cockcroft J K, Fitch A N. Zeitschrift Für Kristallographie Cryst. Mater., 1990, 193(1/4): 1.
[85]
Collins M J, Ratcliffe C I, Ripmeester J A. J. Phys. Chem., 1989, 93(21): 7495.

doi: 10.1021/j100358a046     URL    
[86]
Fujihisa H, Yamawaki H, Sakashita M, Nakayama A, Yamada T, Aoki K. Phys. Rev. B, 2004, 69(21): 214102.

doi: 10.1103/PhysRevB.69.214102     URL    
[87]
Rousseau R, Boero M, Bernasconi M, Parrinello M, Terakura K. Phys. Rev. Lett., 2000, 85(6): 1254.

pmid: 10991525
[88]
Kometani S, Eremets M I, Shimizu K, Kobayashi M, Amaya K. J. Phys. Soc. Jpn., 1997, 66(9): 2564.

doi: 10.1143/JPSJ.66.2564     URL    
[89]
Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Iitaka T, Zou G T. Proc. Natl. Acad. Sci. USA, 2010, 107(4): 1317.

doi: 10.1073/pnas.0908342107     URL    
[90]
Gao G Y, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y M, Zou G T. Phys. Rev. Lett., 2008, 101(10): 107002.

doi: 10.1103/PhysRevLett.101.107002     URL    
[91]
Strobel T A, Ganesh P, Somayazulu M, Kent P R C, Hemley R J. Phys. Rev. Lett., 2011, 107(25): 255503.

doi: 10.1103/PhysRevLett.107.255503     URL    
[92]
Duan D F, Liu Y X, Tian F B, Li D, Huang X L, Zhao Z L, Yu H Y, Liu B B, Tian W J, Cui T. Sci. Rep., 2014, 4: 6968.

doi: 10.1038/srep06968    
[93]
Duan D F, Huang X L, Tian F B, Li D, Yu H Y, Liu Y X, Ma Y B, Liu B B, Cui T. Phys. Rev. B, 2015, 91(18): 180502.

doi: 10.1103/PhysRevB.91.180502     URL    
[94]
Bernstein N, Stephen Hellberg C, Johannes M D, Mazin I I, Mehl M J. Phys. Rev. B, 2015, 91(6): 060511.

doi: 10.1103/PhysRevB.91.060511     URL    
[95]
Satterthwaite C B, Toepke I L. Phys. Rev. Lett., 1970, 25(11): 741.

doi: 10.1103/PhysRevLett.25.741     URL    
[96]
Peng F, Sun Y, Pickard C J, Needs R J, Wu Q, Ma Y M. Phys. Rev. Lett., 2017, 119(10): 107001.

doi: 10.1103/PhysRevLett.119.107001     URL    
[97]
Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, Hemley R J. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(27): 6990.

doi: 10.1073/pnas.1704505114     URL    
[98]
Wang H, Li X, Gao G Y, Li Y W, Ma Y M. Wires Comput. Mol. Sci., 2018, 8(1): e1330.
[99]
Sun Y, Lv J, Xie Y, Liu H Y, Ma Y M. Phys. Rev. Lett., 2019, 123(9): 097001.

doi: 10.1103/PhysRevLett.123.097001     URL    
[100]
Salke N P, Davari Esfahani M M, Zhang Y J, Kruglov I A, Zhou J S, Wang Y G, Greenberg E, Prakapenka V B, Liu J, Oganov A R, Lin J F. Nat. Commun., 2019, 10: 4453.

doi: 10.1038/s41467-019-12326-y    
[101]
Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B, Cui T. Nat. Commun., 2019, 10: 3461.

doi: 10.1038/s41467-019-11330-6    
[102]
Geballe Z M, Liu H Y, Mishra A K, Ahart M, Somayazulu M, Meng Y, Baldini M, Hemley R J. Angew. Chem. Int. Ed., 2018, 57(3): 688.

doi: 10.1002/anie.v57.3     URL    
[103]
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, Hemley R J. Phys. Rev. Lett., 2019, 122(2): 027001.

doi: 10.1103/PhysRevLett.122.027001     URL    
[104]
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets M I. Nature, 2019, 569(7757): 528.

doi: 10.1038/s41586-019-1201-8    
[105]
Bi J K, Nakamoto Y, Zhang P Y, Shimizu K, Zou B, Liu H Y, Zhou M, Liu G T, Wang H B, Ma Y M. Nat. Commun., 2022, 13: 5952.

doi: 10.1038/s41467-022-33743-6    
[106]
Sun W G, Kuang X Y, Keen H D J, Lu C, Hermann A. Phys. Rev. B, 2020, 102(14): 144524.

doi: 10.1103/PhysRevB.102.144524     URL    
[107]
Ashcroft N W. Phys. Rev. Lett., 1968, 21(26): 1748.

doi: 10.1103/PhysRevLett.21.1748     URL    
[108]
Simon A. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788.

doi: 10.1002/(ISSN)1521-3773     URL    
[109]
Mao H K, Ji C, Li B, Liu G, Gregoryanz E. Engineering, 2020, 6(9): 976.

doi: 10.1016/j.eng.2020.07.010     URL    
[110]
Jin C, Liu Y, Wang L J, Zhang W J, Zhang T L, Zhu J L. RSC Adv., 2020, 10(50): 30069.

doi: 10.1039/D0RA06328B     URL    
[111]
Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. J. Hazard. Mater., 2009, 161(2/3): 589.

doi: 10.1016/j.jhazmat.2008.04.011     URL    
[112]
Badgujar D M, Talawar M B, Asthana S N, Mahulikar P P. J. Hazard. Mater., 2008, 151(2/3): 289.

doi: 10.1016/j.jhazmat.2007.10.039     URL    
[113]
Zarko V E. Combust. Explos. Shock. Waves, 2010, 46(2): 121.

doi: 10.1007/s10573-010-0020-x     URL    
[114]
Mailhiot C, Yang L H, McMahan A K. Phys. Rev. B, 1992, 46(22): 14419.

pmid: 10003540
[115]
Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Nat. Mater., 2004, 3(8): 558.

doi: 10.1038/nmat1146    
[116]
Gregoryanz E, Goncharov A F, Sanloup C, Somayazulu M, Mao H K, Hemley R J. J. Chem. Phys., 2007, 126(18): 184505.

doi: 10.1063/1.2723069     URL    
[117]
Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, Mao H K. Sci. Adv., 2020, 6(23): eaba9206.

doi: 10.1126/sciadv.aba9206     URL    
[118]
Lipp M J, Klepeis J P, Baer B J, Cynn H, Evans W J, Iota V, Yoo C S. Phys. Rev. B, 2007, 76: 014113.

doi: 10.1103/PhysRevB.76.014113     URL    
[119]
Tomasino D, Kim M, Smith J, Yoo C S. Phys. Rev. Lett., 2014, 113(20): 205502.

doi: 10.1103/PhysRevLett.113.205502     URL    
[120]
Samartzis P C, Wodtke A M. Int. Rev. Phys. Chem., 2006, 25(4): 527.

doi: 10.1080/01442350600879319     URL    
[121]
Goncharov A F, Gregoryanz E, Mao H K, Liu Z X, Hemley R J. Phys. Rev. Lett., 2000, 85(6): 1262.

pmid: 10991527
[122]
Eremets M I, Hemley R J, Mao H K, Gregoryanz E. Nature, 2001, 411(6834): 170.

doi: 10.1038/35075531    
[123]
Yoo C S. Matter Radiat. Extrem., 2020, 5(1): 018202.

doi: 10.1063/1.5127897     URL    
[124]
Madadi Avargani V, Zendehboudi S, Cata Saady N M, Dusseault M B. Energy Convers. Manag., 2022, 269: 115927.

doi: 10.1016/j.enconman.2022.115927     URL    
[125]
Johnston B, Mayo M C, Khare A. Technovation, 2005, 25(6): 569.

doi: 10.1016/j.technovation.2003.11.005     URL    
[1] 徐如人, 闫文付. 气体分子反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 808-820.
[2] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[3] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[4] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[5] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[6] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[7] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[8] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[9] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[10] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[11] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[12] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[13] 王贺礼, 朱美华, 梁丽, 吴婷, 张飞, 陈祥树. SSZ-13分子筛膜的制备方法及其气体分离[J]. 化学进展, 2020, 32(4): 423-433.
[14] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[15] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.