English
新闻公告
More
化学进展 2023, Vol. 35 Issue (10): 1544-1558 DOI: 10.7536/PC230215 前一篇   

• 综述 •

黄铁矿及其改性复合材料在水污染处理中的应用

迟彦萧1, 杨宇轩1, 杨昆仑1,2,*(), 孟宪荣2, 许伟2, 缪恒锋1   

  1. 1 江南大学环境与土木工程学院 无锡 214122
    2 苏州市环境科学研究所 江苏省博士后创新实践基地 苏州 215009
  • 收稿日期:2023-02-16 修回日期:2023-04-18 出版日期:2023-10-24 发布日期:2023-08-07
  • 作者简介:

    杨昆仑 江南大学环境与土木工程学院副研究员,硕士生导师,主要研究方向为新型环境功能材料的研发及在废水/污染水处理中的应用,目前主持国家自然科学基金、中央高校基本科研青年基金、无锡市生态环境局项目等多项,截至目前共发表环境领域国内外期刊论文50余篇,H指数为20(Scopus),授权发明专利3篇。

  • 基金资助:
    国家自然科学基金项目(22206061); 中央高校基本科研业务费专项资金(JUSRP122022)

Application of Pyrite and Its Modified Composite in Water Pollution Treatment

Yanxiao Chi1, Yuxuan Yang1, Kunlun Yang1,2,*(), Xianrong Meng2, Wei Xu2, Hengfeng Miao1   

  1. 1 College of Environment and Civil Engineering, Jiangnan University,Wuxi 214122, China
    2 Suzhou Institute of Environmental Science, Jiangsu Postdoctoral Innovation Practice Base,Suzhou 215009
  • Received:2023-02-16 Revised:2023-04-18 Online:2023-10-24 Published:2023-08-07
  • Contact: *e-mail: yangkunlun@jiangnan.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22206061); Fundamental Research Funds for the Central Universities(JUSRP122022)

黄铁矿因其强表面活性、沉淀吸附性、氧化还原性和较好的催化性能等在水污染处理方面具有可观的应用潜力,广泛用于污染水中重金属、有机物和各类无机盐的处理。但也因其一些固有缺陷,如极易发生团聚和比表面积较小等限制它在实际中的应用。通过形貌修饰、元素掺杂、材料负载等方法对黄铁矿进行适当改性,可以提高粒径分散性能,暴露更多功能性基团,改善电子传递能力等,从而调控黄铁矿吸附、氧化还原或催化等功能,增强污水处理能力。本文首先介绍了黄铁矿的基本情况,对黄铁矿在污水治理方面的应用现状和作用机理进行了综述,然后阐述了典型的改进方法及各自的增强机理,为黄铁矿类复合材料在环境治理领域的发展现状作了系统介绍和展望。

Due to its strong surface activity, precipitation adsorption, redox and relatively excellent photocatalytic properties, pyrite has been widely used to treat heavy metals, organic pollutants and various inorganic salts in the polluted water. However, some inherent defects of pyrite, such as small specific surface area, high susceptibility to agglomeration, etc., limit its practical applications. Appropriate modification of pyrite via morphological adjustment, elemental doping, and material loading can improve the dispersion performance of particle size, expose more functional groups and increase electron transport rate to further modulate the related properties and enhance the wastewater treatment capacity of pyrite, In this article, we firstly introduce the basic information, the application and the mechanism of pyrite in wastewater treatment, and then describe the typical modification methods of pyrite and their corresponding strengthening mechanisms for treating wastewater. This article will provide a systematic introduction and outlook for the development of pyrite-based composite materials in the field of environmental treatment.

Contents

1 Introduction

2 Adsorption of pyrite

2.1 Application and mechanism of pyrite adsorption capacity

2.2 Improvement of pyrite materials and enhancement of adsorption capacity

3 Oxidation of pyrite

3.1 Application and mechanism of pyrite oxidation ability

3.2 Improvement of pyrite materials and enhancement of oxidation capacity

4 Reduction of pyrite

4.1 Application and mechanism of pyrite reduction ability

4.2 Improvement of pyrite materials and enhancement of reduction capacity

5 Conclusion and outlook

()
图1 黄铁矿的晶体结构[10]
Fig.1 Crystal structure of pyrite[10]
图2 黄铁矿吸附重金属的反应机理图[25]
Fig.2 Mechanism of pyrite adsorbing heavy metals[25]
图3 黄铁矿吸附有机污染物的机理图
Fig.3 Mechanism of pyrite adsorbing organic pollutants
图4 提高黄铁矿吸附去除重(类)金属的几种典型策略
Fig.4 Some typical strategies to enhance the adsorption performance of pyrite for the removal of heavy metals
表1 黄铁矿改性材料吸附去除重(类)金属
Table 1 Adsorption and removal of heavy metals by pyrite modified materials
图5 黄铁矿氧化去除重金属的机理图
Fig.5 Mechanism of heavy metal removal by pyrite oxidation
图6 黄铁矿介导的Fenton氧化和过硫酸盐氧化降解有机污染物的反应机理图[4]
Fig.6 Proposed mechanisms of pyrite-mediated Fenton oxidation and persulfate oxidation processes for the degradation of organic pollutants[4]
表2 黄铁矿改性材料催化氧化去除重(类)金属
Table 2 Removal of heavy metals by oxidation of pyrite modified materials
表3 改进型黄铁矿催化氧化降解有机物
Table 3 Modified pyrite catalytic oxidation degradation of organic compounds
图7 黄铁矿还原Cr(Ⅵ)的机理图[91]
Fig.7 Mechanism of Cr(Ⅵ) reduction by pyrite[91]
图8 黄铁矿还原非金属离子的机理图
Fig.8 Mechanism of reduction of non-metallic ions by pyrite
图9 黄铁矿还原有机污染物的反应机理图
Fig.9 Reaction mechanism of pyrite reducing organic pollutants
表4 黄铁矿改性材料还原去除重金属
Table 4 Removal of heavy metals by reduction with pyrite modified materials
[1]
Ji H Y, Peng D Z, Fan C T, Zhao K K, Gu Y, Liang Y Q. Urban Clim., 2022, 43: 101148.

doi: 10.1016/j.uclim.2022.101148     URL    
[2]
Luo S X, Chen H S, Mou Q S, Wu Y H. Multipurpose Utilization of Mineral Resources, 2020, (05): 27.
(罗宿星, 陈华仕, 牟青松, 伍远辉. 矿产综合利用, 2020, (05): 27.).
[3]
Han D S, Song J K, Batchelor B, Abdel-Wahab A. J. Colloid Interface Sci., 2013, 392: 311.

doi: 10.1016/j.jcis.2012.09.084     URL    
[4]
Song B, Zeng Z T, Almatrafi E, Shen M C, Xiong W P, Zhou C Y, Wang W J, Zeng G M, Gong J L. Water Res., 2022, 211: 118048.

doi: 10.1016/j.watres.2022.118048     URL    
[5]
Li Y K, Qi X J, Li G H, Wang H. Chem. Eng. J., 2021, 410: 128303.

doi: 10.1016/j.cej.2020.128303     URL    
[6]
Guo Q, Tang G B, Zhu W J, Luo Y M, Gao X Y. J. Environ. Sci., 2021, 101: 351.

doi: 10.1016/j.jes.2020.08.029     URL    
[7]
Li Z F. Doctoral Dissertation of Shaoxing University, 2017.
(栗占锋. 绍兴文理学院博士论文, 2017.).
[8]
Wang Y. Doctoral Dissertation of Jilin University, 2022.
(王遥. 吉林大学博士论文, 2022).
[9]
Khabbaz M, Entezari M H. J. Environ. Manag., 2017, 187: 416.

doi: 10.1016/j.jenvman.2016.11.005     URL    
[10]
Zheng X F, Pan X, Nie Z Y, Yang Y, Liu L Z, Yang H Y, Xia J L. Minerals, 2018, 8(9): 366.

doi: 10.3390/min8090366     URL    
[11]
Mashayekh-Salehi A, Akbarmojeni K, Roudbari A, Peter van der Hoek J, Nabizadeh R, Dehghani M H, Yaghmaeian K. J. Clean. Prod., 2021, 291: 125235.

doi: 10.1016/j.jclepro.2020.125235     URL    
[12]
Jiang K, Liu J, Wang Y, Zhang D J, Han Y X. Appl. Surf. Sci., 2023, 610: 155476.

doi: 10.1016/j.apsusc.2022.155476     URL    
[13]
Zhang X F, Fan H, Yuan J, Tian J, Wang Y F, Lu C L, Han H S, Sun W. J. Environ. Chem. Eng., 2022, 10(6): 108856.

doi: 10.1016/j.jece.2022.108856     URL    
[14]
Shi S, Wu Q Y, Li X Z, Huang M H. Environmental Science, 2020, 41(09): 4124.

doi: 10.1021/es062723+     URL    
(石松, 吴乾元, 李新正, 黄满红. 环境科学, 2020, 41(09): 4124.).
[15]
Yang Y J, Liu J, Liu F, Wang Z, Miao S. J. Hazard. Mater., 2018, 344: 104.

doi: 10.1016/j.jhazmat.2017.10.011     URL    
[16]
Borah D, Senapati K. Fuel, 2006, 85(12/13): 1929.

doi: 10.1016/j.fuel.2006.01.012     URL    
[17]
He Y. Doctoral Dissertation of University of South China, 2019.
(何叶. 南华大学博士论文, 2019.).
[18]
Bulut G, Yenial Ü, Emiroğlu E, Ali Sirkeci A. J. Clean. Prod., 2014, 84: 526.

doi: 10.1016/j.jclepro.2013.08.018     URL    
[19]
Bostick B C, Fendorf S. Geochimica Cosmochimica Acta, 2003, 67(5): 909.

doi: 10.1016/S0016-7037(02)01170-5     URL    
[20]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Sillanpää M, Wang Y Y. Environ. Sci. Pollut. Res., 2020, 27(14): 16484.

doi: 10.1007/s11356-020-08163-y    
[21]
Hu G L. Doctoral Dissertation of Central China Normal University, 2022.
(胡国良. 华中师范大学博士论文, 2022.).
[22]
Gan M, Li J Y, Sun S J, Cao Y Y, Zheng Z H, Zhu J Y, Liu X X, Wang J, Qiu G Z. Chem. Eng. J., 2018, 341: 27.

doi: 10.1016/j.cej.2018.02.014     URL    
[23]
Liu Y L, Wu S H, Liang Z S, Liu Y, Ren H T, Jia S Y, Han X. Chem. Geol., 2019, 522: 223.

doi: 10.1016/j.chemgeo.2019.05.023     URL    
[24]
Luo S X, Nie X, Yang M Z, Fu Y H, Zeng P, Wan Q. Minerals, 2018, 8(10): 428.

doi: 10.3390/min8100428     URL    
[25]
Gao R Q, Hu P W, Dai Y N, Zhang Y, Liu L, Yang W Z. Appl. Surf. Sci., 2022, 602: 154353.

doi: 10.1016/j.apsusc.2022.154353     URL    
[26]
Wang J, Chen T H, Li P, Xie J J, Ma B D, Cao Y G. Acta Mineralogica Sinica, 2012, 32(02): 238.
(王菊, 陈天虎, 李平, 谢晶晶, 马炳德, 曹光跃. 矿物学报, 2012, 32(02): 238.).
[27]
Abdullah N H, Xian O J, Yi C Z, Yuan N S, Yaacob M S S, Salim N a A, Ahmad N, Lazim Z M, Nuid M, Abdullah F. Biointerface Research in Applied Chemistry, 2023, 13(1), 56.
[28]
Zhang J, Li R H, Li J, Liu B. Chinese Journal of Environmental Engineering, 2013, 7(10): 3856.
(张菁, 李睿华, 李杰, 刘波. 环境工程学报, 2013, 7(10): 3856.).
[29]
Pang Y M, Wang J L. Bioresour. Technol., 2020, 318: 124105.

doi: 10.1016/j.biortech.2020.124105     URL    
[30]
TorrentÓ C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J. Chem. Geol., 2011, 287(1/2): 90.

doi: 10.1016/j.chemgeo.2011.06.002     URL    
[31]
Wang D, Liu H F, Qian T W. Environmental Pollution & Control, 2014, 36(03): 30.
(王丹, 刘宏芳, 钱天伟. 环境污染与防治, 2014, 36(03): 30.).
[32]
Bostick B C, Fendorf S, Helz G R. Environ. Sci. Technol., 2003, 37(2): 285.

doi: 10.1021/es0257467     URL    
[33]
Pu J Y, Feng C P, Liu Y, Li R, Kong Z, Chen N, Tong S, Hao C B, Liu Y,. Bioresour. Technol., 2014, 173: 117.

doi: 10.1016/j.biortech.2014.09.092     URL    
[34]
Tong S, Stocks J L, Rodriguez-Gonzalez L C, Feng C P, Ergas S J. Bioresour. Technol., 2017, 244: 296.

doi: 10.1016/j.biortech.2017.07.109     URL    
[35]
Li R H, Yuan Y L, Zhan X M, Liu B. Environ. Sci. Pollut. Res., 2014, 21(2): 972.

doi: 10.1007/s11356-013-1966-5     URL    
[36]
Galvez-Martinez S, Mateo-Marti E. Life, 2018, 8(4): 50.

doi: 10.3390/life8040050     URL    
[37]
Fang Y F, Li X Y, Zhou W, Wang X W, Cai K, Jia M K, Huang Y P. Environ. Chem., 2014, 33(11): 1941.
(方艳芬, 李新玉, 周薇, 王小维, 蔡宽, 贾漫珂, 黄应平. 环境化学, 2014, 33(11): 1941.).
[38]
Cai K, Xiong S W, Zhang X X, Li R P, Huang Y P. Acta Petrologica et Mineralogica, 2014, 33(02): 370.
(蔡宽, 熊世威, 张欣欣, 李瑞萍, 黄应平. 岩石矿物学杂志, 2014, 33(02): 370.).
[39]
Hu J S, Li R H, Sun Q Q, Liu Z, Zhang X M. Chinese Journal of Environmental Engineering, 2015, 9(11): 5463.
(胡俊松, 李睿华, 孙茜茜, 刘卓, 张小梅. 环境工程学报, 2015, 9(11): 5463.).
[40]
Wang Z H, Xie X H, Xiao S M, Liu J S. Hydrometallurgy, 2010, 102(1/4): 87.

doi: 10.1016/j.hydromet.2010.01.004     URL    
[41]
Han G, Wen S M, Wang H, Feng Q C. Sep. Purif. Technol., 2020, 240: 116650.

doi: 10.1016/j.seppur.2020.116650     URL    
[42]
Pourghahramani P, Akhgar B N. J. Ind. Eng. Chem., 2015, 25: 131.

doi: 10.1016/j.jiec.2014.10.023     URL    
[43]
He X Y, Min X B, Peng T Y, Ke Y, Zhao F P, Wang Y Y, Sillanpää M. J. Chem. Eng. Data, 2019, 64(12): 5910.

doi: 10.1021/acs.jced.9b00801     URL    
[44]
Huang S J. Doctoral Dissertation of Guangdong University of Technology, 2017.
(黄树杰. 广东工业大学博士论文, 2017.).
[45]
Qi L Q, Wang X, Wang W, Li J X, Huang Y. Environ. Sci. Pollut. Res., 2022, 29(26): 39228.

doi: 10.1007/s11356-022-18963-z    
[46]
Cui J Y. Doctoral Dissertation of Taiyuan University of Science and Technology, 2016.
(崔晋艳. 太原科技大学博士论文, 2016.).
[47]
Zhang W, Huang F Y, Hu W W. Environ. Sci. Pollut. Res., 2020, 27(29): 36816.

doi: 10.1007/s11356-020-09780-3    
[48]
Kong Z, Song Y Q, Shao Z Y, Chai H X. Water Res., 2021, 206: 117737.

doi: 10.1016/j.watres.2021.117737     URL    
[49]
Li H B, Li Y F, Guo J B, Song Y Y, Hou Y N, Lu C C, Han Y, Shen X F, Liu B W. Environ. Res., 2021, 194: 110708.

doi: 10.1016/j.envres.2021.110708     URL    
[50]
Lian J J, Xu S G, Zhang Y M, Han C W. Water Sci. Technol., 2013, 67(8): 1859.

doi: 10.2166/wst.2013.067     pmid: 23579843
[51]
Fornaro T, Boosman A, Brucato J R, ten Kate I L, Siljeström S, Poggiali G, Steele A, Hazen R M. Icarus, 2018, 313: 38.

doi: 10.1016/j.icarus.2018.05.001     URL    
[52]
Galvez-Martinez S, Escamilla-Roa E, Zorzano M P, Mateo-Marti E. Appl. Surf. Sci., 2020, 530: 147182.

doi: 10.1016/j.apsusc.2020.147182     URL    
[53]
Li Y Y, Liang J L, He X, Zhang L, Liu Y S. J. Hazard. Mater., 2016, 320: 216.

doi: 10.1016/j.jhazmat.2016.08.010     URL    
[54]
Gadisa B T, Appiah-Ntiamoah R, Kim H. Environ. Sci. Pollut. Res., 2019, 26(3): 2734.

doi: 10.1007/s11356-018-3811-3    
[55]
Zhang P, Yuan S H. Geochimica Cosmochimica Acta, 2017, 218: 153.

doi: 10.1016/j.gca.2017.08.032     URL    
[56]
Liu L H, Guo D M, Ning Z P, Liu C S, Qiu G H. Water Res., 2021, 203: 117545.

doi: 10.1016/j.watres.2021.117545     URL    
[57]
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3): 407.

doi: 10.1016/j.jenvman.2010.11.011     URL    
[58]
Vidu R, Matei E, Predescu A M, Alhalaili B, Pantilimon C, Tarcea C, Predescu C. Toxics, 2020, 8(4): 101.

doi: 10.3390/toxics8040101     URL    
[59]
Kong L H, Hu X Y, He M C. Environ. Sci. Technol., 2015, 49(6): 3499.

doi: 10.1021/es505584r     URL    
[60]
Yan L, Chan T S, Jing C Y. Environ. Pollut., 2020, 262: 114309.

doi: 10.1016/j.envpol.2020.114309     URL    
[61]
Sun F L, Dempsey B A, Osseo-Asare K A. J. Colloid Interface Sci., 2012, 388(1): 170.

doi: 10.1016/j.jcis.2012.08.019     URL    
[62]
Zhao L H, Chen Y F, Liu Y X, Luo C, Wu D L. Chemosphere, 2017, 188: 557.

doi: 10.1016/j.chemosphere.2017.09.019     URL    
[63]
Yu F K, Wang Y, Ma H R, Zhou M H. Sep. Purif. Technol., 2020, 248: 117022.

doi: 10.1016/j.seppur.2020.117022     URL    
[64]
Ammar S, Oturan M A, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E. Water Res., 2015, 74: 77.

doi: 10.1016/j.watres.2015.02.006     URL    
[65]
Barhoumi N, Oturan N, Olvera-Vargas H, Brillas E, Gadri A, Ammar S, Oturan M A. Water Res., 2016, 94: 52.

doi: S0043-1354(16)30101-4     pmid: 26938493
[66]
Rahimi F, van der Hoek J P, Royer S, Javid A, Mashayekh-Salehi A, Jafari Sani M. J. Water Process. Eng., 2021, 40: 101808.

doi: 10.1016/j.jwpe.2020.101808     URL    
[67]
Nichela D A, Donadelli J A, Caram B F, Haddou M, Rodriguez Nieto F J, Oliveros E, García Einschlag F S. Appl. Catal. B Environ., 2015, 170/171: 312.

doi: 10.1016/j.apcatb.2015.01.028     URL    
[68]
Zhang P, Huang W, Ji Z, Zhou C G, Yuan S H. Geochimica Cosmochimica Acta, 2018, 238: 394.

doi: 10.1016/j.gca.2018.07.018     URL    
[69]
Zhou Y, Wang X L, Zhu C Y, Dionysiou D D, Zhao G C, Fang G D, Zhou D M. Water Res., 2018, 142: 208.

doi: 10.1016/j.watres.2018.06.002     URL    
[70]
Wu X J, Yang J M, Liu S Y, He Z W, Wang Y Y, Qin W X, Si Y B. Chemosphere, 2022, 309: 136793.

doi: 10.1016/j.chemosphere.2022.136793     URL    
[71]
Crundwell F K. Miner. Eng., 2021, 161: 106728.

doi: 10.1016/j.mineng.2020.106728     URL    
[72]
Guo D M. Doctoral Dissertation of Huazhong Agricultural University, 2021.
(郭迪满. 华中农业大学博士论文, 2021.).
[73]
Wang W T, Zhang C J, Shan J, He M C. Chem. Geol., 2020, 552: 119790.

doi: 10.1016/j.chemgeo.2020.119790     URL    
[74]
Fu D, Kurniawan T A, Lin L, Li Y Q, Avtar R, Dzarfan Othman M H, Li F. J. Environ. Manag., 2021, 286: 112246.

doi: 10.1016/j.jenvman.2021.112246     URL    
[75]
Du M M, Zhang Y Q, Hussain I, Du X D, Huang S B, Wen W. Chemosphere, 2019, 233: 744.

doi: 10.1016/j.chemosphere.2019.05.197     URL    
[76]
Lee D W, Ahn Y, Cho D W, Basak B, Jeon B H, Choi J. Environ. Pollut., 2023, 317: 120681.

doi: 10.1016/j.envpol.2022.120681     URL    
[77]
Fathinia S, Fathinia M, Rahmani A A, Khataee A. Appl. Surf. Sci., 2015, 327: 190.

doi: 10.1016/j.apsusc.2014.11.157     URL    
[78]
Gong C, Zhai J L, Wang X, Zhu W J, Yang D L, Luo Y M, Gao X Y. Chemosphere, 2022, 307: 136199.

doi: 10.1016/j.chemosphere.2022.136199     URL    
[79]
Xu C X, Kong Y L, Zhang W J, Yang M D, Wang K, Chang L, Chen W, Huang G B, Zhang J. Sep. Purif. Technol., 2022, 303: 122266.

doi: 10.1016/j.seppur.2022.122266     URL    
[80]
Zhao B C, Gong J L, Song B, Sang F, Zhou C Y, Zhang C, Cao W C, Niu Q Y, Chen Z P. Chemosphere, 2022, 308: 136427.

doi: 10.1016/j.chemosphere.2022.136427     URL    
[81]
Luo K, Pang Y, Wang D B, Li X, Wang L P, Lei M, Huang Q, Yang Q. J. Environ. Sci., 2021, 108: 201.

doi: 10.1016/j.jes.2021.02.021     URL    
[82]
Shi X G, Ma K, Gu Y W, Zhang W Q, Sun J. Sep. Purif. Technol., 2022, 292: 121060.

doi: 10.1016/j.seppur.2022.121060     URL    
[83]
Rashid J, Saleem S, Awan S U, Iqbal A, Kumar R, Barakat M A, Arshad M, Zaheer M, Rafique M, Awad M. RSC Adv., 2018, 8(22): 11935.

doi: 10.1039/C8RA02077A     URL    
[84]
Deng X H, Yang Y, Mei Y Q, Li J Q, Guo C L, Yao T J, Guo Y M, Xin B F, Wu J. J. Alloys Compd., 2022, 901: 163437.

doi: 10.1016/j.jallcom.2021.163437     URL    
[85]
Subhiksha V, Alatar A A, Okla M K, Alaraidh I A, Mohebaldin A, Aufy M, Abdel-Maksoud M A, Raju L L, Thomas A M, Khan S S. Chemosphere, 2022, 303: 135177.

doi: 10.1016/j.chemosphere.2022.135177     URL    
[86]
Zhang F L, Liu J X, Yue H R, Cheng G J, Xue X X. Vacuum, 2021, 192: 110433.

doi: 10.1016/j.vacuum.2021.110433     URL    
[87]
Guo X J, Jia J L, Xu Y N, Meng Q, Zha F, Tang X H, Tian H F. Appl. Surf. Sci., 2021, 556: 149786.

doi: 10.1016/j.apsusc.2021.149786     URL    
[88]
Raju A G, Rao B D, Himabindu G, Botsa S M. J. Mater. Res. Technol., 2022, 17: 2648.

doi: 10.1016/j.jmrt.2022.01.166     URL    
[89]
Wang H H, Lei W, Li X J, Huang Z, Jia Q L, Zhang H J. Progress in Chemistry, 2021, 32(12): 1990.
(王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 化学进展, 2021, 32(12): 1990.).
[90]
Lin Y T, Huang C P. Sep. Purif. Technol., 2008, 63(1): 191.

doi: 10.1016/j.seppur.2008.05.001     URL    
[91]
Nie X, Li G Y, Wang Y, Luo Y M, Song L, Yang S G, Wan Q. J. Hazard. Mater., 2022, 424: 127504.

doi: 10.1016/j.jhazmat.2021.127504     URL    
[92]
Yu H Q, Yu T, Zeng K. Front. Environ. Sci., 2022, 10: 955519.

doi: 10.3389/fenvs.2022.955519     URL    
[93]
Kang M L, Chen F R, Wu S J, Yang Y Q, Bruggeman C, Charlet L. Environ. Sci. Technol., 2011, 45(7): 2704.

doi: 10.1021/es1033553     URL    
[94]
Deen S G, Hendry M J, Lee Barbour S, Das S, Essilfie-Dughan J. Geochemistry, 2022, 82(1): 125863.

doi: 10.1016/j.chemer.2022.125863     URL    
[95]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(02): 543.
(刘宏芳, 钱天伟, 张敏刚. 光谱学与光谱分析, 2015, 35(02): 543.).
[96]
Li P. Doctoral Dissertation of Hefei University of Technology, 2016.
(李平. 合肥工业大学博士论文, 2016.).
[97]
Zhang Y L, Zhang K, Dai C M, Zhou X F. Chem. Eng. Sci., 2014, 111: 135.
[98]
Kriegman-King M R, Reinhard M. Environ. Sci. Technol., 1994, 28(4): 692.

doi: 10.1021/es00053a025     URL    
[99]
Zhang Y Q, Tran H P, Hussain I, Zhong Y Q, Huang S B. Chem. Eng. J., 2015, 279: 396.

doi: 10.1016/j.cej.2015.03.016     URL    
[100]
Rahim H U, Qaswar M, Wang M L, Jing X D, Cai X Y. J. Environ. Chem. Eng., 2021, 9(6): 106696.

doi: 10.1016/j.jece.2021.106696     URL    
[101]
Cheng J, Yuan J, Li S Y, Yang X L, Lu Z J, Xu J M, He Y. Crit. Rev. Environ. Sci. Technol., 2022, 52(14): 2582.

doi: 10.1080/10643389.2021.1886890     URL    
[102]
Huang H J, Chen J Y, Wang X F. Modern Mining, 2021, 37(04): 176.
(黄海军, 陈金毅, 王小凤. 现代矿业, 2021, 37(04): 176.).
[103]
Tang J C, Zhao B B, Lyu H H, Li D. J. Hazard. Mater., 2021, 413: 125415.

doi: 10.1016/j.jhazmat.2021.125415     URL    
[104]
Liu C R, Xiao H, Liu Y, Li D J, He H, Huang X H, Shen W T, Yan Z Y, Dang Z, Zhu R L. J. Colloid Interface Sci., 2023, 629: 847.

doi: 10.1016/j.jcis.2022.09.129     URL    
[105]
Guo Y D, Li C X, Gong Z H, Guo Y P, Wang X G, Gao B, Qin W J, Wang G H. J. Hazard. Mater., 2020, 397: 122580.

doi: 10.1016/j.jhazmat.2020.122580     URL    
[106]
Yang W C, Li X M, Xi D D, Li Q, Yang Z H, Min X B, Lin Z, Liao Q. Chemosphere, 2021, 281: 130957.

doi: 10.1016/j.chemosphere.2021.130957     URL    
[107]
Zhao B B, Tang J C, Lyu H H, Liu F, Wang L. J. Environ. Chem. Eng., 2022, 10(2): 107181.

doi: 10.1016/j.jece.2022.107181     URL    
[108]
Lin Y T, Li J F, Chen S Y, Zhou H D, Shu Y M, Tang L Q, Long Q, Zhang P C, Huang Y. Sep. Purif. Technol., 2023, 308: 122764.

doi: 10.1016/j.seppur.2022.122764     URL    
[109]
Liu H F, Qian T W, Zhang M G. Spectroscopy and Spectral Analysis, 2015, 35(2): 543.
[110]
Charlet L, Kang M L, Bardelli F, Kirsch R, GÉhin A, Grenèche J M, Chen F R. Environ. Sci. Technol., 2012, 46(9): 4869.

doi: 10.1021/es204181q     URL    
[111]
Ri C, Li F X, Mun H, Liu L N, Tang J C. Chem. Eng. J., 2023, 452: 139086.

doi: 10.1016/j.cej.2022.139086     URL    
[1] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[2] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[3] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[8] 汤炜, 邴研, 刘旭东, 姜鸿基. 基于二苯甲酮框架的多功能有机发光材料[J]. 化学进展, 2023, 35(10): 1461-1485.
[9] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[10] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[14] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[15] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.