English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1214-1228 DOI: 10.7536/PC230109 前一篇   后一篇

• 综述 •

稀土基中子和伽马复合屏蔽材料

鲁义东1,2, 霍志鹏1,*(), 钟国强1, 张宏1, 胡立群1   

  1. 1 中国科学院合肥物质科学研究院 合肥 230031
    2 中国科学技术大学 合肥 230026
  • 收稿日期:2023-01-28 修回日期:2023-06-10 出版日期:2023-08-24 发布日期:2023-07-10
  • 作者简介:

    霍志鹏 中国科学院合肥物质科学研究院副研究员,硕士生导师。2004年本科毕业于北京化工大学化学工程系; 2009年7月获中国科学院研究生院材料物理与化学博士学位。目前主要从事辐射防护及辐射防护材料研究,以第一/通讯作者身份在Nucl. Mater. Energy、J. Mater. Chem. A、Sci. China Mater.、Electrochim. Acta、J. Power Sources等期刊发表SCI论文30余篇。

  • 基金资助:
    聚变堆主机关键系统综合研究设施(CRAFT)(2018-000052-73-01-001228); 能源研究院(安徽省能源实验室)项目(21KZL401); 能源研究院(安徽省能源实验室)项目(21KHH105); 能源研究院(安徽省能源实验室)项目(21KZS205)

Rare Earth Based Neutron and Gamma Composite Shielding Materials

Yidong Lu1,2, Zhipeng Huo1(), Guoqiang Zhong1, Hong Zhang1, Liqun Hu1   

  1. 1 Hefei Institutes of Physical Science, Chinese Academy of Sciences,Hefei 230031, China
    2 University of Science and Technology of China, Hefei 230026, China
  • Received:2023-01-28 Revised:2023-06-10 Online:2023-08-24 Published:2023-07-10
  • Contact: *e-mail : zhipeng.huo@ipp.ac.cn
  • Supported by:
    Comprehensive Research Facility for Fusion Technology Program of China(2018-000052-73-01-001228); Institute of Energy, Hefei Comprehensive National Science Center(21KZL401); Institute of Energy, Hefei Comprehensive National Science Center(21KHH105); Institute of Energy, Hefei Comprehensive National Science Center(21KZS205)

随着航空航天、核技术等领域的发展和核能的广泛利用,对核辐射屏蔽材料的性能也提出更高的要求。核反应中产生的中子、伽马射线的穿透能力较强,危害较大,所以对于中子、伽马辐射屏蔽材料的研究成为辐射防护研究的重点。稀土元素具有较高的中子吸收截面和高原子序数,逐渐被科研人员重视并应用于中子、伽马辐射屏蔽材料的研发中。本文简述了稀土材料在辐射屏蔽材料领域的应用,介绍了稀土元素与中子和伽马射线的作用原理;根据基体材料的类别将稀土基中子和伽马辐射屏蔽材料分为稀土金属基、稀土聚合物基、稀土玻璃基三类,分别介绍了三类稀土基复合屏蔽材料的研究进展,并分析了稀土材料用于中子、伽马辐射屏蔽存在的问题与展望。

With the development of aerospace, nuclear technology and the wide use of nuclear energy, the requirement for the performance of nuclear radiation shielding materials have gradually increased. Since the high energy and strong penetrating ability of neutrons and gamma rays produced by nuclear reactions, they are of great harm to human beings and the environment. Therefore, the research on neutron and gamma radiation shielding materials has become a hot research topic of radiation protection. Rare earth elements have been gradually attracted considerable academic attention, and applied to research and development of neutron and gamma radiation shielding materials owing to their high neutron absorption cross section and high atomic numbers. This paper briefly introduces the application of rare earth materials in radiation shielding materials, and introduces the interaction mechanisms of rare earth elements with neutrons and gamma rays. According to the different types of substrate materials, the rare earth based neutron and gamma composite shielding materials can be divided into three categories: rare earth metal based, rare earth polymer based and rare earth glass based materials. The research progress of these three kinds of rare earth based radiation shielding materials is introduced respectively, and the possible problems and prospects of rare earth materials for neutron and gamma shielding radiation are analyzed.

Contents

1 Introduction

2 Interaction of neutron and gamma with rare earth elements

2.1 Interaction of neutron with rare earth elements

2.2 Interaction of γ-ray with rare earth elements

3 Research progress of rare earth composite shielding materials

3.1 Rare earth metal based composite shielding materials

3.2 Rare earth polymer based composite shielding materials

3.3 Rare earth glass based composite shielding materials

4 Conclusion and outlook

()
图1 Gd、Sm、Eu、B的中子总截面
Fig.1 The neutron total cross-section of Gd, Eu, Sm, B
表1 图1中几种元素的热中子总截面
Table 1 Thermal neutron total cross-section of elements obtained from Fig.1
图2 三种相互作用随能量和原子序数的变化关系[28]
Fig.2 The relationship of three interactions with energy and atomic number[28]
图3 (a)光电效应示意图;(b)康普顿效应示意图;(c)电子对效应示意图[29]
Fig.3 The schematic of (a) photoelectric, (b) compton scattering and (c) electron pair effect[29]
图4 屏蔽材料宏观中子吸收截面与强塑积的关系[41????~46]
Fig.4 Relationship between macroscopic neutron absorption cross section and the product of tensile strength and elongation of shielding materials[41????~46]. Copyright 2019, Elsevier
表2 316L合金成分表[50]
Table 2 Chemical composition of 316L alloy[50]
表3 典型稀土金属基复合屏蔽材料及其性能参数a)
Table 3 Typical metal-based rare earth composite shielding materials and their performance parametersa)
图5 Sm2O3聚乙烯复合屏蔽材料的热中子、伽马线性衰减系数[67]
Fig.5 Thermal neutron and gamma linear attenuation coefficients of Sm2O3 polyethylene composite shielding materials[67]
图6 柔性辐射屏蔽材料(a)WO3/Gd2O3/RTV和(b)WO3/Gd2O3/CTS/RTV[13]
Fig.6 Flexible radiation shielding materials (a) WO3/Gd2O3/RTV, (b) WO3/Gd2O3/CTS/RTV[13]
表4 典型的稀土聚合物基复合屏蔽材料及其性能参数a)
Table 4 Typical polymer-based rare earth shielding materials and their performance parameters a)
图7 Al(0.1-x)Bi1.8B0.6O3Y2x玻璃样品[90]
Fig.7 Al(0.1-x)Bi1.8B0.6O3Y2x glass samples[90]. Copyright 2020, Elsevier
图8 (a)Gd 17.5玻璃对不同能量伽马射线屏蔽参数的理论值与实验值;(b)WGB玻璃在0.662 MeV伽马光子能量辐照条件下的屏蔽参数;(c)在0.662 MeV伽马光子能量辐照条件下的WGB玻璃和标准屏蔽材料的半值层[97]
Fig.8 (a) Theoretical and experimental values of shielding parameters of Gd 17.5 glass at different γ-ray energy; (b) shielding parameters of WGB glass at 0.662 MeV photon energy; (c) half value layer of WGB glass and standard shielding materials at 0.662 MeV photon energy[97]. Copyright 2022, Elsevier
图9 (a)TBLC玻璃样品和(b)TBLC玻璃的透射光谱[103]
Fig.9 (a) TBLC glass samples, (b) transmittance spectra of TBLC glass[103]. Copyright 2022, Elsevier
图10 (a)样品1的透射光谱图和(b)样品2的透射光谱图[109]
Fig.10 (a) Transmission spectrum of sample 1, (b) transmission spectrum of sample 2[109]
表5 典型稀土基玻璃屏蔽材料及其性能参数a)
Table 5 Typical glass-based rare earth shielding materials and their performance parameters a)
[1]
Xu Y, Kang J J, Yuan J H. Sustainability, 2018, 10(6): 2086.

doi: 10.3390/su10062086     URL    
[2]
Thomas G A, Symonds P. Clin. Oncol., 2016, 28(4): 231.

doi: 10.1016/j.clon.2016.01.007     URL    
[3]
Lalkovčiová M. Neural Regen. Res., 2022, 17(9): 1885.

doi: 10.4103/1673-5374.335137     URL    
[4]
Francis E B, Nguyen T M N, Lee H C, Deokjung L. Nucl. Eng. Technol., 2022, 54(8): 3073.

doi: 10.1016/j.net.2022.03.001     URL    
[5]
Sun W Q, Hu G, Yu X H, Shi J, Xu H, Wu R J, He C, Yi Q, Hu H S. Materials, 2021, 14(22): 7004.

doi: 10.3390/ma14227004     URL    
[6]
Zan Y N. Doctoral Dissertation of University of Science and Technology of China, 2020
(昝宇宁. 中国科学技术大学博士论文, 2020.).
[7]
Abdullah M A H, Rashid R S M, Amran M, Hejazii F, Azreen N M, Fediuk R, Lei Voo Y, Vatin N I, Idris M I. Polymers, 2022, 14(14): 2830.

doi: 10.3390/polym14142830     URL    
[8]
Konefał A, Bieniasiewicz M, Wendykier J, Adamczyk S, Wrońska A. Radiat. Phys. Chem., 2021, 185: 109513.
[9]
Gan B, Liu S C, He Z, Chen F C, Niu H X, Cheng J C, Tan B, Yu B. Acta Metall. Sin. Engl. Lett., 2021, 34(12): 1609.
[10]
Piotrowski T. Constr. Build. Mater., 2021, 277: 122238.
[11]
Mehelli O, Derradji M, Belgacemi R, Abdous S. Radiat. Phys. Chem., 2022, 193: 109510.
[12]
Zhu X G, Zhang X L, Guo S Y. Nanoscale, 2022, 14(29): 10581.

doi: 10.1039/D2NR02385G     URL    
[13]
Chen W. Master Dissertation of Nanjing University of Aeronautics and Astronautics, 2017.
(陈威. 南京航空航天大学硕士论文, 2017.).
[14]
Liao Y C. Doctoral Dissertation of China Academy of Engineering Physics, 2018.
(廖益传. 中国工程物理研究院博士论文, 2018.).
[15]
Chen Y, Chen Y C, Zhai H Y, Wang F F, Wang M L, Chen Z, Zhong S Y, Li X F, Wang H W. Intermetallics, 2022, 148: 107630.
[16]
Yang X Y. Doctoral Dissertation of University of Science and Technology of China, 2022.
(杨新异. 中国科学技术大学博士论文, 2022. ).
[17]
Deliormanlı A M, Ensoylu M, Issa S A M, Rammah Y S, ALMisned G, Tekin H O. Appl. Phys. A, 2022, 128(4): 266.

doi: 10.1007/s00339-022-05408-0    
[18]
Zhao S. Master Dissertation of University of Science and Technology of China, 2021.
(赵盛. 中国科学技术大学硕士论文, 2021.).
[19]
Mansouri E, Mesbahi A, Malekzadeh R, Ghasemi Janghjoo A, Okutan M. Int. J. Radiat. Res., 2020, 18(4): 611.

doi: 10.52547/ijrr.18.4.611     URL    
[20]
Fu X L, Ji Z B, Lin W, Yu Y F, Wu T. Sci. Technol. Nucl. Installations, 2021, 2021: 5541047.
[21]
Zhou Y C. Master Dissertation of Harbin Institute of Technology, 2019.
(周玉超. 哈尔滨工业大学硕士论文, 2019.).
[22]
Li J L. Master Dissertation of Southwest University of Science and Technology, 2021.
(李佳乐. 西南科技大学硕士论文, 2021.).
[23]
Yuan L L. Doctoral Dissertation of University of Science and Technology Beijing, 2016.
(元琳琳. 北京科技大学博士论文, 2016.).
[24]
Issa S A M, Sayyed M I, Zaid M H M, Matori K A. J. Spectrosc., 2017, 2017: 9792816.
[25]
Jia X B. Master Dissertation of Southwest University of Science and Technology, 2016.
(贾夏冰. 西南科技大学硕士论文, 2016.).
[26]
Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H. Int. J. Mol. Sci., 2021, 22(16): 9079.

doi: 10.3390/ijms22169079     URL    
[27]
Bijanu A, Arya R, Agrawal V, Tomar A S, Gowri V S, Sanghi S K, Mishra D, Salammal S T. J. Polym. Res., 2021, 28(10): 392.

doi: 10.1007/s10965-021-02751-3    
[28]
Liu L P. Master Dissertation of Southwest University of Science and Technology, 2018.
(刘立苹. 西南科技大学硕士论文, 2018.).
[29]
Zhao S, Huo Z P, Zhong G Q, Zhang H, Hu L Q. J. Funct. Mater., 2021, 52(3): 3001.
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 功能材料, 2021, 52(3): 3001.).

doi: 10.3969/j.issn.1001-9731.2021.03.001    
[30]
Gul A O, Kavaz E, Basgoz O, Guler O, ALMisned G, Bahceci E, Albayrak M G, Tekin H O. Intermetallics, 2022, 146: 107593.
[31]
Kavaz E, Gul A O, Basgoz O, Guler O, ALMisned G, Bahceci E, Guler S H, Tekin H O. Appl. Phys. A, 2022, 128(8): 694.

doi: 10.1007/s00339-022-05813-5    
[32]
Usta M, Tozar A. Radiat. Phys. Chem., 2020, 177: 109086.
[33]
Windsor C G, Marshall J M, Morgan J G, Fair J, Smith G D W, Rajczyk-Wryk A, TarragÓ J M. Nucl. Fusion, 2018, 58(7): 076014.
[34]
Kim H, Lim J, Kim J, Lee J, Seo Y. Adv. Eng. Mater., 2020, 22(6): 1901448.
[35]
Ekinci N, El-Agawany F I, Mahmoud K A, Karabulut A, Aygun B, Yousef E, Rammah Y S. Radiat. Phys. Chem., 2021, 186: 109483.
[36]
Dewen T, Shuliang Z, Liang Y. J. Alloys Compd., 2019, 803: 466.

doi: 10.1016/j.jallcom.2019.06.061     URL    
[37]
Saad M, Almohiy H, Alqahtani M S, Alshihri A A, Shalaby R M. Radiat. Eff. Defects. Solids., 2022, 177(5/6): 545.

doi: 10.1080/10420150.2022.2063125     URL    
[38]
Kaur T, Vermani Y K, Al-Buriahi M S, Alzahrani J S, Singh T. Phys. Scr., 2022, 97(5): 055009.
[39]
Wu X G, Huang Y H, Zha D, Liu Y, Chen J, Luo L, Zhang X M, Luo D F. Mater. Today Commun., 2022, 33: 104521.
[40]
Hu C, Huang Q Y, Zhai Y T. RSC Adv., 2021, 11(63): 40148.

doi: 10.1039/D1RA07500D     URL    
[41]
Jiang L T, Xu Z G, Fei Y K, Zhang Q, Qiao J, Wu G H. Compos. B Eng., 2019, 168: 183.

doi: 10.1016/j.compositesb.2018.12.087     URL    
[42]
Chen H S, Wang W X, Li Y L, Zhang P, Nie H H, Wu Q C. J. Alloys Compd., 2015, 632: 23.

doi: 10.1016/j.jallcom.2015.01.048     URL    
[43]
Chen H S, Wang W X, Li Y L, Zhou J, Nie H H, Wu Q C. Mater. Des., 2016, 94: 360.

doi: 10.1016/j.matdes.2016.01.030     URL    
[44]
Zhang P, Li Y L, Wang W X, Gao Z P, Wang B D. J. Nucl. Mater., 2013, 437(1/3): 350.

doi: 10.1016/j.jnucmat.2013.02.050     URL    
[45]
Li Y L, Wang W X, Zhou J, Chen H S, Zhang P. J. Nucl. Mater., 2017, 487: 238.

doi: 10.1016/j.jnucmat.2017.02.020     URL    
[46]
Park J J, Hong S M, Lee M K, Rhee C K, Rhee W H. Nucl. Eng. Des., 2015, 282: 1.

doi: 10.1016/j.nucengdes.2014.10.020     URL    
[47]
Cong S, Ran G, Li Y P, Chen Y. Powder Technol., 2020, 369: 127.

doi: 10.1016/j.powtec.2020.05.029     URL    
[48]
Ahn J H, Jung H D, Im J H, Jung K H, Moon B M. Mater. Sci. Eng. A, 2016, 658: 255.

doi: 10.1016/j.msea.2016.02.005     URL    
[49]
Lee S W, Ahn J H, Moon B M, Kim D, Oh S, Kim Y J, Jung H D. Mater. Des., 2020, 194: 108906.
[50]
Yang X Y, Song L L, Chang B, Yang Q, Mao X D, Huang Q Y. Nucl. Mater. Energy, 2020, 23: 100739.
[51]
Zhang P, Jia C P, Li J, Wang W X. Mater. Lett., 2020, 276: 128082.
[52]
Zhang P, Li J, Wang W X, Tan X Y, Xie L, Guo F Y. Vacuum, 2019, 162: 92.

doi: 10.1016/j.vacuum.2019.01.004     URL    
[53]
Wang H, Wang T, Peng J. Phys. Metals Metallogr., 2021, 122(14): 1640.

doi: 10.1134/S0031918X21140246    
[54]
Mesbahi A, Verdipoor K, Zolfagharpour F, Alemi A. Pol. J. Med. Phys. Eng., 2019, 25(4): 211.
[55]
Li X M, Wu J Y, Tang C Y, He Z K, Yuan P, Sun Y, Lau W M, Zhang K, Mei J, Huang Y H. Compos. B Eng., 2019, 159: 355.

doi: 10.1016/j.compositesb.2018.10.003     URL    
[56]
Zhang Q P, Liang D M, Zhu W F, Liu J H, Wu Y, Xu D G, Bai X Y, Wei M, Zhou Y L. J. Solid State Chem., 2019, 269: 594.

doi: 10.1016/j.jssc.2018.10.043     URL    
[57]
Cheraghi E, Chen S Y, Yeow J T W. IEEE Nanotechnol. Mag., 2021, 15(3): 8.
[58]
Li J L, Zhang Q P, Liu X, Chen R C, Xu W D, Sun N, Li Y T, Yang W B, Xu D G, Zhou Y L. J. Appl. Polym. Sci., 2021, 138(31): 50774.

doi: 10.1002/app.v138.31     URL    
[59]
Fan J H, Wu J Y, Ma Y. Int. J. Mod. Phys. B, 2020, 34(7): 2050046.
[60]
Lou L, He Z Y, Li Y J, Li Y S, Zhou Y L, Lin C M, Yang Z J, Fan J H, Zhang K, Yang W B. Int. J. Energy Res., 2020, 44(9): 7674.

doi: 10.1002/er.v44.9     URL    
[61]
Poltabtim W, Thumwong A, Wimolmala E, Rattanapongs C, Tokonami S, Ishikawa T, Saenboonruang K. Polymers, 2022, 14(21): 4481.

doi: 10.3390/polym14214481     URL    
[62]
Saenboonruang K, Poltabtim W, Thumwong A, Pianpanit T, Rattanapongs C. Polymers, 2021, 13(12): 1930.

doi: 10.3390/polym13121930     URL    
[63]
Bo S, Shuquan C, Bin K, Hongxu Z, Yaodong D. Adv. Mat. Res., 2014, 900: 209.
[64]
İrim Ş G, Alchekh Wis A, Keskin M A, Baykara O, Ozkoc G, Avcı A, Doğru M, Karakoç M. Radiat. Phys. Chem., 2018, 144: 434.

doi: 10.1016/j.radphyschem.2017.10.007     URL    
[65]
Wan S P, Wang W X, Chen H S, Zhou J, Zhang Y Y, Liu R F, Feng R Y. Vacuum, 2020, 176: 109304.
[66]
Huo Z P, Zhao S, Zhong G Q, Zhang H, Hu L Q. Nucl. Mater. Energy, 2021, 29: 101095.
[67]
Toyen D, Paopun Y, Changjan D, Wimolmala E, Mahathanabodee S, Pianpanit T, Anekratmontree T, Saenboonruang K. Polymers, 2021, 13(19): 3390.

doi: 10.3390/polym13193390     URL    
[68]
Li R, Gu Y Z, Yang Z J, Li M, Hou Y W, Zhang Z G. Mater. Des., 2017, 124: 121.

doi: 10.1016/j.matdes.2017.03.045     URL    
[69]
Wang H Q, Huang Q Y, Zhai Y T. Polymers, 2022, 14(3): 638.

doi: 10.3390/polym14030638     URL    
[70]
Kiani M A, Ahmadi S J, Outokesh M, Adeli R, Mohammadi A. Radiat. Phys. Chem., 2017, 141: 223.

doi: 10.1016/j.radphyschem.2017.07.013     URL    
[71]
Abuali Galehdari N, Kelkar A D. J. Mater. Res., 2017, 32(2): 426.

doi: 10.1557/jmr.2016.494     URL    
[72]
Li R, Gu Y Z, Wang Y D, Yang Z J, Li M, Zhang Z G. Mater. Res. Express, 2017, 4(3): 035035.
[73]
Abuibaid A Z A, Iqbal M Z. Heliyon, 2020, 6(3): e03589.
[74]
Zhao S, Huo Z P, Zhong G Q, Zhang H, Hu L Q. Chem. J. Chinese. U., 2022, 43(6): 20220039.
(赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 高等学校化学学报, 2022, 43(6): 20220039.).
[75]
Shang W H, Jiang H. High Perform. Polym., 2020, 32(7): 793.

doi: 10.1177/0954008320902216     URL    
[76]
Giang T, Kim J. J. Electron. Mater., 2017, 46(1): 627.

doi: 10.1007/s11664-016-4704-1     URL    
[77]
Qu C Y, Tang Y, Wang D Z, Fan X P, Li H F, Liu C W, Su K, Zhao D X, Jing J Q, Zhang X. J. Appl. Polym. Sci., 2021, 138(1): 49640.

doi: 10.1002/app.v138.1     URL    
[78]
Valueva M I, Zelenina I V, Zharinov M A, Khaskov M A. Inorg. Mater. Appl. Res., 2021, 12(6): 1581.

doi: 10.1134/S2075113321060290    
[79]
Ke H J, Zhao L W, Zhang X H, Qiao Y J, Wang G Y, Wang X D. Polym. Test., 2020, 90: 106746.
[80]
Jiang S H, Uch B, Agarwal S, Greiner A. ACS Appl. Mater. Interfaces, 2017, 9(37): 32308.

doi: 10.1021/acsami.7b11045     URL    
[81]
Wang P, Tang X B, Chai H, Chen D, Qiu Y L. Fusion Eng. Des., 2015, 101: 218.

doi: 10.1016/j.fusengdes.2015.09.007     URL    
[82]
Baykara O, İrim Ş G, Wis A A, Keskin M A, Ozkoc G, Avcı A, Doğru M. Polym. Adv. Technol., 2020, 31(11): 2466.

doi: 10.1002/pat.v31.11     URL    
[83]
Castley D, Goodwin C, Liu J F. Radiat. Phys. Chem., 2019, 165: 108435.
[84]
Kaur P, Singh K J, Thakur S, Sarin N. AIP. Conf. Proc., 2019, 2142(1): 120006.
[85]
Stalin S, Edukondalu A, Boukhris I, Alrowaili Z A, Al-Baradi A M, Olarinoye I O, Gaikwad D K, Al-Buriahi M S. Ceram. Int., 2021, 47(21): 30137.

doi: 10.1016/j.ceramint.2021.07.192     URL    
[86]
Halimah M K, Azuraida A, Ishak M, Hasnimulyati L. J. Non Cryst. Solids, 2019, 512: 140.

doi: 10.1016/j.jnoncrysol.2019.03.004     URL    
[87]
Elkhoshkhany N, Marzouk S, El-Sherbiny M, Ibrahim H, Burtan-Gwizdala B, Alqahtani M S, Hussien K I, Reben M, Yousef E S. Materials, 2022, 15(15): 5393.

doi: 10.3390/ma15155393     URL    
[88]
Boodaghi Malidarre R, Akkurt I. Polym. Compos., 2022, 43(8): 5418.

doi: 10.1002/pc.v43.8     URL    
[89]
Vani P, Vinitha G, Sayyed M I, AlShammari M M, Manikandan N. Nucl. Eng. Technol., 2021, 53(12): 4106.

doi: 10.1016/j.net.2021.06.009     URL    
[90]
Alatawi A, Alsharari A M, Issa S A M, Rashad M, Darwish A A A, Saddeek Y B, Tekin H O. Ceram. Int., 2020, 46(3): 3534.

doi: 10.1016/j.ceramint.2019.10.069     URL    
[91]
Gomaa H M, Saudi H A, Yahia I S, Zahran H Y. J. Mater. Sci. Mater. Electron., 2022, 33(6): 3284.

doi: 10.1007/s10854-021-07529-3    
[92]
Kavaz E, Tekin H O, Agar O, Altunsoy E E, Kilicoglu O, Kamislioglu M, Abuzaid M M, Sayyed M I. Ceram. Int., 2019, 45(12): 15348.

doi: 10.1016/j.ceramint.2019.05.028    
[93]
Kinno M, Kimura K I, Ishikawa T, Miura T, Ishihama S, Hayasaka N, Nakamura T. J. Nucl. Sci. Technol., 2002, 39(3): 215.

doi: 10.1080/18811248.2002.9715178     URL    
[94]
Kilic G, Issa S A M, Ilik E, Kilicoglu O, Tekin H O. Ceram. Int., 2021, 47(2): 2572.

doi: 10.1016/j.ceramint.2020.09.103     URL    
[95]
Saudi H A, Abd-Allah W M, Shaaban K S. J. Mater. Sci. Mater. Electron., 2020, 31(9): 6963.

doi: 10.1007/s10854-020-03261-6    
[96]
Mariselvam K. Optik, 2021, 230: 166319.
[97]
Kaewnuam E, Wantana N, Tanusilp S, Kurosaki K, Limkitjaroenporn P, Kaewkhao J. Radiat. Phys. Chem., 2022, 190: 109805.
[98]
Juhim F, Chee F P, Awang A, Duinong M, Rasmidi R, Rumaling M I. ECS J. Solid State Sci. Technol., 2022, 11(7): 076006.
[99]
Alzahrani J S, Eke C, Alrowaili Z A, Boukhris I, Mutuwong C, Bourham M A, Al-Buriahi M S. Solid State Sci., 2022, 129: 106902.
[100]
Lakshminarayana G, Kumar A, Lira A, Dahshan A, Hegazy H H, Kityk I V, Lee D E, Yoon J, Park T. Radiat. Phys. Chem., 2020, 170: 108633.
[101]
El-Agawany F I, Kavaz E, Perişanoğlu U, Al-Buriahi M, Rammah Y S. Appl. Phys. A, 2019, 125(12): 838.

doi: 10.1007/s00339-019-3129-0    
[102]
Kozlovskiy A L, Shlimas D I, Zdorovets M V. J. Mater. Sci. Mater. Electron., 2021, 32(9): 12111.

doi: 10.1007/s10854-021-05839-0    
[103]
Ilik E, Kilic G, Issever U G, Issa S A M, Zakaly H M H, Tekin H O. Ceram. Int., 2022, 48(1): 1152.

doi: 10.1016/j.ceramint.2021.09.200     URL    
[104]
Rammah Y S, Özpolat Ö F, Alım B, Şakar E, El-Mallawany R, El-Agawany F I. Radiat. Phys. Chem., 2020, 176: 109069.
[105]
Saad M, Elhouichet H. J. Alloys Compd., 2019, 806: 1403.

doi: 10.1016/j.jallcom.2019.06.353     URL    
[106]
Tekin H O, ALMisned G, Rammah Y S, Susoy G, Ali F T, Baykal D S, Elshami W, Zakaly H M H, Issa S A M. Appl. Phys. A, 2022, 128(6): 470.

doi: 10.1007/s00339-022-05620-y    
[107]
Saddeek Y B, Issa S A M, Altunsoy Guclu E E, Kilicoglu O, Susoy G, Tekin H O. Ceram. Int., 2020, 46(10): 16781.

doi: 10.1016/j.ceramint.2020.03.254     URL    
[108]
Saudi H A, Hassaan M Y, Tarek E, Borham E. J. Opt., 2020, 49(4): 438.

doi: 10.1007/s12596-020-00652-0    
[109]
Luo Q. Master Dissertation of Southwest University of Science and Technology, 2017.
(罗庆. 西南科技大学硕士论文, 2017.).
[110]
Suresh A A, Vinothkumar P, Mohapatra M, Dhavamurthy M, Murugasen P. Radiat. Phys. Chem., 2022, 193: 109941.
[111]
Sayyed M I, Dong M G, Tekin H O, Lakshminarayana G, Mahdi M A. Mater. Chem. Phys., 2018, 215: 183.

doi: 10.1016/j.matchemphys.2018.04.106     URL    
[112]
Divina R, Sathiyapriya G, Marimuthu K, Askin A, Sayyed M I. J. Non Cryst. Solids, 2020, 545: 120269.
[113]
Issa S A M, Ali A M, Tekin H O, Saddeek Y B, Al-Hajry A, Algarni H, Susoy G. Nucl. Eng. Technol., 2020, 52(6): 1297.

doi: 10.1016/j.net.2019.11.017     URL    
[114]
Aladailah M W, Tashlykov O L, Marashdeh M W, Akhdar H. Radiat. Eff. Defects Solids, 2022, 177(5/6): 455.

doi: 10.1080/10420150.2022.2043320     URL    
[1] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[2] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[3] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[4] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[5] 姜玲, 阙亚萍, 丁勇, 胡林华, 张昌能, 戴松元. 上/下转换材料在染料敏化太阳电池中的应用进展[J]. 化学进展, 2016, 28(5): 637-646.
[6] 李龙飞, 摆音娜, 雷鸣, 刘力. 橡胶硫化促进剂的研究进展[J]. 化学进展, 2015, 27(10): 1500-1508.
[7] 赵传奇, 曲晓刚*. 稀土手性配合物在核酸识别及调控方面的研究[J]. 化学进展, 2013, 25(04): 539-544.
[8] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.
[9] 秦玉升, 王献红, 王佛松. 二氧化碳基共聚物[J]. 化学进展, 2011, 23(4): 613-622.
[10] 刘政, 孙丽宁, 施利毅, 张登松. 近红外稀土荧光在功能材料领域的研究进展[J]. 化学进展, 2011, 23(01): 153-164.
[11] 王延梅 王丽. 杯芳烃稀土配合物的光性能及应用*[J]. 化学进展, 2010, 22(0203): 427-432.
[12] 杨晓峰,董相廷,王进贤,刘桂霞. 无机纳米稀土发光材料的制备方法*[J]. 化学进展, 2009, 21(6): 1179-1186.
[13] 张翼,周新新,张玉洁. 金属氧化物涂层钛阳极的研究* [J]. 化学进展, 2009, 21(09): 1827-1831.
[14] 张金超,王鹏,孙静,刘翠莲,陈华,黄健. 从稀土对骨代谢的影响看稀土的药用及安全性* [J]. 化学进展, 2009, 21(05): 919-928.
[15] 耿杰,于海佳,张海元,徐海霞,曲晓刚. 稀土氨基酸配合物与核酸的相互作用*[J]. 化学进展, 2009, 21(05): 866-872.
阅读次数
全文


摘要

稀土基中子和伽马复合屏蔽材料