English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 954-967 DOI: 10.7536/PC230102 前一篇   后一篇

• 综述 •

凝聚态化学视角下的多孔材料缺陷工程

郑跃楠1,2, 杨佳奇1, 乔振安1,*()   

  1. 1 吉林大学化学学院 无机合成与制备化学国家重点实验室 长春 130031
    2 大连理工大学化工学院 精细化工国家重点实验室 大连 116024
  • 收稿日期:2022-12-01 修回日期:2023-03-19 出版日期:2023-06-24 发布日期:2023-04-30
  • 基金资助:
    青年千人计划项目和国家自然科学基金项目(21671073); 青年千人计划项目和国家自然科学基金项目(21621001)

Condensed Matter Chemistry: The Defect Engineering of Porous Materials

Yuenan Zheng1,2, Jiaqi Yang1, Zhen-An Qiao1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun,Jilin 130031, China
    2 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian,Liaoning 116024, China
  • Received:2022-12-01 Revised:2023-03-19 Online:2023-06-24 Published:2023-04-30
  • Contact: *e-mail: qiaozhenan@jlu.edu.cn
  • Supported by:
    The 1000 Talents Plan for Young Talents and the National Natural Science Foundation of China(21671073); The 1000 Talents Plan for Young Talents and the National Natural Science Foundation of China(21621001)

凝聚态化学主要研究涉及多种态材料的多层次结构、化学性质与化学反应、凝聚态构筑化学中的前沿科学问题。多孔材料具有比表面积高、孔道结构可调控的特性,在多种应用环境中展现巨大潜力。随着对多孔材料缺陷工程策略的不断深入探索,凝聚态化学的研究范围被极大扩展。在多孔材料的缺陷位点构筑以及功能化应用中,凝聚态化学渗透于每个过程中。缺陷型多孔材料的合成中涉及的物相、孔结构和缺陷位点的形成与调控;在性能应用过程中表面活性位点促进客体物种的转化,充分体现出凝聚态化学过程中的各种化学反应、多孔材料微观结构与不同物种间的表、界面相互作用。本文以缺陷型多孔材料为研究对象开展讨论,包括适于缺陷工程策略的无机多孔材料、多孔材料中缺陷结构的类型、多孔材料凝聚态化学缺陷位点的构筑与调控、多孔材料中缺陷位点的表征以及富缺陷型多孔材料在能源存储和催化领域中的应用,以期从凝聚态化学角度加深对多孔材料缺陷工程的认识,并期待以凝聚态化学为指导进一步推动功能化多孔材料的发展。

Condensed matter chemistry is mainly concerned with the multilevel structure, chemical properties and chemical reactions of various states of materials, and frontier scientific issues in condensed matter construction chemistry. Porous materials with high surface area and adjustable pore structure, show great potential in a variety of applications. With the continuous exploration of defect engineering strategies for porous materials, the research scope of condensed matter chemistry has been greatly expanded. In the construction of defect sites and the functionalization application of porous materials, condensed matter chemistry permeates every process. The formation and regulation of phase, pore structure and defect sites involved in the synthesis of defective porous materials and the effective transformation of guest species on surface active sites in performance application, which fully reflects various chemical reactions, surface and interface interactions between the microstructure of porous materials and different species in condensed matter chemistry. This paper takes defective porous materials as the research object to discuss, including the suitable inorganic porous materials for defect engineering strategies, the types of defect structures in porous materials, the construction and regulation of defect sites of porous materials in condensed matter chemistry, the characterization of defect sites in porous materials, and applications of defect-rich porous materials in the field of energy storage and catalysis. In is desired to deepen the understanding of porous material defect engineering from the perspective of condensed matter chemistry, and it is expected to further promote the development of functional porous materials under the guidance of condensed matter chemistry.

Contents

1 Introduction

2 Porous materials suitable for defect engineering

3 Defect types of porous materials

3.1 Vacancy defect

3.2 Doping defect

3.3 Other type defects

4 Construction methods for defect engineering of porous materials

4.1 In-situ synthesis method

4.2 High temperature heat treatment method

4.3 Chemical reduction method

4.4 Vacuum activation method

4.5 Other methods

5 Characterization method of defect structure in porous materials

5.1 Micromorphology characterization

5.2 X-ray photoelectron spectroscopy

5.3 Raman spectrum

5.4 Electron paramagnetic resonance spectroscopy

5.5 Synchrotron radiation X-ray fine structure spectrum

6 Applications of defect-rich porous materials

6.1 Effect of defect engineering on porous materials

6.2 Application of defect-rich porous materials in catalysis and energy fields

7 Conclusion and perspective

()
图4 Vs-M-ZnIn2S4纳米片的:(a)原子力显微镜图片,(b)透射电子显微镜图片,(c)高倍率透射电子显微镜虚拟彩色图片。MoS2QDs@Vs-M-ZnIn2S4纳米片的:(d)透射电子显微镜图片,(e)高倍率透射电子显微镜虚拟彩色图片与(f)高倍率透射电子显微镜图片[78]
Fig.4 (a) AFM image (inset is the height profiles of lines 1 and 2), (b) TEM image (inset is HRTEM image), and (c) false-color image of the HRTEM image of Vs-M-ZnIn2S4 nanosheets. (d) TEM image, (e) false-color image of the HRTEM image, and (f) HRTEM image of MoS2QDs@Vs-M-ZnIn2S4 nanosheets[78]
图1 不同杂原子掺杂的多孔碳材料的微观结构示意图[51]
Fig.1 Schematic diagram of microstructure of porous carbon materials doped with differentheteroatoms[51]
图2 聚合物衍生法合成杂原子掺杂的多孔碳材料[51]
Fig.2 Heteroatom-doped porous carbon materials were synthesized by polymer derivation method[51]
图3 (a)等离子体刻蚀法制备的含缺陷的Co-MOF-74催化剂。(b)不同微观结构的富缺陷Co-MOF-74的电催化性能[76]
Fig.3 (a) Schematic diagram of the preparation of catalysts by plasma engraving. (b) Electrocatalytic performance of Co-MOF-74 with different microstructures[76]
图5 锚固融合法合成多孔层状高熵金属氧化物作为苯甲醇无溶剂氧化的高效催化剂[79]
Fig.5 The holey lamellar high entropy oxide material is prepared by an anchoring and merging process, which exhibits ultra-high catalytic activity for solvent-free oxidation of benzyl alcohol[79]
图6 (a)不同扫描速率下的CV曲线;(b)质量比电容;(c)与报道的多孔碳的重量电容和比表面积的对比结果;(d)与商用活性炭YP-50F相比,在2和10 mg·cm-2的质量负载下的体积电容;(e)5 A·g-1时BSG的循环性能曲线[84]
Fig.6 (a) CV curves at various scan rates, (b) gravimetric capacitances, (c) gravimetric capacitance and specific surface area compared with the reported porous carbons (the dotted line is the specific surface area capacitance (Cs)), (d) volumetric capacitances at the mass loadings of 2 and 10 mg·cm-2 compared with commercial activated carbon YP-50F, and (e) cycling performance of BSG at 5 A·g-1[84]
图7 (a)高N掺杂的二维介孔碳材料的合成示意图;(b)GO@NMC的电化学双层电容和赝电容示意图;(c)不同电流密度下GO@NMC-1的恒流充电/放电曲线[88]
Fig.7 (a) Schematic illustration of the synthetic procedure for the development of GO@NMC-1. (b) Schematic illustration of the electrochemical double-layer capacitance (EDLC) and pseudocapacitance of GO@NMC. (c) Galvanostatic charges/discharge curves of GO@NMC-1 at different constant currents[88]
[1]
Yu J H, Xu R R. Acc. Chem. Res., 2010, 43(9): 1195.

doi: 10.1021/ar900293m     URL    
[2]
Yu J H, Corma A, Li Y. Adv. Mater., 2020, 32(44): 2006277.

doi: 10.1002/adma.v32.44     URL    
[3]
Li W, Liu J, Zhao D Y. Nat. Rev. Mater., 2016, 1(6): 16023.

doi: 10.1038/natrevmats.2016.23    
[4]
Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Chem. Soc. Rev., 2016, 45(12): 3479.

doi: 10.1039/C6CS00135A     URL    
[5]
Wang C, Liu D M, Lin W B. J. Am. Chem. Soc., 2013, 135(36): 13222.

doi: 10.1021/ja308229p     URL    
[6]
Xu R R. Nat. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[7]
Xu R R, Wang K, Chen G, Yan W F. Natl Sci Rev, 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128     URL    
[8]
Corma A, Díaz-Cabañas M J, Martínez-Triguero J, Rey F, Rius J. Nature, 2002, 418(6897): 514.

doi: 10.1038/nature00924    
[9]
Corma A, Díaz-Cabañas M J, Jordá J L, Martínez C, Moliner M. Nature, 2006, 443(7113): 842.

doi: 10.1038/nature05238    
[10]
Chen Z Y, Wu S Q, Ma J Y, Mine S, Toyao T, Matsuoka M, Wang L Z, Zhang J L. Angew. Chem. Int. Ed., 2021, 60(21): 11901.

doi: 10.1002/anie.v60.21     URL    
[11]
Qiu B, Jiang F, Lu W D, Yan B, Li W C, Zhao Z C, Lu A H. J. Catal., 2020, 385: 176.

doi: 10.1016/j.jcat.2020.03.021     URL    
[12]
Sun Q M, Wang N, Yu J H. Adv. Mater., 2021, 33(51): 2104442.

doi: 10.1002/adma.v33.51     URL    
[13]
Xie Z Q, Xu W W, Cui X D, Wang Y. ChemSusChem, 2017, 10(8): 1645.

doi: 10.1002/cssc.201601855     URL    
[14]
Ananias D, Brites C D S, Carlos L D, Rocha J. Eur. J. Inorg. Chem., 2016, 13/14: 1967.
[15]
Wang C, Liu D, Lin W B. J. Am. Chem. Soc., 2013, 135: 13222.

doi: 10.1021/ja308229p     URL    
[16]
Ray Chowdhuri A, Bhattacharya D, Sahu S K. Dalton Trans., 2016, 45(7): 2963.

doi: 10.1039/C5DT03736K     URL    
[17]
Ren J W, Ledwaba M, Musyoka N M, Langmi H W, Mathe M, Liao S J, Pang W. Coord. Chem. Rev., 2017, 349: 169.

doi: 10.1016/j.ccr.2017.08.017     URL    
[18]
Pang Q Q, Yang L Y, Li Q W. Small Struct., 2022, 3(5): 2100203.

doi: 10.1002/sstr.v3.5     URL    
[19]
Cliffe M J, Wan W, Zou X D, Chater P A, Kleppe A K, Tucker M G, Wilhelm H, Funnell N P, Coudert F X, Goodwin A L. Nat. Commun., 2014, 5: 4176.

doi: 10.1038/ncomms5176    
[20]
Furukawa H, Müller U, Yaghi O M. Angew. Chem. Int. Ed., 2015, 54(11): 3417.

doi: 10.1002/anie.201410252     URL    
[21]
Bloch E D, Queen W L, Hudson M R, Mason J A, Xiao D J, Murray L J, Flacau R, Brown C M, Long J R. Angew. Chem. Int. Ed., 2016, 55(30): 8605.

doi: 10.1002/anie.201602950     pmid: 27249784
[22]
Fei H H, Pullen S, Wagner A, Ott S, Cohen S M. Chem. Commun., 2015, 51(1): 66.

doi: 10.1039/C4CC08218D     URL    
[23]
Yang T Y, Ling H J, Lamonier J F, Jaroniec M, Huang J, Monteiro M J, Liu J. NPG Asia Mater., 2016, 8(2): e240.

doi: 10.1038/am.2015.145    
[24]
Liu D W, Xue N, Wei L J, Zhang Y, Qin Z F, Li X K, Binks B P, Yang H Q. Angew. Chem. Int. Ed., 2018, 57(34): 10899.

doi: 10.1002/anie.201805022     URL    
[25]
Zhou L B, Jing Y, Liu Y B, Liu Z H, Gao D Y, Chen H B, Song W Y, Wang T, Fang X F, Qin W P, Yuan Z, Dai S, Qiao Z A, Wu C F. Theranostics, 2018, 8(3): 663.

doi: 10.7150/thno.21927     URL    
[26]
Liu J W, Ma Q L, Huang Z Q, Liu G G, Zhang H. Adv. Mater., 2019, 31(9): 1800696.

doi: 10.1002/adma.v31.9     URL    
[27]
Gao S, Sun Z T, Liu W, Jiao X C, Zu X L, Hu Q T, Sun Y F, Yao T, Zhang W H, Wei S Q, Xie Y. Nat. Commun., 2017, 8: 14503.

doi: 10.1038/ncomms14503    
[28]
Wu J J, Sharifi T, Gao Y, Zhang T Y, Ajayan P M. Adv. Mater., 2019, 31(13): 1804257.

doi: 10.1002/adma.v31.13     URL    
[29]
Wang Y F, Han P, Lv X M, Zhang L J, Zheng G F. Joule, 2018, 2(12): 2551.

doi: 10.1016/j.joule.2018.09.021     URL    
[30]
Dong Y, Zhang Q J, Tian Z Q, Li B R, Yan W S, Wang S, Jiang K M, Su J W, Oloman C W, Gyenge E L, Ge R X, Lu Z Y, Ji X L, Chen L. Adv. Mater., 2020, 32(28): 2001300.

doi: 10.1002/adma.v32.28     URL    
[31]
Zheng Y N, Yi Y K, Fan M H, Liu H Y, Li X, Zhang R, Li M T, Qiao Z A. Energy Storage Mater., 2019, 23: 678.
[32]
Liu Y L, Zhang P F, Liu J M, Wang T, Huo Q S, Yang L, Sun L, Qiao Z A, Dai S. Chem. Mater., 2018, 30(23): 8579.

doi: 10.1021/acs.chemmater.8b03624     URL    
[33]
Zheng Y N, Fan M H, Li K Q, Zhang R, Li X F, Zhang L, Qiao Z A. Catal. Sci. Technol., 2020, 10(9): 2882.

doi: 10.1039/D0CY00303D     URL    
[34]
Yan D F, Li Y X, Huo J, Chen R, Dai L M, Wang S Y. Adv. Mater., 2017, 29(48): 1606459.

doi: 10.1002/adma.v29.48     URL    
[35]
Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B S, Zhang Q, Titirici M M, Wei F. Adv. Mater., 2016, 28(32): 6845.

doi: 10.1002/adma.201601406     URL    
[36]
Tong X J, Cao X, Han T, Cheong W C, Lin R, Chen Z, Wang D S, Chen C, Peng Q, Li Y D. Nano Res., 2019, 12(7): 1625.

doi: 10.1007/s12274-018-2404-x    
[37]
Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2018, 140(30): 9434.

doi: 10.1021/jacs.8b02076     pmid: 29975522
[38]
Ren P, Song M, Lee J, Zheng J, Lu Z X, Engelhard M, Yang X C, Li X L, Kisailus D, Li D S. Adv. Mater. Interfaces, 2019, 6(17): 1901121.

doi: 10.1002/admi.v6.17     URL    
[39]
Liu S B, Xiao J, Lu xue feng, Wang J, Wang X, David Lou X W. Angew. Chem. Int. Ed., 2019, 58(25): 8499.

doi: 10.1002/anie.v58.25     URL    
[40]
Lin L X, Huang J T, Li X F, Abass M A, Zhang S W. Appl. Catal. B Environ., 2017, 203: 615.

doi: 10.1016/j.apcatb.2016.10.054     URL    
[41]
Ye K H, Li K S, Lu Y R, Guo Z J, Ni N, Liu H, Huang Y C, Ji H B, Wang P S. Trac Trends Anal. Chem., 2019, 116: 102.

doi: 10.1016/j.trac.2019.05.002     URL    
[42]
Lei F C, Sun Y F, Liu K T, Gao S, Liang L, Pan B C, Xie Y. J. Am. Chem. Soc., 2014, 136(19): 6826.

doi: 10.1021/ja501866r     URL    
[43]
Xiong J, Di J, Xia J X, Zhu W S, Li H M. Adv. Funct. Mater., 2018, 28(39): 1801983.

doi: 10.1002/adfm.v28.39     URL    
[44]
Liang Q H, Li Z, Huang Z H, Kang F Y, Yang Q H. Adv. Funct. Mater., 2015, 25(44): 6885.

doi: 10.1002/adfm.201503221     URL    
[45]
Song Y J, Wang H, Xiong J H, Guo B B, Liang S J, Wu L. Appl. Catal. B Environ., 2018, 221: 473.

doi: 10.1016/j.apcatb.2017.09.009     URL    
[46]
Zhang G, Hu Z Y, Sun M, Liu Y, Liu L M, Liu H J, Huang C P, Qu J H, Li J H. Adv. Funct. Mater., 2015, 25(24): 3726.

doi: 10.1002/adfm.v25.24     URL    
[47]
Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J, Xie Y. J. Am. Chem. Soc., 2013, 135(28): 10411.

doi: 10.1021/ja402956f     URL    
[48]
Guo S Q, Zhu X H, Zhang H J, Gu B C, Chen W, Liu L, Alvarez P J J. Environ. Sci. Technol., 2018, 52(12): 6872.

doi: 10.1021/acs.est.8b00352     URL    
[49]
McFarland E W, Metiu H. Chem. Rev., 2013, 113(6): 4391.

doi: 10.1021/cr300418s     pmid: 23350590
[50]
Chen N N, Zhang W B, Zeng J C, He L Q, Li D, Gao Q S. Appl. Catal. B Environ., 2020, 268: 118441.

doi: 10.1016/j.apcatb.2019.118441     URL    
[51]
Wang H, Shao Y, Mei S L, Lu Y, Zhang M, Sun J K, Matyjaszewski K, Antonietti M, Yuan J Y. Chem. Rev., 2020, 120(17): 9363.

doi: 10.1021/acs.chemrev.0c00080     URL    
[52]
Kang Y Y, Yang Y Q, Yin L C, Kang X D, Liu G, Cheng H M. Adv. Mater., 2015, 27(31): 4572.

doi: 10.1002/adma.v27.31     URL    
[53]
Li Z, Xiao C, Zhu H, Xie Y. J. Am. Chem. Soc., 2016, 138(45): 14810.

doi: 10.1021/jacs.6b08748     URL    
[54]
Zhao Y F, Li B, Wang Q, Gao W, Wang C J, Wei M, Evans D G, Duan X, O'Hare D. Chem. Sci., 2014, 5(3): 951.

doi: 10.1039/C3SC52546E     URL    
[55]
Shao M, Liu J J, Ding W J, Wang J Y, Dong F, Zhang J T. J. Mater. Chem. C, 2020, 8(2): 487.

doi: 10.1039/C9TC05705F     URL    
[56]
Liu A P, Zhao L, Zhang J M, Lin L X, Wu H P. ACS Appl. Mater. Interfaces, 2016, 8(38): 25210.

doi: 10.1021/acsami.6b06031     URL    
[57]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31(16): 1807876.

doi: 10.1002/adma.v31.16     URL    
[58]
Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331(6018): 746.

doi: 10.1126/science.1200448     URL    
[59]
Ding Y, Li Y C, Wang L, Han X H, Zhu L J, Wang S R. Fuel, 2021, 304: 121449.

doi: 10.1016/j.fuel.2021.121449     URL    
[60]
Bi W T, Ye C M, Xiao C, Tong W, Zhang X D, Shao W, Xie Y. Small, 2014, 10(14): 2820.

doi: 10.1002/smll.201303548     URL    
[61]
Xing M Y, Zhang J L, Chen F, Tian B Z. Chem. Commun., 2011, 47(17): 4947.

doi: 10.1039/c1cc10537j     URL    
[62]
Chu H Q, Zhang D, Feng P P, Gu Y L, Chen P, Pan K, Xie H J, Yang M. Nanoscale, 2021, 13(46): 19518.

doi: 10.1039/D1NR05747B     URL    
[63]
Zhao K, Zhang L Z, Wang J J, Li Q X, He W W, Yin J J. J. Am. Chem. Soc., 2013, 135(42): 15750.

doi: 10.1021/ja4092903     pmid: 24116848
[64]
Wei S M, Jiang X X, He C Y, Wang S Y, Hu Q, Chai X Y, Ren X Z, Yang H P, He C X. J. Mater. Chem. A, 2022, 10(11): 6187.

doi: 10.1039/D1TA08494A     URL    
[65]
Ren P, Song M, Lee J, Zheng J, Lu Z X, Engelhard M, Yang X C, Li X L, Kisailus D, Li D S. Adv. Mater. Interfaces, 2019, 6(17): 1901121.

doi: 10.1002/admi.v6.17     URL    
[66]
Yan X C, Jia Y, Odedairo T, Zhao X J, Jin Z, Zhu Z H, Yao X D. Chem. Commun., 2016, 52(52): 8156.

doi: 10.1039/C6CC03687B     URL    
[67]
Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov K S, Casiraghi C. Nano Lett., 2012, 12(8): 3925.

doi: 10.1021/nl300901a     pmid: 22764888
[68]
Huang J T, Lin Y M, Ji M W, Cong G T, Liu H C, Yu J L, Yang B, Li C H, Zhu C Z, Xu J. Appl. Surf. Sci., 2020, 504: 144398.

doi: 10.1016/j.apsusc.2019.144398     URL    
[69]
Glass D, CortÉs E, Ben-Jaber S, Brick T, Peveler W J, Blackman C S, Howle C R, Quesada-Cabrera R, Parkin I P, Maier S A. Adv. Sci., 2019, 6(22): 1901841.

doi: 10.1002/advs.v6.22     URL    
[70]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058     URL    
[71]
Pan L, Ai M H, Huang C Y, Yin L, Liu X, Zhang R R, Wang S B, Jiang Z, Zhang X W, Zou J J, Mi W B. Nat. Commun., 2020, 11: 418.

doi: 10.1038/s41467-020-14333-w    
[72]
Zhuang G X, Chen Y W, Zhuang Z Y, Yu Y, Yu J G. Sci. China Mater., 2020, 63(11): 2089.

doi: 10.1007/s40843-020-1305-6    
[73]
Asefa T. Acc. Chem. Res., 2016, 49(9): 1873.

doi: 10.1021/acs.accounts.6b00317     URL    
[74]
Dilpazir S, Liu R J, Yuan M L, Imran M, Liu Z J, Xie Y B, Zhao H, Zhang G J. J. Mater. Chem. A, 2020, 8(21): 10865.

doi: 10.1039/D0TA02411B     URL    
[75]
Wang X M, Liu M, Yu H C, Zhang H, Yan S H, Zhang C, Liu S X. J. Mater. Chem. A, 2020, 8(43): 22886.

doi: 10.1039/D0TA08460C     URL    
[76]
Jiang Z R, Ge L, Zhuang L Z, Li M R, Wang Z K, Zhu Z H. ACS Appl. Mater. Interfaces, 2019, 11(47): 44300.

doi: 10.1021/acsami.9b15794     URL    
[77]
Liu Y W, Liang L, Xiao C, Hua X M, Li Z, Pan B C, Xie Y. Adv. Energy Mater., 2016, 6(23): 1600437.

doi: 10.1002/aenm.201600437     URL    
[78]
Zhang S Q, Liu X, Liu C B, Luo S L, Wang L L, Cai T, Zeng Y X, Yuan J L, Dong W Y, Pei Y, Liu Y T. ACS Nano, 2018, 12(1): 751.

doi: 10.1021/acsnano.7b07974     URL    
[79]
Feng D Y, Dong Y B, Zhang L L, Ge X, Zhang W, Dai S, Qiao Z A. Angew. Chem. Int. Ed., 2020, 59(44): 19503.

doi: 10.1002/anie.v59.44     URL    
[80]
Zheng Y N, Zhang R, Zhang L, Gu Q F, Qiao Z A. Angew. Chem. Int. Ed., 2021, 60(9): 4774.

doi: 10.1002/anie.v60.9     URL    
[81]
Zheng Y N, Wang L Q, Liu H Y, Yang J Q, Zhang R, Zhang L, Qiao Z A. Angew. Chem. Int. Ed., 2022, 61(37): e202209038.
[82]
Gao B, Qiu B, Zheng M J, Liu Z K, Lu W D, Wang Q, Xu J, Deng F, Lu A H. ACS Catal., 2022, 12(12): 7368.

doi: 10.1021/acscatal.2c01622     URL    
[83]
Qiu B, Lu W D, Gao X Q, Sheng J, Yan B, Ji M, Lu A H. J. Catal., 2022, 408: 133.

doi: 10.1016/j.jcat.2022.02.017     URL    
[84]
Yuan R L, Wang H H, Shang L, Hou R Y, Dong Y, Li Y T, Zhang S, Chen X H, Song H H. ACS Appl. Mater. Interfaces, 2023, 15(2): 3006.

doi: 10.1021/acsami.2c19798     URL    
[85]
Xi Y L, Ye X M, Duan S R, Li T, Zhang J, Jia L J, Yang J, Wang J, Liu H T, Xiao Q B. J. Mater. Chem. A, 2020, 8(29): 14769.

doi: 10.1039/D0TA04038J     URL    
[86]
Jiang Y, Deng Y P, Liang R L, Fu J, Gao R, Luo D, Bai Z Y, Hu Y F, Yu A P, Chen Z W. Nat. Commun., 2020, 11: 5858.

doi: 10.1038/s41467-020-19709-6     pmid: 33203863
[87]
Wang T, Okejiri F, Qiao Z A, Dai S. Adv. Mater., 2020, 32(44): 2002475.

doi: 10.1002/adma.v32.44     URL    
[88]
Zhang L L, Wang T, Gao T N, Xiong H L, Zhang R, Liu Z L, Song S Y, Dai S, Qiao Z A. CCS Chem., 2021, 3(2): 870.

doi: 10.31635/ccschem.020.202000233     URL    
[1] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[2] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[3] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[4] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[5] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[6] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[7] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[8] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[9] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[10] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[11] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[12] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[13] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[14] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[15] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.