English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1341-1356 DOI: 10.7536/PC221234 前一篇   后一篇

• 综述 •

独脚金内酯及其新型衍生物

康兆勇1,3, 董小绮1,3, 刘胜男1,2,*(), 高清志1,3,*()   

  1. 1 天津大学合成生物学前沿科学中心 天津 300072
    2 天津大学分子+研究院 天津 300072
    3 天津大学药物科学与技术学院 天津市现代药物传递及功能高效化重点实验室 天津 300072
  • 收稿日期:2023-01-02 修回日期:2023-05-24 出版日期:2023-09-24 发布日期:2023-08-06
  • 作者简介:

    高清志 现担任天津大学药学院教授,天津市现代药物传递重点实验室主任,国家级人才计划入选者。主要研究方向为靶向创新药物的设计与开发。课题组承担国家科技部重大项目、国家自然科学基金等项目10余项。在高水平杂志发表SCI论文60余篇,完成了80多项专利的申请,同时实现了面向产业化的开发和专利转让3项,参与编写著作3部。

  • 基金资助:
    国家重点研发计划项目(2020YFA0907903)

Strigolactone and Its Novel Derivatives

Zhaoyong Kang1,3, Xiaoqi Dong1,3, Shengnan Liu1,2(), Qingzhi Gao1,3()   

  1. 1 Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin University,Tianjin 300072, China
    2 Institute of Molecular Plus, Tianjin University,Tianjin 300072, China
    3 School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery& High-Efficiency, Tianjin University,Tianjin 300072, China
  • Received:2023-01-02 Revised:2023-05-24 Online:2023-09-24 Published:2023-08-06
  • Contact: *e-mail: shengnan_liu@tju.edu.cn (Shengnan Liu); qingzhi@tju.edu.cn (Qingzhi Gao)
  • Supported by:
    The National Key R&D Program Projects of China(2020YFA0907903)

独脚金内酯(Strigolactones, SLs)是目前最受关注的一类倍半萜类新型植物激素。近年来研究表明,独脚金内酯在抑制植物下胚轴伸长和农作物分蘖、调节根系生长发育、刺激寄生杂草种子萌发、协调寄生植物与真菌的共生相互作用以及调控植物对生物或非生物胁迫的响应等诸多方面发挥着至关重要的作用,被认为是农业科学和植物保护领域极具开发价值和应用潜力的新型植物激素。此外,研究发现SLs作为一种植物来源的天然产物,其对肝癌、乳腺癌、前列腺癌、胶质母细胞瘤和结直肠癌等多种肿瘤以及炎症及糖代谢通路均具有抑制活性,因此SLs及其衍生物在创新药物研究领域也备受关注。本文主要综述了独脚金内酯及其结构衍生物的最新研究进展,围绕其生物活性、作用机制以及构效关系进行分类总结和简要分析,为该类天然产物的分子设计和进一步开发利用提供研究思路和方向。

Strigolactones (SLs) are the most concerned endogenous sesquiterpenoid phytohormones.Recent studies have shown that strigolactones play crucial roles in inhibition of plant hypocotyl elongation and crop tillering, regulating root growth and development, stimulation of parasitic weed seed germination, coordinating the symbiotic interaction between parasitic plants and fungi, as well as regulation of plant response to biotic or abiotic stresses. Therefore, it is considered to be a new type of phytohormone with great development value and application potential in the field of agricultural science and plant protection. In addition, SL derivatives have also attracted much attention in the field of innovative drug research as the studies have found that: (1) SLs exhibit inhibitory activities against several tumor cell lines such as liver cancer, breast cancer, prostate cancer, glioblastoma, and colorectal cancers; (2) they possess anti-inflammation and glucose metabolism inhibitory activity. This paper aims to review the latest research progress of strigolactone and its structural derivatives with brief analysis on their biological activity, mechanism of action and structure-activity relationship. We hope this review provide guidance and directions on molecular design, development and utilization of SL natural products.

Contents

1 Introduction

2 Structural features and classification of strigolactones

3 The biosynthetic pathway and signal transduction mechanism of strigolactones

4 Structural characteristics and classification of natural strigolactones

5 Structural characteristics and classification of synthetic strigolactones

5.1 Canonical derivatives of strigolactone

5.2 Non-canonical derivatives of strigolactone

6 Conclusion and outlook

()
图1 天然独脚金内酯及其人工合成类似物的结构
Fig.1 Structural characteristics of strigolactone and its synthetic analogs
表1 天然独脚金内酯的分类和生物活性
Table 1 Classification and biological activity of natural strigolactones
Classification SLs name Plant source Biological activity Action object & biotarget ref
Strigol-tpye SLs
Canonical SLs Strigol (1) Cotton, Menispermum dauricum germination stimulant
hyphal branching inducers
inhibit shoot branching
anti-inflammation, anti-cancer
Striga, Orobanche
arbuscular mycorrhizal fungi
Rice
Nrf2, NF-κB
16~18
5-Deoxystrigol (5DS, 2) Cotton, Chinese milk vetch, Sorghum hyphal branching inducers
inhibit shoot branching
liver injury protection
arbuscular mycorrhizal fungi
Rice
Nrf2
4,19~21
Strigone (3) Houttuynia cordata germination stimulant
anti-hepatic fibrosis
O. minor, P. ramosa, S. hermonthica
TGF
22
Sorgolactone (4) Sorghum germination stimulant Striga, Orobanche 23
Sorgomol (5) Sorghum germination stimulant Striga, Orobanche 24,25
Orobanchol-type SLs
Orobanchol (ORO, 6) Red clover,
Rice, Tobacco
germination stimulant O. minor, P. ramosa 26,27
4-Deoxyorobanchol (4DO, 7) Rice germination stimulant O. minor 28,29
Orobanchol acetate (8) Cowpea, Soybean,
Red clover
germination stimulant O. minor, O. ramosa 30,31
7-Oxoorobanchyl acetate (9) Flax germination stimulant O. minor 32
7-Oxoorobanchol (10) Flax germination stimulant O. minor 32
Solanacol (11) Tobacco germination stimulant O. minor 26,33,34
Fabacyl acetate (12) Pea, Faba bean, Alfalfa germination stimulant O. minor 35
Medicaol (13) Medicago truncatula hyphal branching inducers arbuscular mycorrhizal fungi 36
Non-canonical SLs Carlactonate (CL, 14) Sunflower germination stimulant
inhibit shoot branching
S. hermonthica
Rice
37
Carlactonoic acid (CLA, 15) Rice, Arabidopsis
thaliana, Selaginella
inhibit shoot branching Arabidopsis thaliana 38,39
Methyl carlactonate (MeCLA, 16) Sunflower hyphal branching inducers Gigaspora margarita 40,41
Methyl heliolactonate (17) Sunflower germination stimulant S. hermonthica 42
Avenaol (18) Black oat germination stimulant P. ramose, S.hermonthica, O. minor 43
Methyl zealactonate (19) Maize germination stimulant O. minor, P. ramosa, S. hermonthica 44,45
Lotuslactone (20) Lotus japonicus hyphal branching inducers
germination stimulant
arbuscular mycorrhizal fungi
O. minor, P. ramosa, S. hermonthica
46
Cannalactone (21) Cannabis sativa germination stimulant P. ramosa 47
Bryosymbiol (22) Marchantia paleacea hyphal branching inducers
germination stimulant
arbuscular mycorrhizal fungi
O. minor, P. ramosa, S. hermonthica
48
图2 SLs在不同植物中的生物合成途径
Fig.2 The biosynthetic pathway of SLs in different plants
图3 SLs与靶点受体D14的结合模式及信号转导机理
Fig.3 Binding mode of SLs with receptor D14 and signal transduction mechanism
图4 天然独脚金内酯结构衍生物及分子特征
Fig.4 Molecular structure characteristics of natural strigolactones
图5 代表性独脚金内酯类似物
Fig.5 Structures of representative strigolactone analogs
图6 GR24 23与AtD14 (PDB: 4IH4)、JNK1 (PDB: 4QTD)、iNOS (PDB: 3NW2) 和Keap1 (PDB: 5FZN)的复合结构
Fig.6 GR24 23/AtD14 (PDB: 4IH4), GR24 23/JNK1 (PDB: 4QTD), GR24 23/iNOS (PDB: 3NW2) and GR24 23/Keap1 (PDB: 5FZN) protein complex structure
图7 独脚金内酰胺及其衍生物49~66的结构
Fig.7 Structures of strigolactam and its derivatives 49~66
图8 独脚金内酯人工合成类似物67~75的结构
Fig.8 Structures of synthetic strigolactone analogs 67~75
图9 化合物72与P38 MAPK (PDB: 6YK7) 、JNK1 (PDB: 4QTD) 的复合结构
Fig.9 Compound 72 / P38 MAPK (PDB: 6YK7) and compound 72 / JNK1 (PDB: 4QTD) protein complex structure
图10 独脚金内酯模拟物76~88的结构
Fig.10 Structures of strigolactone mimics 76~88
图11 化合物80的结构与分子机制。(A)化合物80的分子结构;(B)化合物80与拟南芥AtD14蛋白的分子结合模式 (PDB: 4IH4);(C)化合物80与拟南芥AtD14蛋白的复合结构;(D)化合物80与ShHTL7蛋白的复合结构 (PDB: 5Z7Y)
Fig.11 Structure and molecular mechanism of compound 80. (A) Molecular structure of compound 80; (B) Molecular binding mode of compound 80 to Arabidopsis AtD14 protein (PDB: 4IH4); (C) Complex structure of compound 80 with Arabidopsis AtD14 protein; (D) Complex structure of compound 80 with ShHTL7 protein (PDB: 5Z7Y)
图12 环戊烷并内酯及酰胺类独脚金内酯类似物89~95的分子结构
Fig.12 Structures of Corey lactone type strigolactone analogs 89~95
图13 独脚金内酯类似物其他类的代表性分子结构96~112
Fig.13 Structures of other types of strigolactone analogs 96~112
图14 化合物96的分子机制。(A)化合物96与ShHTL7的分子结合模式 (PDB: 5Z7Y);(B)化合物96与拟南芥AtD14的分子结合模式 (PDB: 4IH4);(C)化合物96与ShHTL7的复合结构;(D)化合物96与AtD14的复合结构
Fig.14 Molecular mechanisms of compound 96. (A) Molecular binding mode of compound 96 to ShHTL7 (PDB: 5Z7Y); (B) Molecular binding mode of compound 96 to Arabidopsis AtD14 (PDB: 4IH4); (C) Complex structure of compound 96 with ShHTL7 protein; (D) Complex structure of compound 96 with AtD14 protein
[1]
Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Science, 1966, 154: 1189.

doi: 10.1126/science.154.3753.1189     pmid: 17780042
[2]
Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, Li J. Nature, 2020, 583: 277.

doi: 10.1038/s41586-020-2382-x    
[3]
Mashiguchi K, Seto Y, Yamaguchi S. Plant J., 2021, 105: 335.

doi: 10.1111/tpj.v105.2     URL    
[4]
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Nature, 2008, 455: 195.

doi: 10.1038/nature07272    
[5]
Wang L, Xu Q, Yu H, Ma H, Li X, Yang J, Chu J, Xie Q, Wang Y, Smith S M, Li J, Xiong G, Wang B. Plant Cell., 2020, 32: 2251.

doi: 10.1105/tpc.20.00140     URL    
[6]
Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. Planta, 2014, 240: 399.

doi: 10.1007/s00425-014-2096-0     URL    
[7]
Sun H, Tao J, Gu P, Xu G, Zhang Y. Plant Signal Behav., 2016, 11: e1110662.

doi: 10.1080/15592324.2015.1110662     URL    
[8]
Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez J A, Matusova R, Bours R, Verstappen F, Bouwmeester H. Plant Physiol., 2011, 155: 721.

doi: 10.1104/pp.110.166645     pmid: 21119044
[9]
De Cuyper C, Fromentin J, Yocgo R E, De Keyser A, Guillotin B, Kunert K, Boyer F D, Goormachtig S. J. Exp. Bot., 2015, 66: 137.

doi: 10.1093/jxb/eru404     URL    
[10]
Kapulnik Y, Delaux P M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, SÉjalon-Delmas N, Combier J P, BÉcard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. Planta., 2011, 233: 209.

doi: 10.1007/s00425-010-1310-y     pmid: 21080198
[11]
Yoneyama K, Brewer P B. Curr. Opin. Plant Biol., 2021, 63: 102072.

doi: 10.1016/j.pbi.2021.102072     URL    
[12]
Sato D, Awad A A, Chae S H, Yokota T, Sugimoto Y, Takeuchi Y, Yoneyama K. J. Agric. Food Chem., 2003, 51: 1162.

doi: 10.1021/jf025997z     URL    
[13]
Dell'Oste V, Spyrakis F, Prandi C. Molecules, 2021, 26: 4579.

doi: 10.3390/molecules26154579     URL    
[14]
Yoneyama K, Xie X, Yoneyama K, Takeuchi Y. Pest Manag. Sci., 2009, 65: 467.

doi: 10.1002/ps.1726     pmid: 19222028
[15]
Humphrey A J, Galster A M, Beale M H. Nat. Prod. Rep., 2006, 23: 592.

doi: 10.1039/b512776a     pmid: 16874391
[16]
Rogati F, Millán E, Appendino G, Correa A, Caprioglio D, Minassi A, Muñoz E. ACS Med. Chem. Lett., 2019, 10: 606.

doi: 10.1021/acsmedchemlett.8b00604     URL    
[17]
Cook C E, Whichard L P, Wall M E, Egley G H, Coggon P, Luhan P A, McPhail A T. J. Am. Chem. Soc., 1972, 94: 6198.

doi: 10.1021/ja00772a048     URL    
[18]
Yasuda N, Sugimoto Y, Kato M, Inanaga S, Yoneyama K. Phytochemistry, 2003, 62: 1115.

doi: 10.1016/S0031-9422(02)00679-9     URL    
[19]
Ueno K, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. J. Pestic. Sci., 2018, 43: 198.

doi: 10.1584/jpestics.D18-021     URL    
[20]
Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K,. Planta., 2007, 227: 125.

pmid: 17684758
[21]
Shoji M, Suzuki E, Ueda M. J. Org. Chem., 2009, 74: 3966.

doi: 10.1021/jo9002085     URL    
[22]
Kisugi T, Xie X, Kim H I, Yoneyama K, Sado A, Akiyama K, Hayashi H, Uchida K, Yokota T, Nomura T, Yoneyama K,. Phytochemistry, 2013, 87: 60.

doi: 10.1016/j.phytochem.2012.11.013     URL    
[23]
Mori K, Matsui J. Tetrahedron Lett., 1997, 38: 7891.

doi: 10.1016/S0040-4039(97)10078-8     URL    
[24]
Xie X N, Yoneyama K, Kusumoto D, Yamada Y, Takeuchi Y, Sugimoto Y, Yoneyama K,. Tetrahedron Lett., 2008, 49: 2066.

doi: 10.1016/j.tetlet.2008.01.131     URL    
[25]
Wakabayashi T, Ishiwa S, Shida K, Motonami N, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y. Plant Physiol., 2021, 185: 902.

doi: 10.1093/plphys/kiaa113     pmid: 33793911
[26]
Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K,. J. Agric. Food Chem., 2007, 55: 8067.

doi: 10.1021/jf0715121     URL    
[27]
Galindo J C, de Luque A P, Jorrín J, Macías F A. J. Agric. Food Chem., 2002, 50: 1911.

doi: 10.1021/jf0110809     URL    
[28]
Zhang Y, van Dijk A D, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Nat. Chem. Biol., 2014, 10: 1028.

doi: 10.1038/nchembio.1660    
[29]
Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K,. Mol. Plant, 2013, 6: 153.

doi: 10.1093/mp/sss139     URL    
[30]
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, BÉcard G, Beveridge C A, Rameau C, Rochange S F. Nature, 2008, 455: 189.

doi: 10.1038/nature07271    
[31]
Xie X, Yoneyama K, Kusumoto D, Yamada Y, Yokota T, Takeuchi Y, Yoneyama K,. Phytochemistry, 2008, 69: 427.

doi: 10.1016/j.phytochem.2007.07.017     URL    
[32]
Xie X, Yoneyama K, Kurita J Y, Harada Y, Yamada Y, Takeuchi Y, Yoneyama K,. Biosci. Biotechnol. Biochem., 2009, 73: 1367.

doi: 10.1271/bbb.90021     URL    
[33]
Takikawa H, Jikumaru S, Sugimoto Y, Xie X N, Yoneyama K, Sasaki M. Tetrahedron Lett., 2009, 50: 4549.

doi: 10.1016/j.tetlet.2009.05.078     URL    
[34]
Bromhead L J, Norman A R, Snowden K C, Janssen B J, McErlean C S P. Org. Biomol. Chem., 2018, 16: 5500.

doi: 10.1039/c8ob01287c     pmid: 30027185
[35]
Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K,. Phytochemistry, 2009, 70: 211.

doi: 10.1016/j.phytochem.2008.12.013     URL    
[36]
Tokunaga T, Hayashi H, Akiyama K. Phytochemistry, 2015, 111: 91.

doi: 10.1016/j.phytochem.2014.12.024     pmid: 25593009
[37]
Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. Science, 2012, 335: 1348.

doi: 10.1126/science.1218094     URL    
[38]
Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M, Iwanaga M, Ohnishi T, Nishiwaki H, Asami T, Yokota T, Akiyama K, Yoneyama K, Nomura T. New Phytol., 2018, 218: 1522.

doi: 10.1111/nph.15055     pmid: 29479714
[39]
Mashiguchi K, Seto Y, Onozuka Y, Suzuki S, Takemoto K, Wang Y, Dong L, Asami K, Noda R, Kisugi T, Kitaoka N, Akiyama K, Bouwmeester H, Yamaguchi S. Proc. Natl. Acad. Sci. U. S. A., 2022, 119: e2111565119.
[40]
Wakabayashi T, Shinde H, Shiotani N, Yamamoto S, Mizutani M, Takikawa H, Sugimoto Y. Nat. Prod. Res., 2022, 36: 2215.

doi: 10.1080/14786419.2020.1826477     URL    
[41]
Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K. Phytochemistry, 2016, 130: 90.

doi: 10.1016/j.phytochem.2016.05.012     URL    
[42]
Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H, Batchvarova R, Sugimoto Y. Phytochemistry, 2014, 108: 122.

doi: 10.1016/j.phytochem.2014.09.018     URL    
[43]
Kim H I, Kisugi T, Khetkam P, Xie X, Yoneyama K, Uchida K, Yokota T, Nomura T, McErlean C S P, Yoneyama K,. Phytochemistry, 2014, 103: 85.

doi: 10.1016/j.phytochem.2014.03.030     URL    
[44]
Charnikhova T V, Gaus K, Lumbroso A, Sanders M, Vincken J P, De Mesmaeker A, Ruyter-Spira C P, Screpanti C, Bouwmeester H J. Phytochemistry, 2017, 137: 123.

doi: S0031-9422(17)30051-1     pmid: 28215609
[45]
Xie X, Kisugi T, Yoneyama K, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean C S P, Yoneyama K,. J. Pestic. Sci., 2017, 42: 58.

doi: 10.1584/jpestics.D16-103     URL    
[46]
Xie X, Mori N, Yoneyama K, Nomura T, Uchida K, Yoneyama K, Akiyama K. Phytochemistry, 2019, 157: 200.

doi: 10.1016/j.phytochem.2018.10.034     URL    
[47]
Fornier S D, de Saint Germain A, Retailleau P, Pillot J P, Taulera Q, Andna L, Miesch L, Rochange S, Pouvreau J B, Boyer F D. J. Nat. Prod., 2022, 85: 1976.

doi: 10.1021/acs.jnatprod.2c00282     URL    
[48]
Kodama K, Rich M K, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, Tanaka Y, Yamaguchi S, Shimamura M, Delaux P M, Nomura T, Kyozuka J. Nat. Commun., 2022, 13: 3974.

doi: 10.1038/s41467-022-31708-3    
[49]
Matusova R, Rani K, Verstappen F W, Franssen M C, Beale M H, Bouwmeester H J. Plant Physiol., 2005, 139: 920.

doi: 10.1104/pp.105.061382     URL    
[50]
Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 1640.

doi: 10.1073/pnas.1314805111     URL    
[51]
Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 18084.

doi: 10.1073/pnas.1410801111     URL    
[52]
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. Plant Cell Physiol., 2009, 50: 1416.

doi: 10.1093/pcp/pcp091     URL    
[53]
Chevalier F, Nieminen K, Sánchez-Ferrero J C, Rodríguez M L, Chagoyen M, Hardtke C S, Cubas P. Plant Cell, 2014, 26: 1134.

doi: 10.1105/tpc.114.122903     URL    
[54]
Hamiaux C, Drummond R S, Janssen B J, Ledger S E, Cooney J M, Newcomb R D, Snowden K C. Curr. Biol., 2012, 22: 2032.

doi: 10.1016/j.cub.2012.08.007     pmid: 22959345
[55]
de Saint Germain A, ClavÉ G, Badet-Denisot M A, Pillot J P, Cornu D, Le Caer J P, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer F D. Nat. Chem. Biol., 2016, 12: 787.

doi: 10.1038/nchembio.2147    
[56]
Shahul Hameed U, Haider I, Jamil M, Kountche B A, Guo X, Zarban R A, Kim D, Al-Babili S, Arold S T. EMBO Rep., 2018, 19: e45619.

doi: 10.15252/embr.201745619     URL    
[57]
Yao R, Li J, Xie D. Sci. China Life Sci., 2018, 61: 277.

doi: 10.1007/s11427-017-9195-x     URL    
[58]
Yao R, Chen L, Xie D. Curr. Opin. Plant Biol., 2018, 45: 155.

doi: 10.1016/j.pbi.2018.06.007     URL    
[59]
Carlsson G H, Hasse D, Cardinale F, Prandi C, Andersson I. J. Exp. Bot., 2018, 69: 2345.

doi: 10.1093/jxb/ery036     pmid: 29394369
[60]
Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, Sakurada A, Hirano R, Kisugi T, Hanada A, Umehara M, Seo E, Akiyama K, Burke J, Takeda-Kamiya N, Li W, Hirano Y, Hakoshima T, Mashiguchi K, Noel J P, Kyozuka J, Yamaguchi S. Nat. Commun., 2019, 10: 191.

doi: 10.1038/s41467-018-08124-7    
[61]
Wang D, Pang Z, Yu H, Thiombiano B, Walmsley A, Yu S, Zhang Y, Wei T, Liang L, Wang J, Wen X, Bouwmeester H J, Yao R, Xi Z. Nat. Commun., 2022, 13: 3987.

doi: 10.1038/s41467-022-31710-9    
[62]
Scaffidi A, Waters M T, Sun Y K, Skelton B W, Dixon K W, Ghisalberti E L, Flematti G R, Smith S M. Plant Physiol., 2014, 165: 1221.

doi: 10.1104/pp.114.240036     pmid: 24808100
[63]
Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ove?ka M, Pospíšil T, Šamaj J. Front. Plant Sci., 2021, 12: 675981.

doi: 10.3389/fpls.2021.675981     URL    
[64]
Akiyama K, Ogasawara S, Ito S, Hayashi H. Plant Cell Physiol., 2010, 51: 1104.

doi: 10.1093/pcp/pcq058     pmid: 20418334
[65]
Umehara M, Cao M, Akiyama K, Akatsu T, Seto Y, Hanada A, Li W, Takeda-Kamiya N, Morimoto Y, Yamaguchi S. Plant Cell Physiol., 2015, 56: 1059.

doi: 10.1093/pcp/pcv028     URL    
[66]
Zwanenburg B, Mwakaboko A S, Reizelman A, Anilkumar G, Sethumadhavan D. Pest Manag. Sci., 2009, 65: 478.

doi: 10.1002/ps.1706     pmid: 19222046
[67]
Kondo Y, Tadokoro E, Matsuura M, Iwasaki K, Sugimoto Y, Miyake H, Takikawa H, Sasaki M. Biosci. Biotechnol. Biochem., 2007, 71: 2781.

doi: 10.1271/bbb.70398     URL    
[68]
Boyer F D, de Saint Germain A, Pillot J P, Pouvreau J B, Chen VX, Ramos S, StÉvenin A, Simier P, Delavault P, Beau J M, Rameau C. Plant Physiol., 2012, 159: 1524.

doi: 10.1104/pp.112.195826     URL    
[69]
Boyer F D, de Saint Germain A, Pouvreau J B, ClavÉ G, Pillot J P, Roux A, Rasmussen A, Depuydt S, Lauressergues D, Frei Dit Frey N, Heugebaert T S, Stevens C V, Geelen D, Goormachtig S, Rameau C. Mol. Plant., 2014, 7: 675.

doi: 10.1093/mp/sst163     URL    
[70]
Mwakaboko A S, Zwanenburg B. Eur. J. Org. Chem., 2016, 2016: 3495.

doi: 10.1002/ejoc.v2016.21     URL    
[71]
Lombardi C, Artuso E, Grandi E, Lolli M, Spyrakis F, Priola E, Prandi C. Org. Biomol. Chem., 2017, 15: 8218.

doi: 10.1039/c7ob01917c     pmid: 28880031
[72]
Malik H, Rutjes F P J T, Zwanenburg B. Tetrahedron, 2010, 66: 7198.

doi: 10.1016/j.tet.2010.06.072     URL    
[73]
Chen Y, Kuang Y, Shi L, Wang X, Fu H, Yang S, Sampietro D A, Huang L, Yuan Y. Front. Plant Sci., 2021, 12: 725949.

doi: 10.3389/fpls.2021.725949     URL    
[74]
Thuring J W J F, Keltjens R, Nefkens G H L, Zwanenburg B. J. Chem. Soc., Perkin Trans. 1, 1997, 759.
[75]
Reizelman A, Wigchert S C, del-Bianco C, Zwanenburg B. Org. Biomol. Chem., 2003, 1: 950.

pmid: 12929633
[76]
Ueno K, Ishiwa S, Nakashima H, Mizutani M, Takikawa H, Sugimoto Y. Bioorg. Med. Chem., 2015, 23: 6100.

doi: 10.1016/j.bmc.2015.08.003     URL    
[77]
Malik H, Kohlen W, Jamil M, Rutjes F P, Zwanenburg B. Org. Biomol. Chem., 2011, 9: 2286.

doi: 10.1039/c0ob00735h     URL    
[78]
Alvi A F, Sehar Z, Fatma M, Masood A, Khan N A. Plants (Basel), 2022, 11: 2604.
[79]
Qiu C W, Zhang C, Wang N H, Mao W, Wu F. Environ. Pollut., 2021, 273: 116486.

doi: 10.1016/j.envpol.2021.116486     URL    
[80]
Wang W N, Min Z, Wu J R, Liu B C, Xu X L, Fang Y L, Ju Y L. Plant Physiol. Biochem., 2021, 167: 400.

doi: 10.1016/j.plaphy.2021.08.010     URL    
[81]
Modi S, Yaluri N, Kokkola T, Laakso M. Sci. Rep., 2017, 7: 17606.

doi: 10.1038/s41598-017-17840-x    
[82]
Zheng J X, Han Y S, Wang J C, Yang H, Kong H, Liu K J, Chen S Y, Chen Y R, Chang Y Q, Chen W M, Guo J L, Sun P H. Medchemcomm, 2017, 9: 181.

doi: 10.1039/C7MD00461C     URL    
[83]
Tumer T B, Yılmaz B, Ozleyen A, Kurt B, Tok T T, Taskin K M, Kulabas S S. Comput. Biol. Chem., 2018, 76: 179.

doi: 10.1016/j.compbiolchem.2018.07.014     URL    
[84]
Kurt B, Ozleyen A, Antika G, Yilmaz Y B, Tumer T B. ACS Chem. Neurosci., 2020, 11: 501.

doi: 10.1021/acschemneuro.9b00694     URL    
[85]
Pollock C B, Koltai H, Kapulnik Y, Prandi C, Yarden R I. Breast Cancer Res. Treat., 2012, 134: 1041.

doi: 10.1007/s10549-012-1992-x     URL    
[86]
Carrillo P, Martínez-Poveda B, Medina M Á, Quesada A R. Biochem. Pharmacol., 2019, 168: 366.

doi: S0006-2952(19)30274-6     pmid: 31351052
[87]
Chude C I, Amaravadi R K. Int. J. Mol. Sci., 2017, 18: 1279.

doi: 10.3390/ijms18061279     URL    
[88]
Yang S T, Fan J B, Liu T T, Ning S, Xu J H, Zhou Y J, Deng X. J. Med. Chem., 2022, 65: 9706.

doi: 10.1021/acs.jmedchem.2c00275     URL    
[89]
Lachia M, Wolf H C, Jung P J, Screpanti C, De Mesmaeker A. Bioorg. Med. Chem. Lett., 2015, 25: 2184.

doi: 10.1016/j.bmcl.2015.03.056     URL    
[90]
Ashida K, Hoshimoto Y, Tohnai N, Scott D E, Ohashi M, Imaizumi H, Tsuchiya Y, Ogoshi S. J. Am. Chem. Soc., 2020, 142: 1594.

doi: 10.1021/jacs.9b12493     pmid: 31868355
[91]
Lachia M D. EP 2651890 B1, 2014.
[92]
Ge Y, Chen X, Dong Y, Wang H N, Li Y, Chen G. Org. Biomol. Chem., 2021, 19: 7141.

doi: 10.1039/D1OB01234G     URL    
[93]
Lumbroso A F J C. EP 3765456 A1, 2021.
[94]
Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. Org. Biomol. Chem., 2009, 7: 3413.

doi: 10.1039/b907026e     pmid: 19675895
[95]
Artuso E, Ghibaudi E, Lace B, Marabello D, Vinciguerra D, Lombardi C, Koltai H, Kapulnik Y, Novero M, Occhiato E G, Scarpi D, Parisotto S, Deagostino A, Venturello P, Mayzlish-Gati E, Bier A, Prandi C. J. Nat. Prod., 2015, 78: 2624.

doi: 10.1021/acs.jnatprod.5b00557     pmid: 26502774
[96]
Prandi C, Rosso H, Lace B, Occhiato E G, Oppedisano A, Tabasso S, Alberto G, Blangetti M. Mol. Plant, 2013, 6: 113.

doi: 10.1093/mp/sss133     URL    
[97]
Prandi C, Ghigo G, Occhiato E G, Scarpi D, Begliomini S, Lace B, Alberto G, Artuso E, Blangetti M. Org. Biomol. Chem., 2014, 12: 2960.

doi: 10.1039/C3OB42592D     URL    
[98]
Croglio M P, Haake J M, Ryan C P, Wang V S, Lapier J, Schlarbaum J P, Dayani Y, Artuso E, Prandi C, Koltai H, Agama K, Pommier Y, Chen Y, Tricoli L, LaRocque J R, Albanese C, Yarden R I. Oncotarget, 2016, 7: 13984.

doi: 10.18632/oncotarget.v7i12     URL    
[99]
Pollock C B, McDonough S, Wang V S, Lee H, Ringer L, Li X, Prandi C, Lee R J, Feldman A S, Koltai H, Kapulnik Y, Rodriguez O C, Schlegel R, Albanese C, Yarden R I. Oncotarget, 2014, 5: 1683.

doi: 10.18632/oncotarget.1849     pmid: 24742967
[100]
Mayzlish-Gati E, Laufer D, Grivas C F, Shaknof J, Sananes A, Bier A, Ben-Harosh S, Belausov E, Johnson M D, Artuso E, Levi O, Genin O, Prandi C, Khalaila I, Pines M, Yarden R I, Kapulnik Y, Koltai H. Cancer Biol. Ther., 2015, 16: 1682.

doi: 10.1080/15384047.2015.1070982     pmid: 26192476
[101]
Antika G, Cinar Z Ö, Seçen E, Özbil M, Tokay E, Köçkar F, Prandi C, Tumer T B. ACS Chem. Neurosci., 2022, 13: 572.

doi: 10.1021/acschemneuro.1c00702     pmid: 35138812
[102]
Fukui K, Ito S, Ueno K, Yamaguchi S, Kyozuka J, Asami T. Bioorg. Med. Chem. Lett., 2011, 21: 4905.

doi: 10.1016/j.bmcl.2011.06.019     URL    
[103]
Takahashi I, Fukui K, Asami T. Pest Manag. Sci., 2016, 72: 2048.

doi: 10.1002/ps.4265     pmid: 26929041
[104]
Dvorakova M, Hylova A, Soudek P, Retzer K, Spichal L, Vanek T. J. Nat. Prod., 2018, 81: 2321.

doi: 10.1021/acs.jnatprod.8b00160     pmid: 30362743
[105]
Takahashi I, Fukui K, Asami T. aBIOTECH, 2020, 2: 1.

doi: 10.1007/s42994-020-00031-0    
[106]
Li S, Li Y, Chen L, Zhang C, Wang F, Li H, Wang M, Wang Y, Nan F, Xie D, Yan J. Plant J., 2021, 107: 67.

doi: 10.1111/tpj.v107.1     URL    
[107]
Liu Y X, Rong C Y, Wang S, Ding Y F, Ding C Q. Plant Growth Regul., 2022, 98, 499.

doi: 10.1007/s10725-022-00882-1    
[108]
Hasan M N, Choudhry H, Razvi S S, Moselhy S S, Kumosani T A, Zamzami M A, Omran Z, Halwani M A, Al-Babili S, Abualnaja K O, Al-Malki A L, Alhosin M, Asami T. Bioorg. Med. Chem. Lett., 2018, 28: 1077.

doi: 10.1016/j.bmcl.2018.02.016     URL    
[109]
Suzuki T, Kuruma M, Seto Y. Front. Plant Sci., 2022, 13: 843362.

doi: 10.3389/fpls.2022.843362     URL    
[110]
Samejima H, Babiker A G, Takikawa H, Sasaki M, Sugimoto Y. Pest Manag. Sci., 2016, 72: 2035.

doi: 10.1002/ps.4215     pmid: 26732430
[111]
Hýlová A, Pospíšil T, Spíchal L, Mateman J J, Blanco-Ania D, Zwanenburg B. N. Biotechnol., 2019, 48: 76.

doi: 10.1016/j.nbt.2018.08.001     URL    
[112]
Uraguchi D, Kuwata K, Hijikata Y, Yamaguchi R, Imaizumi H, Am S, Rakers C, Mori N, Akiyama K, Irle S, McCourt P, Kinoshita T, Ooi T, Tsuchiya Y. Science, 2018, 362: 1301.

doi: 10.1126/science.aau5445     pmid: 30545887
[113]
Thuring J W J F, Nefkens G H L, Schaafstra R, Zwanenburg B. Tetrahedron, 1995, 51: 5047.

doi: 10.1016/0040-4020(95)98701-I     URL    
[114]
Lumbroso A, Villedieu-Percheron E, Zurwerra D, Screpanti C, Lachia M, Dakas P Y, Castelli L, Paul V, Wolf H C, Sayer D, Beck A, Rendine S, FonnÉ-Pfister R, de Mesmaeker A. Pest Manag. Sci., 2016, 72: 2054.

doi: 10.1002/ps.2016.72.issue-11     URL    
[115]
Wigchert S C, Kuiper E, Boelhouwer G J, Nefkens G H, Verkleij J A, Zwanenburg B. J. Agric. Food Chem., 1999, 47: 1705.

doi: 10.1021/jf981006z     URL    
[116]
Jamil M, Wang J Y, Yonli D, Ota T, Berqdar L, Traore H, Margueritte O, Zwanenburg B, Asami T, Al-Babili S. Plants (Basel), 2022, 11: 1045.
[117]
Jamil M, Wang J Y, Yonli D, Patil R H, Riyazaddin M, Gangashetty P, Berqdar L, Chen G E, Traore H, Margueritte O, Zwanenburg B, Bhoge S E, Al-Babili S. Plants (Basel), 2022, 11: 808.
[118]
Cala A, Ghooray K, Fernández-Aparicio M, Molinillo J M, Galindo J C, Rubiales D, Macías F A. Pest Manag. Sci., 2016, 72: 2069.

doi: 10.1002/ps.2016.72.issue-11     URL    
[119]
Dvorakova M, Hylova A, Soudek P, Petrova S, Spichal L, Vanek T. Pest Manag. Sci., 2019, 75: 2049.

doi: 10.1002/ps.5330     pmid: 30632264
[120]
Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu M L, Vladulescu M C, Vladulescu L, Deleanu C. Molecules, 2017, 22: 961.

doi: 10.3390/molecules22060961     URL    
[121]
Mwakaboko A S, Zwanenburg B. Plant Cell Physiol., 2011, 52: 699.

doi: 10.1093/pcp/pcr031     URL    
[122]
Jamil M, Kountche B A, Haider I, Guo X, Ntui V O, Jia K P, Ali S, Hameed U S, Nakamura H, Lyu Y, Jiang K, Hirabayashi K, Tanokura M, Arold S T, Asami T, Al-Babili S. J. Exp. Bot., 2018, 69: 2319.

doi: 10.1093/jxb/erx438     URL    
[123]
Kountche B A, Novero M, Jamil M, Asami T, Bonfante P, Al-Babili S. Heliyon, 2018, 4: e00936.

doi: 10.1016/j.heliyon.2018.e00936     URL    
[124]
Jamil M, Kountche B A, Wang J Y, Haider I, Jia K P, Takahashi I, Ota T, Asami T, Al-Babili S. Front. Plant Sci., 2020, 11: 434.

doi: 10.3389/fpls.2020.00434     URL    
[125]
Bouwmeester H J, Fonne-Pfister R, Screpanti C, De Mesmaeker A. Angew. Chem. Int. Ed. Engl., 2019, 58: 12778.

doi: 10.1002/anie.v58.37     URL    
[126]
Wang D W, Xi Z. Adv. Agrochem, 2022, 1: 61.

doi: 10.1016/j.aac.2022.09.002     URL    
[1] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[2] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[3] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[4] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[5] 李红, 赵媛媛, 彭浩南. 多巴胺基纳米材料在生物医药中的应用[J]. 化学进展, 2018, 30(8): 1228-1241.
[6] 朱脉勇*, 陈齐, 童文杰, 阚加瑞, 盛维琛. 四氧化三铁纳米材料的制备与应用[J]. 化学进展, 2017, 29(11): 1366-1394.
[7] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[8] 周贵凤, 王勤, 曾仁权, 傅相锴, 杨新斌. 磷酸锆及其衍生物的制备与应用[J]. 化学进展, 2014, 26(01): 87-99.
阅读次数
全文


摘要

独脚金内酯及其新型衍生物