English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1177-1190 DOI: 10.7536/PC221220 前一篇   后一篇

• 综述 •

全固态钠离子电池及界面改性

杨冬荣1,2,3, 张达1,2,3,*(), 任昆1,2,3, 李付鹏1,2,3, 东鹏1,2,3, 张家庆1,2,3, 杨斌1,2,3, 梁风1,2,3,*()   

  1. 1 昆明理工大学 云南省有色金属真空冶金重点实验室 昆明 650093
    2 昆明理工大学真空冶金国家工程研究中心 昆明 650093
    3 昆明理工大学冶金与能源工程学院 昆明 650093
  • 收稿日期:2022-12-28 修回日期:2023-05-24 出版日期:2023-08-24 发布日期:2023-07-18
  • 作者简介:

    张达 昆明理工大学讲师,2021年于昆明理工大学冶金与能源工程学院获博士学位,主要从事纳米材料的等离子体制备和改性、新能源材料与器件等方面研究。

    梁 风 昆明理工大学教授,博士生导师,日本九州大学客座教授。于日本东京工业大学获博士学位。入选国家人力资源与社会保障部资助高层次留学回国人才计划、云南省高端科技人才、昆明理工大学首批学术青蓝计划等多项人才计划。主要从事高能量密度储能器件(固态离子电池、金属空气电池等)、等离子体制备和改性纳米材料等方面研究。

  • 基金资助:
    国家自然科学基金项目(12175089); 国家自然科学基金项目(12205127); 云南省重点研发计划项目(202103AF140006); 云南省科技厅应用基础研究计划项目(202001AW070004)

All Solid-State Sodium Batteries and Its Interface Modification

Dongrong Yang1,2,3, Da Zhang1,2,3(), Kun Ren1,2,3, Fupeng Li1,2,3, Peng Dong1,2,3, Jiaqing Zhang1,2,3, Bin Yang1,2,3, Feng Liang1,2,3()   

  1. 1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology,Kunming 650093, China
    2 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
    3 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2022-12-28 Revised:2023-05-24 Online:2023-08-24 Published:2023-07-18
  • Contact: *e-mail: liangfeng@kust.edu.cn (Feng Liang);zhangda@kust.edu.cn (Da Zhang)
  • Supported by:
    National Natural Science Foundation of China(12175089); National Natural Science Foundation of China(12205127); Key Research and Development Program of Yunnan Province(202103AF140006); Applied Basic Research Programs of Yunnan Provincial Science and Technology Department(202001AW070004)

全固态钠离子电池具有原料成本低、安全性高以及能量密度高等特点,在移动电源、电动汽车和大规模储能系统领域表现出巨大的应用潜力。然而全固态钠离子电池的发展和规模化应用亟需解决固体电解质室温离子电导率低、界面电荷转移阻抗大、固体电解质与电极界面兼容性和接触差等问题。本文结合近年来全固态钠离子电池相关报道和本课题组研究成果,概述了β-Al2O3型固体电解质、NASICON型固体电解质、硫化物固体电解质、聚合物固体电解质、复合固体电解质的研究进展及发展趋势;综述了全固态钠离子电池界面特性、固体电解质表面修饰、电极/固体电解质界面改性最新研究成果;最后对全固态钠离子电池界面改性策略发展方向进行了展望。本综述有助于加深对全固态钠离子电池界面科学问题的认识,并对固态钠离子电池的发展应用形成理论指导。

All solid-state sodium batteries have great potential for portable electronics, electric vehicles, and large-scale energy storage applications due to the low cost of sodium, high security, and high energy density. However, the development and large-scale application of all-solid-state sodium ion batteries urgently need to solve the problems such as low ion conductivity of solid electrolyte, high charge-transfer impedance on interface, insufficient interfacial contact, and compatibility issues between electrodes and electrolytes solid electrolyte. Herein, combining the latest reports with our research findings, the research progress and development trend of β-Al2O3 electrolytes, NASICON electrolytes, sulfide electrolytes, polymer electrolytes, and composite electrolytes were summarized. The latest achievements in interface characteristics, the modification strategies of the interface between the electrodes and solid electrolytes and modification methods for surfaces of solid electrolytes were reviewed. Finally, the development direction of interface modification strategy for solid-state sodium ion batteries was prospected. This review have contributed to understand the interface science issues of all solid-state sodium ion batteries and provides a theoretical guidance for the development and application of solid-state sodium ion batteries.

Contents

1 Introduction

2 Solid-state electrolytes

3 Challenges for all solid-state sodium batteries

4 Interfaces engineering

4.1 Cathode/electrolyte interfaces

4.2 Anode/electrolytes interfaces

4.3 Structure design for interfaces engineering

5 Conclusion and future perspectives

()
图1 无机固体电解质(a,b,c,d,e)和有机聚合物固体电解质(f)性质对比图[27]
Fig.1 Performance comparison of (a, b, c, d, e) inorganic solid electrolytes, and (f) solid polymer electrolytes[27]
表1 常见无机固体电解质的特性和优缺点[40,41]
Table 1 The characteristics, advantages, and disadvantages of common inorganic solid electrolytes[40,41]
图2 (a)β-Al2O3和β″-Al2O3晶体结构[26];(b)Na3Zr2Si2PO12钠离子传输路径示意图[27];(c)Na3PS4晶体结构[26];(d)聚合物固体电解质Na+传导机理图[54]
Fig.2 (a) Crystal structures of β-Al2O3 and β″-Al2O3[26]; (b) schematic illustration of Na+ conducting pathways in Na3Zr2Si2PO12[27]; (c) crystal structures of the Na3PS4[26]; (d) schematic illustration of Na+ transport mechanism in polymer solid electrolytes[54]
图3 无机固体电解质Na+电导率随温度变化[87]:(a)NASICON;(b)硫化物固体电解质;(c)聚合物和复合固体电解质;(d)结晶态有机物、反钙钛矿和硼氢化物固体电解质
Fig.3 Temperature-dependent Na+ conductivities of inorganic solid electrolytes[87]: (a) NASICON; (b) sulfide solid electrolytes; (c) polymer and composite solid electrolytes; (d) crystalline organic, anti-perovskites and borohydrides solid electrolytes
图4 全固态钠离子电池示意图
Fig.4 Schematic illustration of the SSBs
图5 (a)NVP|IL/SE|Na电池界面示意图[58];(b)Na2S-Na3PS4-CMK-3复合正极示意图[95];(c)S-MSP20-Na3SbS4正极制备工艺[96];(d,e)正极活性材料与塑性晶体固体电解质复合正极示意图[97];(f)Na|PEO-SN-NaClO4/PAN-Na3Zr2Si2PO12-NaClO4|PB电池在0.2 C下循环性能图[98];(g)非对称固体电解质示意图
Fig.5 (a) Schematic of the interface for NVP|IL/SE|Na batteries[58]; (b) schematic of the Na2S-Na3PS4-CMK-3 composite cathode[95]; (c) preparation process for S-MSP20-Na3SbS4 cathode[96]; (d, e) schematic of plastic-crystal electrolyte and active material in composited cathode[97]; (f) cycling performance of the Na|PEO-SN-NaClO4/PAN-Na3Zr2Si2PO12-NaClO4|PB cell at 0.2 C[98]; and (g) illustration of the asymmetric solid electrolytes
图6 (a)PEALD构筑Al2O3钝化层示意图[105];(b)化学气相沉积石墨烯修饰NASICON表面示意图[106];(c)NaClO4/FEC溶液改性Na金属表面示意图[107];(d)Na|SnS2-Na3Zr2Si2PO12界面改性示意图[108];(e)固体电解质与金属Na界面接触模型[109];(f)Na-SiO2复合材料与NASICON界面[110]
Fig.6 (a) Schematic of PEALD process for Al2O3 layer[105]; (b) schematic of the CVD-grown graphene-like interlayer on NASICON surface[106]; (c) NaClO4/FEC modified surface of Na[107]; (d) schematic of the Na|SnS2-Na3Zr2Si2PO12 interface[108]; (e) contact model of SEs and sodium metallic[109]; (f) interfaces between Na-SiO2 composite and NASICON[110]
图7 (a)金属钠-碳复合负极与固体聚合物化学交联界面示意图[112];(b)Na-C|PEO20NaFSI| Na-C和Na|PEO20NaFSI|Na电池在0.1、0.2和0.3 mA下循环电压曲线[112];(c)正极和固体电解质叠层薄膜示意图[113];(d)Na2FeP2O7正极与β''-Al2O3电解质一体化结构示意图[114];(e)Pt|Na3-xV2-xZrx(PO4)3|Pt单相全固态电池示意图[115]
Fig.7 (a) Illustration of the interfaces between solid-state polymer and Na-C anode[112]; (b) voltage curves of the Na-C|PEO20NaFSI| Na-C and Na|PEO20NaFSI|Na batteries at a current density of 0.1, 0.2, and 0.3 mA[112]; (c) schematic of the cathode-supported solid electrolyte membrane[113]; (d) illustration of the Na2FeP2O7 and β''-Al2O3 integrated structure[114]; (e) schematic illustration of the Pt|Na3-xV2-xZrx(PO4)3|Pt battery[115]
[1]
Jiang Y P, Wang B, Liu A M, Song R S, Bao C Y, Ning Y, Wang F, Ruan T T, Wang D L, Zhou Y. Electrochimica Acta, 2020, 339: 135941.

doi: 10.1016/j.electacta.2020.135941     URL    
[2]
Wang F, Wang B, Ruan T T, Gao T T, Song R S, Jin F, Zhou Y, Wang D L, Liu H K, Dou S X. ACS Nano, 2019, 13(10): 12219.

doi: 10.1021/acsnano.9b07241     pmid: 31589407
[3]
Yadegari H, Sun X L. Trends Chem., 2020, 2(3): 241.

doi: 10.1016/j.trechm.2019.12.003     URL    
[4]
Sun Q, Liu J, Xiao B W, Wang B Q, Banis M, Yadegari H, Adair K R, Li R Y, Sun X L. Adv. Funct. Mater., 2019, 29(13): 1808332.

doi: 10.1002/adfm.v29.13     URL    
[5]
Senthilkumar S T, Go W, Han J, Pham Thi Thuy L, Kishor K, Kim Y, Kim Y,. J. Mater. Chem. A, 2019, 7(40): 22803.

doi: 10.1039/c9ta08321a    
[6]
Lee B, Paek E, Mitlin D, Lee S W. Chem. Rev., 2019, 119(8): 5416.

doi: 10.1021/acs.chemrev.8b00642    
[7]
Tang B, Jaschin P W, Li X, Bo S H, Zhou Z. Mater. Today, 2020, 41: 200.

doi: 10.1016/j.mattod.2020.08.016     URL    
[8]
Bucci G, Brandon T, Ananya R B, Yet-Ming C, Craig C W. Physical Review Materials, 2018, 2(10): 105407.

doi: 10.1103/PhysRevMaterials.2.105407     URL    
[9]
Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer J R. Proc. Natl. Acad. Sci. U. S. A., 2017, 114(1): 57.

doi: 10.1073/pnas.1615733114     URL    
[10]
Wang Y M, Song S F, Xu C H, Hu N, Molenda J, Lu L. Nano Mater. Sci., 2019, 1(2): 91.
[11]
Liu Q, Zhao X H, Yang Q, Hou L J, Mu D B, Tan G Q, Li L, Chen R J, Wu F. Adv. Mater. Technol., 2023, 8(7): 2200822.

doi: 10.1002/admt.v8.7     URL    
[12]
Lu Y, Li L, Zhang Q, Niu Z Q, Chen J. Joule, 2018, 2(9): 1747.

doi: 10.1016/j.joule.2018.07.028     URL    
[13]
Che H Y, Chen S L, Xie Y Y, Wang H, Amine K, Liao X Z, Ma Z F. Energy Environ. Sci., 2017, 10(5): 1075.

doi: 10.1039/C7EE00524E     URL    
[14]
Yao Y, Wei Z Y, Wang H Y, Huang H J, Jiang Y, Wu X J, Yao X Y, Wu Z S, Yu Y. Adv. Energy Mater., 2020, 10(12): 2070055.

doi: 10.1002/aenm.v10.12     URL    
[15]
Fan L, Wei S Y, Li S Y, Li Q, Lu Y Y. Adv. Energy Mater., 2018, 8(11): 1702657.

doi: 10.1002/aenm.v8.11     URL    
[16]
Zhang W, Zhao C D, Wu X L. Adv. Mater. Interfaces, 2020, 7(23): 2001444.

doi: 10.1002/admi.v7.23     URL    
[17]
Sheng O W, Jin C B, Ding X F, Liu T F, Wan Y H, Liu Y J, Nai J W, Wang Y, Liu C T, Tao X Y. Adv. Funct. Mater., 2021, 31(27): 2100891.

doi: 10.1002/adfm.v31.27     URL    
[18]
Tang S, Guo W, Fu Y Z. Adv. Energy Mater., 2021, 11(2): 2000802.

doi: 10.1002/aenm.v11.2     URL    
[19]
Zuo T T, Rueß R, Pan R J, Walther F, Rohnke M, Hori S, Kanno R, Schröder D, Janek J. Nat. Commun., 2021, 12: 6669.

doi: 10.1038/s41467-021-26895-4    
[20]
Haruyama J, Sodeyama K, Han L Y, Takada K, Tateyama Y. Chem. Mater., 2014, 26(14): 4248.

doi: 10.1021/cm5016959     URL    
[21]
Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W B, Binder J O, Hartmann P, Zeier W G, Janek J. Chem. Mater., 2017, 29(13): 5574.

doi: 10.1021/acs.chemmater.7b00931     URL    
[22]
Banerjee A, Wang X F, Fang C C, Wu E A, Meng Y S. Chem. Rev., 2020, 120(14): 6878.

doi: 10.1021/acs.chemrev.0c00101     pmid: 32603100
[23]
Bao C Y, Wang B, Liu P, Wu H, Zhou Y, Wang D L, Liu H K, Dou S X. Adv. Funct. Mater., 2020, 30(52): 2004891.

doi: 10.1002/adfm.v30.52     URL    
[24]
Jin X, Zhao Y, Shen Z H, Pu J, Xu X X, Zhong C L, Zhang S, Li J C, Zhang H G. Energy Storage Mater., 2020, 31: 221.
[25]
Wu, F.B, Yang B, Ye J L. Eds. Chapter 2-Technologies of energy storage systems. In Grid-Scale Energy Storage Systems and Applications; Academic Press: Cambridge, MA, USA, 2019.17.
[26]
Zhao C L, Liu L L, Qi X G, Lu Y X, Wu F X, Zhao J M, Yu Y, Hu Y S, Chen L Q. Adv. Energy Mater., 2018, 8(17): 1703012.

doi: 10.1002/aenm.v8.17     URL    
[27]
Wu J F, Zhang R, Fu Q F, Zhang J S, Zhou X Y, Gao P, Xu C H, Liu J L, Guo X. Adv. Funct. Mater., 2021, 31(13): 2008165.

doi: 10.1002/adfm.v31.13     URL    
[28]
Zhao Y J, Wang C Z, Dai Y J, Jin H B. Nano Energy, 2021, 88: 106293.

doi: 10.1016/j.nanoen.2021.106293     URL    
[29]
Wang C Z, Sun Z, Zhao Y J, Wang B Y, Shao C X, Sun C, Zhao Y, Li J B, Jin H B, Qu L T. Small, 2021, 17(40): 2103819.

doi: 10.1002/smll.v17.40     URL    
[30]
Shen L, Deng S G, Jiang R R, Liu G Z, Yang J, Yao X Y. Energy Storage Mater., 2022, 46: 175.
[31]
Shen L, Yang J, Liu G, Avdeev M, Yao X. Mater. Today Energy, 2021, 20: 100691.
[32]
Liu L L, Qi X G, Yin S J, Zhang Q Q, Liu X Z, Suo L M, Li H, Chen L Q, Hu Y S. ACS Energy Lett., 2019, 4(7): 1650.

doi: 10.1021/acsenergylett.9b00857     URL    
[33]
Zhang Q Q, Lu Y X, Yu H, Yang G J, Liu Q Y, Wang Z X, Chen L Q, Hu Y S. J. Electrochem. Soc., 2020, 167(7): 070523.

doi: 10.1149/1945-7111/ab741b    
[34]
Qiao L X, Judez X, Rojo T, Armand M, Zhang H. J. Electrochem. Soc., 2020, 167(7): 070534.

doi: 10.1149/1945-7111/ab7aa0    
[35]
Kang S, Yang C, Jeon B, Jeon B, Koo B, Hong S T, Lee H. Chemical Engineering Journal, 2021, 426: 131901.

doi: 10.1016/j.cej.2021.131901     URL    
[36]
Zheng S H, Huang H J, Dong Y F, Wang S, Zhou F, Qin J Q, Sun C L, Yu Y, Wu Z S, Bao X H. Energy Environ. Sci., 2020, 13(3): 821.

doi: 10.1039/C9EE03219C     URL    
[37]
Lonchakova O V, Semenikhin O A, Zakharkin M V, Karpushkin E A, Sergeyev V G, Antipov E V. Electrochimica Acta, 2020, 334: 135512.

doi: 10.1016/j.electacta.2019.135512     URL    
[38]
Zhang Z, Huang Y, Li C, Li X. ACS Appl. Mater. Interfaces, 2021, 13(31): 37262.

doi: 10.1021/acsami.1c11476     URL    
[39]
Wen P C, Lu P F, Shi X Y, Yao Y, Shi H D, Liu H Q, Yu Y, Wu Z S. Adv. Energy Mater., 2021, 11(6): 2002930.

doi: 10.1002/aenm.v11.6     URL    
[40]
Yang H L, Zhang B W, Konstantinov K, Wang Y X, Liu H K, Dou S X. Adv. Energy Sustain. Res., 2021, 2(2): 2000057.

doi: 10.1002/aesr.v2.2     URL    
[41]
Hou M J, Liang F, Chen K F, Dai Y N, Xue D F. Nanotechnology, 2020, 31(13): 132003.

doi: 10.1088/1361-6528/ab5be7     URL    
[42]
Hueso K B, Palomares V, Armand M, Rojo T. Nano Res., 2017, 10(12): 4082.

doi: 10.1007/s12274-017-1602-7     URL    
[43]
Lee S T, Lee D H, Lee S M, Han S S, Lee S H, Lim S K. Bull. Mater. Sci., 2016, 39(3): 729.

doi: 10.1007/s12034-016-1199-6     URL    
[44]
Bates J B, Engstrom H, Wang J C, Larson B C, Dudney N J, Brundage W E. Solid State Ion., 1981, 5: 159.

doi: 10.1016/0167-2738(81)90217-4     URL    
[45]
Lu X C, Xia G G, Lemmon J P, Yang Z G. J. Power Sources, 2010, 195(9): 2431.

doi: 10.1016/j.jpowsour.2009.11.120     URL    
[46]
Zhang S P, Yao Y, Yu Y. ACS Energy Lett., 2021, 6(2): 529.

doi: 10.1021/acsenergylett.0c02488     URL    
[47]
Yang K S, Liu D Y, Qian Z F, Jiang D T, Wang R H. ACS Nano, 2021, 15(11): 17232.

doi: 10.1021/acsnano.1c07476     URL    
[48]
Hou M J, Yang X C, Liang F, Dong P, Chen Y N, Li J R, Chen K F, Dai Y N, Xue D F. ACS Appl. Mater. Interfaces, 2021, 13(28): 33262.

doi: 10.1021/acsami.1c07601     URL    
[49]
Hou M J, Qu T, Zhang Q K, Yao Y C, Dai Y N, Liang F, Okuma G, Hayashi K. Corros. Sci., 2020, 177: 109012.
[50]
Schuett J, Pescher F, Neitzel-Grieshammer S. Phys. Chem. Chem. Phys., 2022, 24(36): 22154.

doi: 10.1039/d2cp03621e     pmid: 36089841
[51]
Deng Z, Gautam G S, Chotard J N, Kolli S K, Canepa P. ECS Meeting Abstracts. IOP Publishing, 2020, 5: 1002.
[52]
Zhang Q K, Liang F, Yao Y C, Ma W H, Yang B, Dai Y N. Progress in Chemistry, 2019, 31(1): 210.
(张庆凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 化学进展, 2019, 31(1): 210.).

doi: 10.7536/PC180434    
[53]
Park H, Jung K, Nezafati M, Kim C S, Kang B. ACS Appl. Mater. Interfaces, 2016, 8(41): 27814.

doi: 10.1021/acsami.6b09992     URL    
[54]
Zhao Y, Wang L, Zhou Y N, Liang Z, Tavajohi N, Li B H, Li T. Adv. Sci., 2021, 8(7): 2003675.

doi: 10.1002/advs.v8.7     URL    
[55]
Song S F, Duong H M, Korsunsky A M, Hu N, Lu L. Sci. Rep., 2016, 6: 32330.

doi: 10.1038/srep32330    
[56]
Ma Q L, Guin M, Naqash S, Tsai C L, Tietz F, Guillon O. Chem. Mater., 2016, 28(13): 4821.

doi: 10.1021/acs.chemmater.6b02059     URL    
[57]
Ruan Y L, Song S D, Liu J J, Liu P, Cheng B W, Song X Y, Battaglia V. Ceram. Int., 2017, 43(10): 7810.

doi: 10.1016/j.ceramint.2017.03.095     URL    
[58]
Zhang Z Z, Zhang Q H, Shi J N, Chu Y S, Yu X Q, Xu K Q, Ge M Y, Yan H F, Li W J, Gu L, Hu Y S, Li H, Yang X Q, Chen L Q, Huang X J. Adv. Energy Mater., 2017, 7(4): 1601196.

doi: 10.1002/aenm.v7.4     URL    
[59]
Oh J A S, He L C, Plewa A, Morita M, Zhao Y, Sakamoto T, Song X, Zhai W, Zeng K Y, Lu L. ACS Appl. Mater. Interfaces, 2019, 11(43): 40125.

doi: 10.1021/acsami.9b14986     URL    
[60]
Zhu Z Y, Chu I H, Deng Z, Ong S P. Chem. Mater., 2015, 27(24): 8318.

doi: 10.1021/acs.chemmater.5b03656     URL    
[61]
Cao C, Li Z B, Wang X L, Zhao X B, Han W Q. Front. Energy Res., 2014, 2: 25.
[62]
Kim J J, Yoon K, Park I, Kang K. Small Methods, 2017, 1(10): 1700219.

doi: 10.1002/smtd.v1.10     URL    
[63]
Zhang L, Yang K, Mi J L, Lu L, Zhao L R, Wang L M, Li Y M, Zeng H. Adv. Energy Mater., 2015, 5(24): 1501294.

doi: 10.1002/aenm.201501294     URL    
[64]
Takeuchi S, Suzuki K, Hirayama M, Kanno R. J. Solid State Chem., 2018, 265: 353.

doi: 10.1016/j.jssc.2018.06.023     URL    
[65]
Famprikis T, Dawson J A, Fauth F, Clemens O, Suard E, Fleutot B, Courty M, Chotard J N, Islam M S, Masquelier C. ACS Mater. Lett., 2019, 1(6): 641.
[66]
Banerjee A, Park K H, Heo J W, Nam Y J, Moon C K, Oh S M, Hong S T, Jung Y S. Angewandte Chemie, 2016, 128(33): 9786.

doi: 10.1002/ange.v128.33     URL    
[67]
Yu Z X, Shang S L, Seo J H, Wang D W, Luo X Y, Huang Q Q, Chen S R, Lu J, Li X L, Liu Z K, Wang D H. Adv. Mater., 2017, 29(16): 1605561.

doi: 10.1002/adma.v29.16     URL    
[68]
Chu I H, Kompella C S, Nguyen H, Zhu Z Y, Hy S, Deng Z, Meng Y S, Ong S P. Sci. Rep., 2016, 6: 33733.

doi: 10.1038/srep33733    
[69]
Wan H L, Mwizerwa J P, Qi X G, Liu X, Xu X X, Li H, Hu Y S, Yao X Y. ACS Nano, 2018, 12(3): 2809.

doi: 10.1021/acsnano.8b00073     URL    
[70]
Heo J W, Banerjee A, Park K H, Jung Y S, Hong S T. Adv. Energy Mater., 2018, 8(11): 1702716.

doi: 10.1002/aenm.v8.11     URL    
[71]
Scrosati B. Chem. Record, 2001, 1(2): 173.

doi: 10.1002/(ISSN)1528-0691     URL    
[72]
Young W S, Kuan W F, Epps T H III. J. Polym. Sci. B Polym. Phys., 2014, 52(1): 1.

doi: 10.1002/polb.23404     URL    
[73]
Chen R J, Qu W J, Guo X, Li L, Wu F. Mater. Horiz., 2016, 3(6): 487.

doi: 10.1039/C6MH00218H     URL    
[74]
Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V. Polym. Plast. Technol. Eng., 2017, 56(9): 992.

doi: 10.1080/03602559.2016.1247280     URL    
[75]
Zhang J J, Zhao J H, Yue L P, Wang Q F, Chai J C, Liu Z H, Zhou X H, Li H, Guo Y G, Cui G L, Chen L Q. Adv. Energy Mater., 2015, 5(24): 1501082.

doi: 10.1002/aenm.201501082     URL    
[76]
Li X R, Meng L Y, Zhang Y L, Qin Z X, Meng L P, Li C F, Liu M L. Polymers, 2022, 14(11): 2159.

doi: 10.3390/polym14112159     URL    
[77]
Chen S L, Che H Y, Feng F, Liao J P, Wang H, Yin Y M, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(46): 43056.

doi: 10.1021/acsami.9b11259     URL    
[78]
Patel M, Chandrappa K G, Bhattacharyya A J. Solid State Ion., 2010, 181(17/18): 844.

doi: 10.1016/j.ssi.2010.04.013     URL    
[79]
Kiran Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma A K, Narasimha Rao V V R. Phys. B Condens. Matter, 2011, 406(9): 1706.

doi: 10.1016/j.physb.2011.02.010     URL    
[80]
Kunteppa H, Roy A S, Koppalkar A R, Ambika Prasad M V N. Phys. B Condens. Matter, 2011, 406(21): 3997.

doi: 10.1016/j.physb.2010.11.074     URL    
[81]
Yu W H, Zhai Y F, Yang G M, Yao J Y, Song S F, Li S, Tang W P, Hu N, Lu L. Ceram. Int., 2021, 47(8): 11156.

doi: 10.1016/j.ceramint.2020.12.239     URL    
[82]
Wang Y M, Wang Z T, Sun J G, Zheng F, Kotobuki M, Wu T, Zeng K Y, Lu L. J. Power Sources, 2020, 454: 227949.

doi: 10.1016/j.jpowsour.2020.227949     URL    
[83]
Wu J F, Yu Z Y, Wang Q, Guo X. Energy Storage Mater., 2020, 24: 467.
[84]
Serra Moreno J, Armand M, Berman M B, Greenbaum S G, Scrosati B, Panero S. J. Power Sources, 2014, 248: 695.

doi: 10.1016/j.jpowsour.2013.09.137     URL    
[85]
Li Z, Fu J L, Zhou X Y, Gui S W, Wei L, Yang H, Li H, Guo X. Adv. Sci., 2023, 10(10): 2201718.

doi: 10.1002/advs.v10.10     URL    
[86]
Song S F, Kotobuki M, Zheng F, Xu C H, Savilov S V, Hu N, Lu L, Wang Y, Dong Z, Li W. J. Mater. Chem. A, 2017, 5(14): 6424.

doi: 10.1039/C6TA11165C     URL    
[87]
Hou W R, Guo X W, Shen X Y, Amine K, Yu H J, Lu J. Nano Energy, 2018, 52: 279.

doi: 10.1016/j.nanoen.2018.07.036     URL    
[88]
Kim J K, Lim Y J, Kim H, Cho G B, Kim Y. Energy Environ. Sci., 2015, 8(12): 3589.

doi: 10.1039/C5EE01941A     URL    
[89]
Ling W, Fu N, Yue J P, Zeng X X, Ma Q, Deng Q, Xiao Y, Wan L J, Guo Y G, Wu X W. Adv. Energy Mater., 2020, 10(9): 1903966.

doi: 10.1002/aenm.v10.9     URL    
[90]
Yoshida K, Sato T, Unemoto A, Matsuo M, Ikeshoji T, Udovic T J, Orimo S I. Appl. Phys. Lett., 2017, 110(10): 103901.

doi: 10.1063/1.4977885     URL    
[91]
Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nature Materials, 2019, 18(12): 1278.

doi: 10.1038/s41563-019-0431-3    
[92]
Goodenough J B, Hong H Y P, Kafalas J A. Mater. Res. Bull., 1976, 11(2): 203.

doi: 10.1016/0025-5408(76)90077-5     URL    
[93]
de Klerk N J J, Wagemaker M. ACS Appl. Energy Mater., 2018, 1(10): 5609.

doi: 10.1021/acsaem.8b01141     pmid: 30406216
[94]
Cheng Z, Liu M, Ganapathy S, Li C, Li Z L, Zhang X Y, He P, Zhou H S, Wagemaker M. Joule, 2020, 4(6): 1311.

doi: 10.1016/j.joule.2020.04.002     URL    
[95]
Fan X L, Yue J, Han F D, Chen J, Deng T, Zhou X Q, Hou S, Wang C S. ACS Nano, 2018, 12(4): 3360.

doi: 10.1021/acsnano.7b08856     URL    
[96]
Ando T, Sakuda A, Tatsumisago M, Hayashi A. Electrochem. Commun., 2020, 116: 106741.

doi: 10.1016/j.elecom.2020.106741     URL    
[97]
Gao H C, Xue L G, Xin S, Park K, Goodenough J B. Angew. Chem., 2017, 129(20): 5633.

doi: 10.1002/ange.v129.20     URL    
[98]
Yu X W, Xue L G, Goodenough J B, Manthiram A. Adv. Funct. Mater., 2021, 31(2): 2002144.

doi: 10.1002/adfm.v31.2     URL    
[99]
Jiang B W, Wei Y, Wu J Y, Cheng H, Yuan L X, Li Z, Xu H H, Huang Y H. EnergyChem, 2021, 3(5): 100058.

doi: 10.1016/j.enchem.2021.100058     URL    
[100]
Wan H L, Mwizerwa J P, Qi X G, Xu X X, Li H, Zhang Q, Cai L T, Hu Y S, Yao X Y. ACS Appl. Mater. Interfaces, 2018, 10(15): 12300.

doi: 10.1021/acsami.8b01805     URL    
[101]
Cheng M, Qu T, Zi J, Yao Y C, Liang F, Ma W H, Yang B, Dai Y N, Lei Y. Nanotechnology, 2020, 31(42): 425401.

doi: 10.1088/1361-6528/aba059     URL    
[102]
Chen L, Huang S B, Qiu J Y, Zhang H, Cao G P. Progress in Chemistry, 2021, 33(8): 1378.
(陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 化学进展, 2021, 33(8): 1378.).

doi: 10.7536/PC200734    
[103]
Ma Q, Liu J J, Qi X G, Rong X H, Shao Y J, Feng W F, Nie J, Hu Y S, Li H, Huang X J, Chen L Q, Zhou Z B. J. Mater. Chem. A, 2017, 5(17): 7738.

doi: 10.1039/C7TA01820G     URL    
[104]
Kuai Y X, Wang F F, Yang J, Lu H C, Xu Z X, Xu X C, NuLi Y N, Wang J L. Mater. Chem. Front., 2021, 5(17): 6502.

doi: 10.1039/D1QM00769F     URL    
[105]
Luo W, Lin C F, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L B. Adv. Energy Mater., 2017, 7(2): 1601526.

doi: 10.1002/aenm.v7.2     URL    
[106]
Matios E, Wang H, Wang C L, Hu X F, Lu X, Luo J M, Li W Y. ACS Appl. Mater. Interfaces, 2019, 11(5): 5064.

doi: 10.1021/acsami.8b19519     URL    
[107]
Lu Y, Cai Y C, Zhang Q, Liu L J, Niu Z Q, Chen J. Chem. Sci., 2019, 10(15): 4306.

doi: 10.1039/C8SC05178J     URL    
[108]
Wang X X, Chen J J, Mao Z Y, Wang D J. J. Mater. Chem. A, 2021, 9(29): 16039.

doi: 10.1039/D1TA04869D     URL    
[109]
Zhou W D, Li Y T, Xin S, Goodenough J B. ACS Cent. Sci., 2017, 3(1): 52.

doi: 10.1021/acscentsci.6b00321     URL    
[110]
Fu H Y, Yin Q Y, Huang Y, Sun H B, Chen Y W, Zhang R Q, Yu Q, Gu L, Duan J, Luo W. ACS Mater. Lett., 2020, 2(2): 127.
[111]
Lu Y, Alonso J A, Yi Q, Lu L, Wang Z L, Sun C W. Adv. Energy Mater., 2019, 9(28): 1901205.

doi: 10.1002/aenm.v9.28     URL    
[112]
Zhao C L, Liu L L, Lu Y X, Wagemaker M, Chen L Q, Hu Y S. Angew. Chem., 2019, 131(47): 17182.

doi: 10.1002/ange.v131.47     URL    
[113]
Chen X Z, He W J, Ding L X, Wang S Q, Wang H H. Energy Environ. Sci., 2019, 12(3): 938.

doi: 10.1039/C8EE02617C     URL    
[114]
Yamauchi H, Ikejiri J, Sato F, Oshita H, Honma T, Komatsu T. J. Am. Ceram. Soc., 2019, 102(11): 6658.

doi: 10.1111/jace.16607    
[115]
Inoishi A, Omuta T, Kobayashi E, Kitajou A, Okada S. Adv. Mater. Interfaces, 2017, 4(5): 1600942.

doi: 10.1002/admi.v4.5     URL    
[1] 张浩, 伍艳辉. MOF-聚合物混合基质膜的制备、改性及其在渗透汽化中的应用[J]. 化学进展, 2023, 35(8): 1154-1167.
[2] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[8] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[9] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[10] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[13] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[14] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[15] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
阅读次数
全文


摘要

全固态钠离子电池及界面改性