English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 940-953 DOI: 10.7536/PC221216 前一篇   后一篇

• 综述 •

纳米态水滑石基材料光驱动C1化学转化

段驰1, 李振华1,*(), 张铁锐1,2,*()   

  1. 1 中国科学院理化技术研究所 中国科学院光化学转换与功能材料重点实验室 北京 100190
    2 中国科学院大学材料科学与光电子工程研究中心 北京 100049
  • 收稿日期:2022-12-28 修回日期:2023-05-19 出版日期:2023-06-24 发布日期:2023-05-25
  • 基金资助:
    国家自然科学基金项目(51825205); 国家自然科学基金项目(52120105002); 国家自然科学基金项目(22088102); 国家自然科学基金项目(22209190); 中国博士后基金项目(2021M703288); 中国博士后基金项目(2022T150665)

Nano-State Layered Double Hydroxides Based Materials for Photo-Driven C1 Chemical Conversion

Chi Duan1, Zhenhua Li1(), Tierui Zhang1,2()   

  1. 1 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • Received:2022-12-28 Revised:2023-05-19 Online:2023-06-24 Published:2023-05-25
  • Contact: *e-mail: lizhenhua@mail.ipc.ac.cn(Zhenhua Li); tierui@mail.ipc.ac.cn(Tierui Zhang)
  • Supported by:
    The National Natural Science Foundation of China(51825205); The National Natural Science Foundation of China(52120105002); The National Natural Science Foundation of China(22088102); The National Natural Science Foundation of China(22209190); The Postdoctoral Science Foundation of China(2021M703288); The Postdoctoral Science Foundation of China(2022T150665)

能源是人类赖以生存的基本保障。C1化学转化作为能源领域的重要反应,为人类社会发展提供了一定的保障。随着“双碳”目标的提出,节能减排,环境友好成为C1催化转化研究者们的新追求。最近,光驱动C1化学转化以其温和条件可以实现C1小分子向多种高附加值产物转化引起了研究者们的关注。水滑石由于其独特的层状二维结构在光驱动C1化学转化中得到了广泛应用。本文分别从水滑石前体作为催化剂、水滑石基衍生物作为催化剂和水滑石作为催化剂载体三个方面综述了纳米态水滑石基光驱动C1化学转化的最新研究进展,并总结该领域未来的挑战。希望通过对上述研究工作的分析与讨论,为研究人员在光驱动C1化学领域提供一定的启示。

Energy is the basic guarantee for human survival. As an important reaction in field of energy, C1 chemical conversion has safeguarded the development of human society. With the proposal of "double carbon" goal, energy saving-emission reduction and environmental friendliness have been the new pursuit of C1 catalytic conversion researchers. Recently, photo-driven C1 chemical conversion has attracted researchers’ attention through which C1 small molecules can be transformed into various value-added products under ambient condition. Layered double hydroxides (LDH) have gained wide application in photo-driven C1 chemical conversion for their distinctive two-dimensional layered structure. Herein, we review the latest progress achieved in nano-state LDH based materials for photo-driven C1 chemical conversion from three aspects containing LDH precursors acting as catalyst, LDH derivatives acting as catalyst and LDH acting as catalyst carrier, and conclude the challenges this field may face in the future. Through analyzing and discussing above-mentioned work, we hope to offer researchers some inspiration on photo-driven C1 chemistry.

Contents

1 Introduction

2 A brief introduction of LDH

2.1 Structural composition of LDH

2.2 Basic properties of LDH

3 Application of LDH based materials in photo-driven C1 conversion

3.1 LDH precursors as catalyst

3.2 LDH derivatives as catalyst

3.3 LDH as catalyst carrier

4 Conclusion and outlook

()
图1 (a) ZnM-LDH结构示意图及相应的光催化CO2还原产物; ZnM-LDH上(b) 产氢, (c) 光催化CO2还原至CO和(d) 光催化CO2还原至CH4的Gibbs自由能图[43]
Fig.1 (a) Scheme of ZnM-LDH structure and corresponding photocatalytic CO2 reduction product; The Gibbs free energy diagram of (b) H2 evolution, (c) photocatalytic CO2 reduction to CO and (d) photocatalytic CO2 reduction to CH4 over ZnM-LDH[43].Copyright 2020, Elsevier
图2 (a) 体相和超薄ZnAl-LDH合成示意图; (b) 超薄ZnAl-LDH光催化CO2还原循环实验; (c) CO2和H2O在a) 超薄ZnAl-LDH和b) 体相ZnAl-LDH上的吸附能[54]
Fig.2 (a) Synthesis scheme of bulk and ultrathin ZnAl-LDH; (b) Photocatalytic CO2 reduction cycling studies of ultrathin ZnAl-LDH; (c) Adsorption energies of CO2 and H2O molecules on a) ultrathin ZnAl-LDH system and b) bulk ZnAl-LDH[54].Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图3 (a) MIL-100@NiMn-LDH的合成示意图[59]; (b) NiMn-LDH和MIL-100@NiMn-LDH的电子顺磁共振谱图[59]; (c) MIL-100@NiMn-LDH上的缺陷示意图(M = Ni, Mn)[59]; (d) g-C3N4/Ti3C2T/CoAlLa-LDH上的S型光催化DRM机理[60]
Fig.3 (a) Scheme of MIL-100@NiMn-LDH synthesis[59]; (b) EPR spectra of NiMn-LDH and MIL-100@NiMn-LDH[59]; (c) Illustration for defects on MIL-100@NiMn-LDH(M = Ni, Mn)[59]; (d) S-scheme photocatalytic DRM mechanism over g-C3N4/Ti3C2T/CoAlLa-LDH[60].Copyright 2022, American Chemical Society
图4 (a) Ni-x的XPS Ni 2p谱图[71]; Ni(111)和4O/Ni(111)上的(b) CH4生成势能图[71]及(c) C-C偶联势能图[71]; (d) Co-x的Co K边EXAFS谱图[73]; Co(111)/Co3O4(220)和Co(111)上的(e) CO解离势能图[73]及(f) CH2偶联与C2H4加氢势能图[73]
Fig.4 (a) Ni 2p XPS spectra of Ni-x[71]; The potential energy profile of (b) CH4 formation and (c) C-C coupling on Ni(111) and 4O/Ni(111)[71]; (d) Co K-edge EXAFS spectra for Co-x[73]; The potential energy profile of (e) CO dissociation and (f) CH2 coupling and C2H4 hydrogenation on Co(111)/Co3O4(220) and Co(111)[73]. Copyright 2016&2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (a) CuOx&FeOx/MAO的合成机理; CuOx&FeOx/MAO上的(b) 空间限域效应和(c) CO2与H2的活化机理[86]
Fig.5 (a) Synthetic mechanism of CuOx&FeOx/MAO; (b) Space confined effect and (c) Activation mechanism of CO2 and H2 on CuOx&FeOx/MAO[86]
图6 (a) CoFe-x的形成和相应CO2加氢产物示意图[22]; (b) Fe-x的XRD谱图[93]; (c) Fe-500的HRTEM图片[93]; (d) Fe-500的CO2加氢流动相性能[93]; (e) 3O/Fe(110)和Fe(110)上CH4形成(上图)和C-C偶联(下图)的势能图[93]
Fig.6 (a) Illustration of CoFe-x catalysts formation and corresponding CO2 hydrogenation products[22]; (b) XRD spectra for Fe-x[93]; (c) HRTEM image for Fe-500[93]; (d) CO2 hydrogenation performance of Fe-500 using a flow system[93]; (e) The potential energy profile of CH4 formation (up) and C-C coupling (down) on 3O/Fe(110) and Fe(110)[93]. Copyright 2017&2021, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图7 (a) Ni3Fe1在紫外-可见光照下的DRM稳定性测试; (b) Ni3Fe1光驱动DRM机理示意图; (c) Ni3Fe1在光照和黑暗条件下的DRM活化能; (d) 300℃和 (e) 400℃时Ni3Fe1不同光强下的DRM催化性能[107]
Fig.7 (a) DRM stability test for Ni3Fe1 under UV-vis irradiation; (b) Schematic illustration for the photo-driven DRM reaction over Ni3Fe1; (c) DRM activation energy under light and dark conditions for Ni3Fe1, respectively; Catalytic performance of Ni3Fe1 for DRM at (d) 300℃ and (e) 400℃ under different light intensities[107].Copyright 2022, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 (a) Pd/NiAl的合成示意图; NiAl和Pd/NiAl的(b) CH4-TPD谱图和(c) CH4吸附能[113]
Fig.8 (a) Scheme for the synthesis of Pd/NiAl; (b) CH4-TPD spectra and (c) CH4 adsorption energy of NiAl and Pd/NiAl[113].Copyright 2022, American Chemical Society
图9 (a) 催化剂和LDH前体的漫反射谱图[115]; CoAl-650R、NiAl-650R和NiCo-alloy的(b)H2与液态产物生成速率, (c) CH4吸附能[115]; (d) 流动相条件下Au-ZnO/TiO2的光催化CH4有氧偶联稳定性测试[116]; (e) CH4有氧偶联至C2H6或CO2的势能图[116]
Fig.9 (a) Diffuse reflection spectra of the catalysts and LDH precursors; (b) H2 and liquid products yield rate and (c) CH4 adsorption energy for CoAl-650R, NiAl-650R and NiCo-alloy, respectively[115]; (d) Continuous stability test of the photocatalytic OCM over Au-ZnO/TiO2 in a gas flow reactor[116]; (e) Potential energy diagrams for OCM to C2H6 or CO2 on Au-ZnO/TiO2[116]. Copyright 2022, IOP Publishing Ltd
图10 Pd/CoAl-x的 (a) Co 2p, (b) Pd 3d XPS谱图[127]; (c) Pd/CoAl-x光催化CO2还原产物合成气的CO/H2比例[127]; (d) Pt单原子结构随光强的演化[128]; 不同光强下的Pt单原子驱动光催化CO2还原的(e) 选择性和(f) 反应机理[128]
Fig.10 (a) Co 2p, (b) Pd 3d XPS spectra of Pd/CoAl-x[127]; (c) CO/H2 ratio of photocatalytic CO2 reduction products for Pd/CoAl-x[127]; (d) Illustration of Pt SA structure evolution vs light intensity[128]; (e) Selectivity and (f) Reaction mechanism of photocatalytic CO2 reduction driven by Pt SA under different light intensity[128].Copyright 2022, American Chemical Society
图11 (a) 富含表面羟基的超薄LDH结构形成示意图; 负载Ru的催化剂和FL-LDH在流动相测试时(b) CO2和(c) CH4 浓度的变化(S1, Ru@FL-LDH; S2, Ru@LDH; S3, Ru@SiO2; S4, FL-LDH); (d) Ru@FL-LDH的CO2加氢稳定性测试[129]
Fig.11 (a) Scheme of formation of ultrathin LDH structure with abundant surface hydroxyl groups; The concentration change of (b) CO2 and (c) CH4 over Ru loaded catalysts and FL@LDH using a flow system (S1, Ru@FL-LDH; S2, Ru@LDH; S3, Ru@SiO2; S4, FL-LDH); (d) Stability test of CO2 hydrogenation over Ru@FL-LDH[129].Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107(5): 1692.

doi: 10.1021/cr050972v     pmid: 17488058
[2]
Pakhare D, Spivey J. Chem. Soc. Rev., 2014, 43(22): 7813.

doi: 10.1039/C3CS60395D     URL    
[3]
Kondratenko E V, Mul G, Baltrusaitis J, Larrazábal G O, PÉrez-Ramírez J. Energy Environ. Sci., 2013, 6(11): 3112.

doi: 10.1039/c3ee41272e     URL    
[4]
Bulushev D A, Ross J R H. ChemSusChem, 2018, 11(5): 821.

doi: 10.1002/cssc.201702075     pmid: 29316342
[5]
Schwach P, Pan X L, Bao X H. Chem. Rev., 2017, 117(13): 8497.

doi: 10.1021/acs.chemrev.6b00715     pmid: 28475304
[6]
Haynes A, Maitlis P M, Morris G E, Sunley G J, Adams H, Badger P W, Bowers C M, Cook D B, Elliott P I P, Ghaffar T, Green H, Griffin T R, Payne M, Pearson J M, Taylor M J, Vickers P W, Watt R J. J. Am. Chem. Soc., 2004, 126(9): 2847.

doi: 10.1021/ja039464y     URL    
[7]
Song H, Ye J H. Chem, 2022, 8(5): 1181.

doi: 10.1016/j.chempr.2022.04.015     URL    
[8]
Song C Q, Liu X, Xu M, Masi D, Wang Y G, Deng Y C, Zhang M T, Qin X T, Feng K, Yan J, Leng J, Wang Z H, Xu Y, Yan B H, Jin S Y, Xu D S, Yin Z, Xiao D Q, Ma D. ACS Catal., 2020, 10(18): 10364.

doi: 10.1021/acscatal.0c02244     URL    
[9]
Wang Y B, Zhao J, Li Y X, Wang C Y. Appl. Catal. B: Environ., 2018, 226: 544.

doi: 10.1016/j.apcatb.2018.01.005     URL    
[10]
Long R, Li Y, Liu Y, Chen S M, Zheng X S, Gao C, He C H, Chen N S, Qi Z M, Song L, Jiang J, Zhu J F, Xiong Y J. J. Am. Chem. Soc., 2017, 139(12): 4486.

doi: 10.1021/jacs.7b00452     pmid: 28276680
[11]
Zhang W Q, Fu C F, Low J, Duan D L, Ma J, Jiang W B, Chen Y H, Liu H J, Qi Z M, Long R, Yao Y F, Li X B, Zhang H, Liu Z, Yang J L, Zou Z G, Xiong Y J. Nat. Commun., 2022, 13: 2806.

doi: 10.1038/s41467-022-30532-z    
[12]
Ma J, Low J, Wu D, Gong W B, Liu H J, Liu D, Long R, Xiong Y J. Nanoscale Horiz., 2023, 8(1): 63.

doi: 10.1039/D2NH00457G     URL    
[13]
Sideris P J, Nielsen U G, Gan Z H, Grey C P. Science, 2008, 321(5885): 113.

doi: 10.1126/science.1157581     pmid: 18599785
[14]
Guo X X, Zhang F Z, Evans D G, Duan X. Chem. Commun., 2010, 46(29): 5197.

doi: 10.1039/c0cc00313a     URL    
[15]
Leroux F, Besse J P. Chem. Mater., 2001, 13(10): 3507.

doi: 10.1021/cm0110268     URL    
[16]
Vaccari A. Layered Double Hydroxides: Present and Future,Rives V. (Ed.), New York: Nova Science Publishers, Inc., 2001.
[17]
Rives V, Angeles Ulibarri M. Coord. Chem. Rev., 1999, 181(1): 61.

doi: 10.1016/S0010-8545(98)00216-1     URL    
[18]
Wang Q, O’Hare D. Chem. Rev., 2012, 112(7): 4124.

doi: 10.1021/cr200434v     URL    
[19]
Gabrovska M, Ivanov I, Nikolova D, Kovacheva D, Tabakova T. Int. J. Hydrog. Energy, 2021, 46(1): 458.

doi: 10.1016/j.ijhydene.2020.09.214     URL    
[20]
Jing C, Zhang Q, Liu X Y, Chen Y X, Wang X, Xia L H, Zeng H, Wang D C, Zhang W Z, Dong F. RSC Adv., 2019, 9(17): 9604.

doi: 10.1039/C9RA01341E     URL    
[21]
Yang J S, Li C, Liang D R, Liu Y, Li Z S, Wang H Y, Huang H H, Xia C F, Zhao H, Liu Y Y, Zhang Q, Meng Z L. J. Colloid Interface. Sci., 2021, 590: 571.

doi: 10.1016/j.jcis.2021.01.075     URL    
[22]
Chen G B, Gao R, Zhao Y F, Li Z H, Waterhouse G I N, Shi R, Zhao J Q, Zhang M T, Shang L, Sheng G Y, Zhang X P, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(3): 1704663.

doi: 10.1002/adma.v30.3     URL    
[23]
Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Nano Energy, 2021, 84: 105932.

doi: 10.1016/j.nanoen.2021.105932     URL    
[24]
Saber O, Hatano B, Tagaya H. Mater. Sci. Eng. C, 2005, 25(4): 462.

doi: 10.1016/j.msec.2004.12.005     URL    
[25]
Nie L F, Fan G J, Wang A Q, Zhang L, Guan J, Han N, Chen Y F. Sens. Actuat. B Chem., 2021, 345: 130412.

doi: 10.1016/j.snb.2021.130412     URL    
[26]
Yang H, Xiong C S, Liu X Y, Liu A, Li T Y, Ding R, Shah S P, Li W H. Constr. Build. Mater., 2021, 307: 124991.

doi: 10.1016/j.conbuildmat.2021.124991     URL    
[27]
Kooli F, Rives V, Ulibarri M A. Inorg. Chem., 1995, 34(21): 5114.

doi: 10.1021/ic00125a007     URL    
[28]
Zhang S T, Dou Y B, Zhou J Y, Pu M, Yan H, Wei M, Evans D G, Duan X. ChemPhysChem, 2016, 17(17): 2754.

doi: 10.1002/cphc.v17.17     URL    
[29]
Markov L. Solid State Ion., 1990, 39(3/4): 187.

doi: 10.1016/0167-2738(90)90397-A     URL    
[30]
Chivu V, Gilea D, Cioatera N, Carja G, Mureseanu M. Appl. Surf. Sci., 2020, 513: 145853.

doi: 10.1016/j.apsusc.2020.145853     URL    
[31]
Liu Q, Wang J M, An K, Zhang S R, Liu G L, Liu Y. Energy Technol., 2020, 8(9): 2000205.

doi: 10.1002/ente.v8.9     URL    
[32]
Han J B, Dou Y B, Wei M, Evans D, Duan X. Angew. Chem. Int. Ed., 2010, 49(12): 2171.

doi: 10.1002/anie.v49:12     URL    
[33]
Kowalik P, Konkol M, Kondracka M, PrÓchniak W, Bicki R, Wiercioch P. Appl. Catal. A Gen., 2013, 464/465: 339.

doi: 10.1016/j.apcata.2013.05.048     URL    
[34]
Gavinehroudi R G, Mahjoub A, Karimi M, Sadeghi S, Heydari A, Mohebali H, Ghamami S. Green Chem., 2022, 24(18): 6965.

doi: 10.1039/D2GC00208F     URL    
[35]
Zhao Y X, Zheng L R, Shi R, Zhang S, Bian X A, Wu F, Cao X Z, Waterhouse G I N, Zhang T R. Adv. Energy Mater., 2020, 10(34): 2002199.

doi: 10.1002/aenm.v10.34     URL    
[36]
Zhang S, Zhao Y X, Shi R, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R. Adv. Energy Mater., 2020, 10(8): 1901973.

doi: 10.1002/aenm.v10.8     URL    
[37]
Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew. Chem. Int. Ed., 2012, 51(32): 8008.

doi: 10.1002/anie.201201847     pmid: 22760849
[38]
Iguchi S, Hasegawa Y, Teramura K, Hosokawa S, Tanaka T. J. CO2 Util., 2016, 15: 6.
[39]
Jo W K, Kumar S, Tonda S. Compos. B Eng., 2019, 176: 107212.

doi: 10.1016/j.compositesb.2019.107212     URL    
[40]
Bi Z X, Guo R T, Hu X, Wang J, Chen X, Pan W G. Nanoscale, 2022, 14(9): 3367.

doi: 10.1039/D1NR08235C     URL    
[41]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400     URL    
[42]
Wu H L, Li X B, Tung C H, Wu L Z. Adv. Mater., 2019, 31(36): 1900709.

doi: 10.1002/adma.v31.36     URL    
[43]
Xiong X Y, Zhao Y F, Shi R, Yin W J, Zhao Y X, Waterhouse G I N, Zhang T R. Sci. Bull., 2020, 65(12): 987.

doi: 10.1016/j.scib.2020.03.032     URL    
[44]
Wang R N, Wang X Y, Xiong Y H, Hou Y Y, Wang Y X, Ding J, Zhong Q. ACS Appl. Mater. Interfaces, 2022, 14(31): 35654.

doi: 10.1021/acsami.2c07940     URL    
[45]
Xiao Q L, Xu J Y, Zhang J, Sun Y H, Zhu Y. J. Energy Chem., 2017, 26(3): 325.

doi: 10.1016/j.jechem.2017.03.010     URL    
[46]
Wan J, Lin J S, Guo X L, Wang T, Zhou R X. Chem. Eng. J., 2019, 368: 719.

doi: 10.1016/j.cej.2019.03.016     URL    
[47]
Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. ACS Catal., 2018, 8(3): 1672.

doi: 10.1021/acscatal.7b04097     URL    
[48]
Li W, Zhang S L, Fan Q N, Zhang F Z, Xu S L. Nanoscale, 2017, 9(17): 5677.

doi: 10.1039/C7NR01017F     URL    
[49]
Wu W, Song L, Li Y C, Zhang F, Zeng R C, Li S Q, Zou Y H. J. Disper. Sci. Technol., 2021, 42(14): 2154.

doi: 10.1080/01932691.2020.1806862     URL    
[50]
Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B, Yasaei M. J. Clean. Prod., 2020, 251: 119676.

doi: 10.1016/j.jclepro.2019.119676     URL    
[51]
Wang H, Yang F, He S A, Li Y, Wu Y. J. Mol. Struct., 2022, 1249: 131529.

doi: 10.1016/j.molstruc.2021.131529     URL    
[52]
Wang Y Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y. Adv. Funct. Mater., 2018, 28(4): 1703363.

doi: 10.1002/adfm.201703363     URL    
[53]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Angew. Chem. Int. Ed., 2017, 56(21): 5867.

doi: 10.1002/anie.201701477     URL    
[54]
Zhao Y F, Chen G B, Bian T, Zhou C, Waterhouse G I N, Wu L Z, Tung C H, Smith L J, O’Hare D, Zhang T R. Adv. Mater., 2015, 27(47): 7823.

doi: 10.1002/adma.201570324     URL    
[55]
Tan L, Xu S M, Wang Z L, Xu Y Q, Wang X, Hao X J, Bai S, Ning C J, Wang Y, Zhang W K, Jo Y K, Hwang S J, Cao X Z, Zheng X S, Yan H, Zhao Y F, Duan H H, Song Y F. Angew. Chem., 2019, 131(34): 11986.

doi: 10.1002/ange.v131.34     URL    
[56]
Bai S, Li T, Wang H J, Tan L, Zhao Y F, Song Y F. Chem. Eng. J., 2021, 419: 129390.

doi: 10.1016/j.cej.2021.129390     URL    
[57]
Tokudome Y, Fukui M G, Iguchi S, Hasegawa Y, Teramura K, Tanaka T, Takemoto M, Katsura R, Takahashi M. J. Mater. Chem. A, 2018, 6(20): 9684.

doi: 10.1039/C8TA01621F     URL    
[58]
Zhu L, Qiao Z P. RSC Adv., 2022, 12(17): 10592.

doi: 10.1039/D2RA01178F     URL    
[59]
Sun D Z, Li J, Shen T Y, An S, Qi B, Song Y F. ACS Appl. Mater. Interfaces, 2022, 14(14): 16369.

doi: 10.1021/acsami.2c02888     URL    
[60]
Ali Khan A, Tahir M. ACS Appl. Energy Mater., 2022, 5(1): 784.

doi: 10.1021/acsaem.1c03266     URL    
[61]
Li P S, Xie Q X, Zheng L R, Feng G, Li Y J, Cai Z, Bi Y M, Li Y P, Kuang Y, Sun X M, Duan X. Nano Res., 2017, 10(9): 2988.

doi: 10.1007/s12274-017-1509-3     URL    
[62]
de Smit E, Weckhuysen B M. Chem. Soc. Rev., 2008, 37(12): 2758.

doi: 10.1039/b805427d     URL    
[63]
Yang C, Zhao H B, Hou Y L, Ma D. J. Am. Chem. Soc., 2012, 134(38): 15814.

pmid: 22938192
[64]
Zhang H, Chu W. Prog. Chem., 2009, 21(4): 622
( 张辉, 储伟. 化学进展, 2009, 21(4): 622).
[65]
Gao W, Gao R, Zhao Y F, Peng M, Song C Q, Li M Z, Li S W, Liu J J, Li W Z, Deng Y C, Zhang M T, Xie J L, Hu G, Zhang Z S, Long R, Wen X D, Ma D. Chem, 2018, 4(12): 2917.

doi: 10.1016/j.chempr.2018.09.017     URL    
[66]
Bao X H. Chin. Sci. Bull., 2018, 63(14): 1266.
( 包信和. 科学通报, 2018, 63(14): 1266. ).
[67]
Jia J, Wang H, Lu Z L, O’Brien P G, Ghoussoub M, Duchesne P, Zheng Z Q, Li P C, Qiao Q, Wang L, Gu A L, Jelle A A, Dong Y C, Wang Q, Ghuman K K, Wood T, Qian C X, Shao Y, Qiu C Y, Ye M M, Zhu Y M, Lu Z H, Zhang P, Helmy A S, Singh C V, Kherani N P, Perovic D D, Ozin G A. Adv. Sci., 2017, 4(10): 1700252.

doi: 10.1002/advs.v4.10     URL    
[68]
Hoch L B, O’Brien P G, Ali F M, Sandhel A, Perovic D D, Mims C A, Ozin G A. ACS Nano, 2016, 10(9): 9017.

doi: 10.1021/acsnano.6b05416     URL    
[69]
Qi Y H, Song L Z, Ouyang S X, Liang X C, Ning S B, Zhang Q Q, Ye J H. Adv. Mater., 2020, 32(6): 1903915.

doi: 10.1002/adma.v32.6     URL    
[70]
Chen Y, Zhang Y M, Fan G Z, Song L Z, Jia G, Huang H T, Ouyang S X, Ye J H, Li Z S, Zou Z G. Joule, 2021, 5(12): 3235.

doi: 10.1016/j.joule.2021.11.009     URL    
[71]
Zhao Y F, Zhao B, Liu J J, Chen G B, Gao R, Yao S Y, Li M Z, Zhang Q H, Gu L, Xie J L, Wen X D, Wu L Z, Tung C H, Ma D, Zhang T R. Angew. Chem. Int. Ed., 2016, 55(13): 4215.

doi: 10.1002/anie.201511334     URL    
[72]
Li Z H, Liu J J, Zhao Y F, Shi R, Waterhouse G I N, Wang Y S, Wu L Z, Tung C H, Zhang T R. Nano Energy, 2019, 60: 467.

doi: 10.1016/j.nanoen.2019.03.069     URL    
[73]
Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(31): 1800527.

doi: 10.1002/adma.v30.31     URL    
[74]
Zhao Y F, Li Z H, Li M Z, Liu J J, Liu X W, Waterhouse G I N, Wang Y S, Zhao J Q, Gao W, Zhang Z S, Long R, Zhang Q H, Gu L, Liu X, Wen X D, Ma D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(36): 1803127.

doi: 10.1002/adma.201803127     URL    
[75]
Wang W, Wang S P, Ma X B, Gong J L. Chem. Soc. Rev., 2011, 40(7): 3703.

doi: 10.1039/c1cs15008a     pmid: 21505692
[76]
Ma Z Q, Porosoff M D. ACS Catal., 2019, 9(3): 2639.

doi: 10.1021/acscatal.8b05060     URL    
[77]
Tan T H, Xie B Q, Ng Y H, Abdullah S F B, Tang H Y M, Bedford N, Taylor R A, Aguey-Zinsou K F, Amal R, Scott J. Nat. Catal., 2020, 3(12): 1034.

doi: 10.1038/s41929-020-00544-3    
[78]
Liu L C, Puga A V, Cored J, ConcepciÓn P, PÉrez-Dieste V, García H, Corma A. Appl. Catal. B Environ., 2018, 235: 186.

doi: 10.1016/j.apcatb.2018.04.060     URL    
[79]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.

doi: 10.1002/anie.v57.21     URL    
[80]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.

doi: 10.1021/acscatal.7b03251     URL    
[81]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794     URL    
[82]
Wang L, Ghoussoub M, Wang H, Shao Y, Sun W, Tountas A A, Wood T E, Li H, Loh J Y Y, Dong Y C, Xia M K, Li Y, Wang S H, Jia J, Qiu C Y, Qian C X, Kherani N P, He L, Zhang X H, Ozin G A. Joule, 2018, 2(7): 1369.

doi: 10.1016/j.joule.2018.03.007     URL    
[83]
Shao T Y, Wang X N, Dong H X, Liu S K, Duan D L, Li Y P, Song P, Jiang H J, Hou Z H, Gao C, Xiong Y J. Adv. Mater., 2022, 34(28): 2202367.

doi: 10.1002/adma.v34.28     URL    
[84]
Deng B W, Song H, Peng K, Li Q, Ye J H. Appl. Catal. B: Environ., 2021, 298: 120519.

doi: 10.1016/j.apcatb.2021.120519     URL    
[85]
Zhang Z S, Mao C L, Meira D M, Duchesne P N, Tountas A A, Li Z, Qiu C Y, Tang S L, Song R, Ding X, Sun J C, Yu J F, Howe J Y, Tu W G, Wang L, Ozin G A. Nat. Commun., 2022, 13(1): 1.

doi: 10.1038/s41467-021-27699-2    
[86]
Song L Z, Yi X L, Ouyang S X, Ye J H. Nanoscale Adv., 2022, 4(16): 3391.

doi: 10.1039/D2NA00315E     URL    
[87]
Li Z H, Shi R, Zhao J Q, Zhang T R. Nano Res., 2021, 14(12): 4828.

doi: 10.1007/s12274-021-3436-6    
[88]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.

doi: 10.1002/anie.201507585     URL    
[89]
Wang H, Zhou W, Liu J X, Si R, Sun G, Zhong M Q, Su H Y, Zhao H B, Rodriguez J A, Pennycook S J, Idrobo J, Li W X, Kou Y, Ma D. J. Am. Chem. Soc., 2013, 135(10): 4149.

doi: 10.1021/ja400771a     URL    
[90]
Gao W, Zhao Y F, Chen H R, Chen H, Li Y W, He S, Zhang Y K, Wei M, Evans D G, Duan X. Green Chem., 2015, 17(3): 1525.

doi: 10.1039/C4GC01633E     URL    
[91]
Bai S X, Shao Q, Wang P T, Dai Q G, Wang X Y, Huang X Q. J. Am. Chem. Soc., 2017, 139(20): 6827.

doi: 10.1021/jacs.7b03101     URL    
[92]
Zhao J Q, Shi R, Waterhouse G I N, Zhang T R. Nano Energy, 2022, 102: 107650.

doi: 10.1016/j.nanoen.2022.107650     URL    
[93]
Li Z H, Liu J J, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Energy Mater., 2021, 11(12): 2002783.

doi: 10.1002/aenm.v11.12     URL    
[94]
Xu S, Wang X L, Zhao R. Prog. Chem, 2003, 15(2): 141
( 许珊, 王晓来, 赵睿. 化学进展, 2003, 15(2): 141).
[95]
Taifan W, Baltrusaitis J. Appl. Catal. B Environ., 2016, 198: 525.

doi: 10.1016/j.apcatb.2016.05.081     URL    
[96]
Usman M, Wan Daud W M A, Abbas H F. Renew. Sustain. Energy Rev., 2015, 45: 710.

doi: 10.1016/j.rser.2015.02.026     URL    
[97]
Qin Z Z, Chen J, Xie X L, Luo X, Su T M, Ji H B. Environ. Chem. Lett., 2020, 18(4): 997.

doi: 10.1007/s10311-020-00996-w    
[98]
Zhang G J, Liu J W, Xu Y, Sun Y H. Int. J. Hydrog. Energy, 2018, 43(32): 15030.

doi: 10.1016/j.ijhydene.2018.06.091     URL    
[99]
Tang Y, Wei Y C, Wang Z Y, Zhang S R, Li Y T, Nguyen L, Li Y X, Zhou Y, Shen W J, Tao F F, Hu P J. J. Am. Chem. Soc., 2019, 141(18): 7283.

doi: 10.1021/jacs.8b10910     pmid: 31021087
[100]
Mao X Y, Foucher A C, Stach E A, Gorte R J. J. Catal., 2020, 381: 561.

doi: 10.1016/j.jcat.2019.11.040     URL    
[101]
Santos Carvalho L, Martins A R, Reyes P, Oportus M, Albonoz A, Vicentini V, do Carmo Rangel M. Catal. Today, 2009, 142(1-2): 52.

doi: 10.1016/j.cattod.2009.01.010     URL    
[102]
Djinović P, Osojnik Črnivec I G, Erjavec B, Pintar A. Appl. Catal. B Environ., 2012, 125: 259.

doi: 10.1016/j.apcatb.2012.05.049     URL    
[103]
Lin J M, Cen J, Li Z J, Yang L Y, Yao N. Chem. Ind. Eng. Prog., 2022, 41(1): 201.
( 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. 化工进展, 2022, 41(1): 201. ).

doi: 10.16085/j.issn.1000-6613.2021-0310    
[104]
Rostrupnielsen J R, Hansen J H B. J. Catal., 1993, 144(1): 38.

doi: 10.1006/jcat.1993.1312     URL    
[105]
Jiang W B, Liu J X, Qiu C, Long R, Xiong Y J. J. Univ. Sci. Tech. China, 2020, 50(11): 1361.
( 江文斌, 刘敬祥, 邱畅, 龙冉, 熊宇杰. 中国科学技术大学学报, 2020, 50(11): 1361.).
[106]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.

doi: 10.1038/s41578-022-00422-3    
[107]
Zhao J Q, Guo X D, Shi R, Waterhouse G I N, Zhang X R, Dai Q, Zhang T R. Adv. Funct. Mater., 2022, 32(31): 2204056.

doi: 10.1002/adfm.v32.31     URL    
[108]
Xing F L, Nakaya Y, Yasumura S, Shimizu K I, Furukawa S. Nat. Catal., 2022, 5(1): 55.

doi: 10.1038/s41929-021-00730-x    
[109]
Nakaya Y, Xing F L, Ham H, Shimizu K I, Furukawa S. Angewandte Chemie, 2021, 133(36): 19867.

doi: 10.1002/ange.v133.36     URL    
[110]
Jiang W B, Low J, Mao K K, Duan D L, Chen S M, Liu W, Pao C W, Ma J, Sang S K, Shu C, Zhan X Y, Qi Z M, Zhang H, Liu Z, Wu X J, Long R, Song L, Xiong Y J. J. Am. Chem. Soc., 2021, 143(1): 269.

doi: 10.1021/jacs.0c10369     URL    
[111]
Hou Z Y, Chen P, Fang H L, Zheng X M, Yashima T. Int. J. Hydrog. Energy, 2006, 31(5): 555.

doi: 10.1016/j.ijhydene.2005.06.010     URL    
[112]
Ocsachoque M, Pompeo F, Gonzalez G. Catal. Today, 2011, 172(1): 226.

doi: 10.1016/j.cattod.2011.02.057     URL    
[113]
Wang P, Zhang X Y, Shi R, Zhao J Q, Yuan Z Y, Zhang T R. Energy Fuels, 2022, 36(19): 11627.

doi: 10.1021/acs.energyfuels.2c01349     URL    
[114]
Xu Z M, Bian Z F. Acta Phys. Chim. Sin., 2020, 36(3): 1907013.

doi: 10.3866/PKU.WHXB201907013     URL    
( 许振民, 卞振锋. 物理化学学报, 2020, 36(3): 1907013.).
[115]
Zhao J Q, Shi R, Zhang X R, Wang Z P, Zhang T R. Nanotechnology, 2022, 33(18): 185401.

doi: 10.1088/1361-6528/ac4c5f    
[116]
Song S, Song H, Li L M, Wang S Y, Chu W, Peng K, Meng X G, Wang Q, Deng B W, Liu Q X, Wang Z, Weng Y X, Hu H L, Lin H W, Kako T, Ye J H. Nat. Catal., 2021, 4(12): 1032.

doi: 10.1038/s41929-021-00708-9    
[117]
Dai L, Zhang H. Sci. Bull., 2018, 63(11): 669.

doi: 10.1016/j.scib.2018.04.013     URL    
[118]
Zhou L, He S R, Xu X H, Li G W, Jia C C. Adv. Sci., 2023, 10(2): 2204674.

doi: 10.1002/advs.v10.2     URL    
[119]
Liu J C, Luo L L, Xiao H, Zhu J F, He Y, Li J. J. Am. Chem. Soc., 2022, 144(45): 20601.

doi: 10.1021/jacs.2c06785     URL    
[120]
Gan T, Chu X F, Qi H, Zhang W X, Zou Y C, Yan W F, Liu G. Appl. Catal. B Environ., 2019, 257: 117943.

doi: 10.1016/j.apcatb.2019.117943     URL    
[121]
Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T R. J. Am. Chem. Soc., 2016, 138(20): 6517.

doi: 10.1021/jacs.6b01606     URL    
[122]
Zhang G Q, Li Y L, He C X, Ren X Z, Zhang P X, Mi H W. Adv. Energy Mater., 2021, 11(11): 2003294.

doi: 10.1002/aenm.v11.11     URL    
[123]
Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Adv. Funct. Mater., 2021, 31(35): 2103558.

doi: 10.1002/adfm.v31.35     URL    
[124]
Ng S F, Lau M Y L, Ong W J. Sol. RRL, 2021, 5(6): 2000535.

doi: 10.1002/solr.v5.6     URL    
[125]
Jiang H Y, Katsumata K I, Hong J, Yamaguchi A, Nakata K, Terashima C, Matsushita N, Miyauchi M, Fujishima A. Appl. Catal. B Environ., 2018, 224: 783.

doi: 10.1016/j.apcatb.2017.11.011     URL    
[126]
Gao G, Zhu Z, Zheng J, Liu Z, Wang Q, Yan Y S. J. Colloid Interface Sci., 2019, 555: 1.

doi: 10.1016/j.jcis.2019.07.025     URL    
[127]
Wang X, Wang Z L, Bai Y, Tan L, Xu Y Q, Hao X J, Wang J K, Mahadi A H, Zhao Y F, Zheng L R, Song Y F. J. Energy Chem., 2020, 46: 1.

doi: 10.1016/j.jechem.2019.10.004     URL    
[128]
Fan J X, Zhao Y, Du H X, Zheng L R, Gao M Y, Li D Q, Feng J T. ACS Appl. Mater. Interfaces, 2022, 14(23): 26752.

doi: 10.1021/acsami.2c04794     URL    
[129]
Ren J, Ouyang S X, Xu H, Meng X G, Wang T, Wang D F, Ye J H. Adv. Energy Mater., 2017, 7(5): 1601657.

doi: 10.1002/aenm.201601657     URL    
[130]
Li Z H, Liu J J, Zhao J Q, Shi R, Waterhouse G I N, Wen X D, Zhang T R. Adv. Funct. Mater., 2023, 33(11): 2213672.

doi: 10.1002/adfm.v33.11     URL    
[1] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[2] 杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 镍铁水滑石电催化氧析出研究进展[J]. 化学进展, 2020, 32(9): 1386-1401.
[3] 许国贺, 李杰, 邓瑾妮, 殷绿, 郑朝晖, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12): 1732-1742.
[4] 马骧,王巧纯,田禾. 光驱动分子梭*[J]. 化学进展, 2009, 21(01): 106-115.
[5] 马涛,王睿. NOx的催化分解研究*[J]. 化学进展, 2008, 20(06): 798-810.