English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1018-1029 DOI: 10.7536/PC221203 前一篇   后一篇

• 综述 •

环境水体中腐殖酸与共存物的相互作用

周春地1, 隋铭皓1,2,*()   

  1. 1 同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室 上海 200092
    2 上海污染控制与生态安全研究院 上海 200092
  • 收稿日期:2022-12-10 修回日期:2023-04-13 出版日期:2023-07-24 发布日期:2023-06-15
  • 基金资助:
    国家重点研发计划课题(2019YFC0408801)

Interactions Between Humic Acid and Co-Existing Substances in Aquatic Environments

Chundi Zhou1, Minghao Sui1,2()   

  1. 1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092, China
  • Received:2022-12-10 Revised:2023-04-13 Online:2023-07-24 Published:2023-06-15
  • Contact: * e-mail: suiminghao.sui@gmail.com
  • Supported by:
    National Key R&D Program of China(2019YFC0408801)

腐殖酸(humic acid, HA)凭借着其赋存特性和独特的化学活性在环境治理领域备受关注。值得注意的是,在共存反应体系中,HA不可避免的与共存物相互作用,进而使反应体系变得复杂,结果导向与预期不同。因此,研究HA与共存物之间的相互作用对于正确理解环境水污染复杂性问题,开发具有协同处理共存物的新型环境功能材料具有重要意义。本文综述了HA参与的共存污染物体系下目标污染物协同/拮抗去除效果,包括无机污染物共存体系、有机污染物共存体系和微生物共存体系。针对HA自身的结构特点和理化性质,系统分析了HA与共存污染物之间的相互作用机理,主要涉及配位作用、静电作用、吸附作用、疏水作用、π-π相互作用和氧化还原作用等。最后,对HA在共存污染体系下目标污染物的去除所面对的挑战和未来的研究方向进行了展望。

Humic acid (HA) has attracted significant attention in the field of environmental remediation due to its occurrence characteristics and unique chemical reactivity. It is worth noting that in co-existing reaction systems, HA inevitably interacts with co-existing substances, making the reaction system complex and leading to unexpected results. Therefore, studying the interaction between HA and co-existing substances is of great significance for a correct understanding of the complexity of environmental water pollution and the development of new environmental functional materials with cooperative treatment of co-existing substances. This article reviews the synergistic/antagonistic removal effects of target pollutants in co-existing pollution systems involving HA, including inorganic co-existing pollutant systems, organic co-existing pollutant systems, and microbial co-existing systems. Based on the structural characteristics and physicochemical properties of HA itself, the interaction mechanisms between HA and co-existing pollutants are systematically analyzed. These mechanisms mainly involve coordination, electrostatic interactions, adsorption, hydrophobic interactions, π-π interactions, and oxidation-reduction reaction (REDOX). Finally, the challenges and future research directions for the removal of target pollutants by HA in co-existing pollution systems are discussed.

Contents

1 Introduction

2 Removal of target contaminant in different co-existing systems

2.1 HA with co-inorganic contaminant system

2.2 HA with co-organic contaminant system

2.3 HA with co-microbial system

2.4 Quantitative comparison of the removal effectiveness in HA co-existing contaminant systems

3 Interaction mechanisms between HA and co-existing contaminant

3.1 HA with co-inorganic contaminant system

3.2 HA with co-organic contaminant system

3.3 HA with co-microbial system

3.4 Characteristics of interaction mechanism in HA co-existing contaminant systems

4 Conclusion and Outlook

()
图1 HA的结构单元及官能团种类[8]
Fig.1 Structural units and functional groups of HA[8] Copyright 2011, Springer Nature
图2 HA参与共存体系下污染物的去除效果
Fig.2 The removal synergistic or antagonistic effect of contaminants with HA in co-existing system
表1 重金属氧化还原电位
Table 1 Standard redox potential of heavy metal ions
图3 人工腐殖酸稳定高分散零价铁去除铅离子的机制[70]
Fig.3 The possible mechanism of high-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal[70]. Copyright 2019, Elsevier
图4 黑暗条件下腐殖酸介导银离子向银纳米颗粒转化的机制[92]
Fig.4 The possible mechanism of transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions[92]. Copyright 2019, Elsevier
图5 HA影响MPFs对THIA吸附的机理示意图[101]
Fig.5 Schematic diagram of the possible mechanism of HA affecting the adsorption of THIA on MPFs[101]. Copyright 2022, Elsevier
图6 Gt-HA促进SA类芬顿降解的机制[61]
Fig.6 Potential mechanism of Gt-HA promoted Fenton-like degradation of SA[61]. Copyright 2020, Elsevier
[1]
Xie L, Lu Q Y, Mao X H, Wang J Y, Han L B, Hu J Q, Lu Q Y, Wang Y X, Zeng H B. Water Res., 2020, 176: 115766.

doi: 10.1016/j.watres.2020.115766     URL    
[2]
Ebrahimi A, Hajian M, Pourzamani H, Esmaeili H. Int. J. Environ. Health Eng., 2012, 1(1): 33.

doi: 10.4103/2277-9183.100133     URL    
[3]
Wang X M, Deng F, Cheng H J, Ning S Z, Li B Q, Pan S D, Yin X B. Energies, 2022, 15(19): 7362.

doi: 10.3390/en15197362     URL    
[4]
Li S X, Tong Y B, Dong H Y, Lu J J, Niu J F. J. Hazard. Mater., 2022, 427: 128166.

doi: 10.1016/j.jhazmat.2021.128166     URL    
[5]
Cornelis G, DooletteMadeleine Thomas C, McLaughlin M J, Kirby J K, Beak D G, Chittleborough D. Soil Sci. Soc. Am. J., 2012, 76(3): 891.

doi: 10.2136/sssaj2011.0360     URL    
[6]
Zhang T Y, Lu D W, Zeng L X, Yin Y G, He Y J, Liu Q, Jiang G B. Environ. Sci. Technol., 2017, 51(24): 14164.

doi: 10.1021/acs.est.7b04115     URL    
[7]
Sinsabaugh R L. Soil Biol. Biochem., 2010, 42(3): 391.

doi: 10.1016/j.soilbio.2009.10.014     URL    
[8]
Sachs S, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 290(1): 17.

doi: 10.1007/s10967-011-1084-0     URL    
[9]
Gao Z C, Lin Y L, Xu B, Xia Y, Hu C Y, Zhang T Y, Cao T C, Chu W H, Gao N Y. Water Res., 2019, 154: 199.

doi: 10.1016/j.watres.2019.02.004     URL    
[10]
Gao Z C, Lin Y L, Xu B, Xia Y, Hu C Y, Zhang T Y, Qian H, Cao T C, Gao N Y. Water Res., 2020, 182: 116035.

doi: 10.1016/j.watres.2020.116035     URL    
[11]
Huang T T, Deng L, Wang T, Liao X Y, Hu J, Tan C Q, Singh R P. Water Res., 2022, 225: 119175.

doi: 10.1016/j.watres.2022.119175     URL    
[12]
Yu Z F, He P J, Shao L M, Zhang H, Lü F. Water Res., 2016, 106: 583.

doi: 10.1016/j.watres.2016.10.042     URL    
[13]
Tang Y F, Li X W, Dong B, Huang J J, Wei Y H, Dai X H, Dai L L. Water Res., 2018, 143: 436.

doi: 10.1016/j.watres.2018.07.003     URL    
[14]
Guo X T, Tu B, Ge J H, Yang C, Song X M, Dang Z. J. Environ. Sci., 2016, 43: 208.

doi: 10.1016/j.jes.2015.10.020     URL    
[15]
Jia Y M, Zhao T K, Zhao N, Wei H, Zhang W H, Qiu R L. Chemosphere, 2019, 225: 174.

doi: 10.1016/j.chemosphere.2019.03.029     URL    
[16]
Kraiem K, Wahab A M, Kallali H, Fra-vazquez A, Pedrouso A, Mosquera-Corral A, Jedidi N. Environ. Sci. Pollut. Res., 2019, 26: 19012.

doi: 10.1007/s11356-018-2786-4    
[17]
Xie L, Shang C. Environ. Sci. Technol., 2005, 39(4): 1092.

pmid: 15773482
[18]
Zhang W W, He Y C, Li C, Hu X X, Yang S, You X Y, Liang W Y. Appl. Catal. B Environ., 2021, 285: 119848.

doi: 10.1016/j.apcatb.2020.119848     URL    
[19]
Qin H J, Yin D Q, Bandstra J Z, Sun Y K, Cao G M, Guan X H. J. Hazard. Mater., 2020, 383: 121218.

doi: 10.1016/j.jhazmat.2019.121218     URL    
[20]
Cao T T, Xu T F, Zhao M N, Xu J, Cui C W. J. Hazard. Mater., 2020, 384: 121464.

doi: 10.1016/j.jhazmat.2019.121464     URL    
[21]
Tsang D C W, Graham N J D, Irene M C L O. Chemosphere, 2009, 75(10): 1338.

doi: 10.1016/j.chemosphere.2009.02.058     URL    
[22]
Liu T Z, Tsang D C W, Lo I M C. Environ. Sci. Technol., 2008, 42(6): 2092.

doi: 10.1021/es072059c     URL    
[23]
Xu J L, Fan X S, Huang F D, Li X M. J. Hazard. Mater., 2017, 322: 516.

doi: 10.1016/j.jhazmat.2016.10.018     URL    
[24]
Feng H J, Hu L F, Mahmood Q, Long Y, Shen D S. Biochem. Eng. J., 2008, 39(3): 478.

doi: 10.1016/j.bej.2007.11.004     URL    
[25]
Wang J C, Li H X, Yue D B. J. Hazard. Mater., 2022, 424: 127643.

doi: 10.1016/j.jhazmat.2021.127643     URL    
[26]
Wu Y, Liu Z, Yang G X, Yang P, Peng Y P, Chen C, Xue F L, Liu T, Liu H L, Liu S Q. Ecotoxicol. Environ. Saf., 2022, 244: 114026.

doi: 10.1016/j.ecoenv.2022.114026     URL    
[27]
Yang R, Li Z W, Huang B, Luo N L, Huang M, Wen J J, Zhang Q, Zhai X Q, Zeng G M. Chemosphere, 2018, 197: 291.

doi: S0045-6535(18)30050-X     pmid: 29353679
[28]
Liu H T, Gu X Y, Wei C H, Fu H Y, Alvarez P J J, Li Q L, Zheng S R, Qu X L, Zhu D Q. Environ. Sci. Technol., 2018, 52(7): 4040.

doi: 10.1021/acs.est.7b05645     URL    
[29]
Du H H, Peacock C L, Chen W L, Huang Q Y. Chemosphere, 2018, 207: 404.

doi: 10.1016/j.chemosphere.2018.05.092     URL    
[30]
Qu C C, Chen J Z, Mortimer M, Wu Y C, Cai P, Huang Q Y. J. Hazard. Mater., 2022, 430: 128365.

doi: 10.1016/j.jhazmat.2022.128365     URL    
[31]
Saito T, Koopal L K, van Riemsdijk W H, Nagasaki S, Tanaka S. Langmuir, 2004, 20(3): 689.

doi: 10.1021/la034806z     URL    
[32]
Wang H, Zhang J, Zhu J Q, Chang J J, Wang N, Chen H H. J. Hazard. Mater., 2021, 409: 124529.

doi: 10.1016/j.jhazmat.2020.124529     URL    
[33]
Hajdú A, IllÉs E, Tombácza E, Borbáthb I. Colloids Surf. A Physicochem. Eng. Asp., 2009, 347: 104.

doi: 10.1016/j.colsurfa.2008.12.039     URL    
[34]
Weng L P, Van Riemsdijk W H, Hiemstra T. Environ. Sci. Technol., 2009, 43(19): 7198.

doi: 10.1021/es9000196     URL    
[35]
Mak M S H, Rao P H, Lo I M C. Water Res., 2009, 43(17): 4296.

doi: 10.1016/j.watres.2009.06.022     URL    
[36]
Li X D, Wu B, Zhang Q, Liu Y Q, Wang J Q, Li F S, Ma F J, Gu Q B. J. Hazard. Mater., 2020, 399: 123071.

doi: 10.1016/j.jhazmat.2020.123071     URL    
[37]
Tratnyek P G, Scherer M M, Deng B L, Hu S D. Water Res., 2001, 35(18): 4435.

pmid: 11763046
[38]
Fang G D, Gao J, Dionysiou D D, Liu C, Zhou D M. Environ. Sci. Technol., 2013, 47(9): 4605.

doi: 10.1021/es400262n     URL    
[39]
Li R B, Kong J, Liu H J, Chen P, Liu G G, Li F H, Lv W Y. RSC Adv., 2017, 7(37): 22802.

doi: 10.1039/C7RA03364H     URL    
[40]
Moncayo-Lasso A, Sanabria J, Pulgarin C, Benítez N. Chemosphere, 2009, 77(2): 296.

doi: 10.1016/j.chemosphere.2009.07.007     pmid: 19716153
[41]
Spuhler D, AndrÉs Rengifo-Herrera J, Pulgarin C. Appl. Catal. B Environ., 2010, 96(1/2): 126.

doi: 10.1016/j.apcatb.2010.02.010     URL    
[42]
Drosos M, Ren M J, Frimmel F H. Appl. Catal. B Environ., 2015, 165: 328.

doi: 10.1016/j.apcatb.2014.10.017     URL    
[43]
Uyguner-Demirel C S, Birben N C, Bekbolet M. Catal. Today, 2017, 284: 202.

doi: 10.1016/j.cattod.2016.12.030     URL    
[44]
Ortega-GÓmez E, García B E, Martín M B, Ibáñez P F, PÉrez J S. Water Res., 2014, 63: 316.

doi: 10.1016/j.watres.2014.05.034     pmid: 25078303
[45]
Moncayo-Lasso A, Mora-Arismendi L E, Rengifo-Herrera J A, Sanabria J, Benítez N, Pulgarin C. Photochem. Photobiol. Sci., 2012, 11(5): 821.

doi: 10.1039/c2pp05290c     URL    
[46]
Zhang J, Wang C, Huang N N, Xiang M H, Jin L D, Yang Z Y, Li S Y, Lu Z, Shi C L, Cheng B, Xie H J, Li H. J. Hazard. Mater., 2022, 434: 128913.

doi: 10.1016/j.jhazmat.2022.128913     URL    
[47]
Carlos L, Mártire D O, Gonzalez M C, Gomis J, Bernabeu A, Amat A M, Arques A. Water Res., 2012, 46(15): 4732.

doi: 10.1016/j.watres.2012.06.022     URL    
[48]
Porras J, Bedoya C, Silva-Agredo J, Santamaría A, Fernández J J, Torres-Palma R A. Water Res., 2016, 94: 1.

doi: 10.1016/j.watres.2016.02.024     URL    
[49]
Hu L H, Flanders P M, Miller P L, Strathmann T J. Water Res., 2007, 41(12): 2612.

doi: 10.1016/j.watres.2007.02.026     URL    
[50]
Niu H Y, Zhang D, Zhang S X, Zhang X L, Meng Z F, Cai Y Q. J. Hazard. Mater., 2011, 190(1/3): 559.

doi: 10.1016/j.jhazmat.2011.03.086     URL    
[51]
Li X D, Wu B, Zhang Q, Xu D P, Liu Y Q, Ma F J, Gu Q B, Li F S. Chem. Eng. J., 2019, 378: 122142.

doi: 10.1016/j.cej.2019.122142     URL    
[52]
Lin Z R, Zhao L, Dong Y H. Chem. Eng. J., 2017, 326: 201.

doi: 10.1016/j.cej.2017.05.112     URL    
[53]
Kim I, Kim H D, Jeong T Y, Don Kim S. Water Sci. Technol., 2016, 74(4): 904.

doi: 10.2166/wst.2016.270     URL    
[54]
Ding T D, Lin K D, Bao L J, Yang M T, Li J Y, Yang B, Gan J. Environ. Pollut., 2018, 234: 231.

doi: 10.1016/j.envpol.2017.11.051     URL    
[55]
Guo J H, Yan C Z, Luo Z X, Fang H D, Hu S G, Cao Y L. J. Environ. Sci., 2019, 85: 168.

doi: 10.1016/j.jes.2019.06.004     URL    
[56]
Piepenbrock A, Schröder C, Kappler A. Environ. Sci. Technol., 2014, 48(3): 1656.

doi: 10.1021/es404497h     pmid: 24400782
[57]
Kraiem K, Ali Wahab M, Kallali H, Fra-vazquez A, Pedrouso A, Mosquera-Corral A, Jedidi N. Environ. Sci. Pollut. Res., 2019, 26(19): 19012.

doi: 10.1007/s11356-018-2786-4    
[58]
Du Y X, Zhang Q Y, Liu Z W, He H, Lürling M, Chen M S, Zhang Y L. Environ. Pollut., 2019, 248: 36.

doi: 10.1016/j.envpol.2019.02.002     URL    
[59]
Erhayem M, Sohn M. Sci. Total Environ., 2014, 470/471: 92.

doi: 10.1016/j.scitotenv.2013.09.063     URL    
[60]
Du Q, Zhang S S, Song J P, Zhao Y, Yang F. J. Hazard. Mater., 2020, 389: 122115.

doi: 10.1016/j.jhazmat.2020.122115     URL    
[61]
Yu H L, Liu G F, Jin R F, Zhou J T. J. Hazard. Mater., 2021, 403: 124026.

doi: 10.1016/j.jhazmat.2020.124026     URL    
[62]
Guo P, Zhang C F, Wang Y, Yu X W, Zhang Z C, Zhang D D. Environ. Pollut., 2018, 234: 107.

doi: 10.1016/j.envpol.2017.10.106     URL    
[63]
Porras J, Fernández J J, Torres-Palma R A, Richard C. Environ. Sci. Technol., 2014, 48(4): 2218.

doi: 10.1021/es404240x     URL    
[64]
Wu S S, Yang T, Mai J M, Tang L Y, Liang P, Zhu M Y, Huang C, Li Q H, Cheng X X, Liu M C, Ma J. J. Hazard. Mater., 2022, 422: 126820.

doi: 10.1016/j.jhazmat.2021.126820     URL    
[65]
Lin J W, Zhan Y H. Chem. Eng. J., 2012, 200/202: 202.

doi: 10.1016/j.cej.2012.06.039     URL    
[66]
Zhao Q, Saito T, Miyakawa K, Sasamoto H, Kobayashi T, Sasaki T. J. Hazard. Mater., 2022, 428: 128211.

doi: 10.1016/j.jhazmat.2021.128211     URL    
[67]
Li J H, Ding Y, Shi Z Q. ACS Earth Space Chem., 2021, 5(6): 1535.

doi: 10.1021/acsearthspacechem.1c00069     URL    
[68]
Wen S L, Lu Y H, Luo C Y, An S L, Dai J R, Liu Z W, Zhong J C, Du Y X. J. Hazard. Mater., 2022, 433: 128791.

doi: 10.1016/j.jhazmat.2022.128791     URL    
[69]
Piri M, Sepehr E, Rengel Z. Geoderma, 2019, 341: 39.

doi: 10.1016/j.geoderma.2018.12.027    
[70]
Du Q, Li G X, Zhang S S, Song J P zhao Y, Yang F. J. Hazard. Mater., 2020, 383: 121170.

doi: 10.1016/j.jhazmat.2019.121170     URL    
[71]
Dong B, Liu X G, Dai L L, Dai X H. Bioresour. Technol., 2013, 131: 152.

doi: 10.1016/j.biortech.2012.12.112     URL    
[72]
Qu C C, Chen W L, Fein J B, Cai P, Huang Q Y. J. Hazard. Mater., 2021, 405: 124081.

doi: 10.1016/j.jhazmat.2020.124081     URL    
[73]
Qu C C, Fein J B, Chen W L, Ma M K, Cai P, Huang Q Y. J. Hazard. Mater., 2021, 420: 126603.

doi: 10.1016/j.jhazmat.2021.126603     URL    
[74]
Wang S, Zheng K, Li H P, Feng X N, Wang L Y, Liu Q Y. Water Res., 2021, 194: 116917.

doi: 10.1016/j.watres.2021.116917     URL    
[75]
Fakour H, Lin T F. J. Hazard. Mater., 2014, 279: 569.

doi: 10.1016/j.jhazmat.2014.07.039     pmid: 25108831
[76]
Rao P H, Mak M S H, Liu T Z, Lai K C K, Lo I M C. Chemosphere, 2009, 75(2): 156.

doi: 10.1016/j.chemosphere.2008.12.019     URL    
[77]
Liu G L, Fernandez A, Cai Y. Environ. Sci. Technol., 2011, 45(8): 3210.

doi: 10.1021/es102931p     URL    
[78]
Wang S L, Mulligan C N. Environ. Geochem. Health, 2006, 28(3): 197.

doi: 10.1007/s10653-005-9032-y     URL    
[79]
Velo-Gala I, LÓpez-Peñalver J J, Sánchez-Polo M, Rivera-Utrilla J. Chem. Eng. J., 2012, 195/196: 369.

doi: 10.1016/j.cej.2012.04.046     URL    
[80]
Zhao Q, Kobayashi T, Saito T, Sasaki T. J. Hazard. Mater., 2021, 411: 125071.

doi: 10.1016/j.jhazmat.2021.125071     URL    
[81]
Marsac R, Catrouillet C, Davranche M, Bouhnik-Le Coz M, Briant N, Janot N, Otero-Fariña A, Groenenberg J E, PÉdrot M, Dia A. Chem. Geol., 2021, 567: 120099.

doi: 10.1016/j.chemgeo.2021.120099     URL    
[82]
Pourret O, Houben D. Heliyon, 2018, 4(2): e00543.

doi: 10.1016/j.heliyon.2018.e00543     URL    
[83]
Chen Y, Fabbricino M, Benedetti M F, Korshin G V. Water Res., 2015, 68: 273.

pmid: 25462735
[84]
Marsac R, Davranche M, Morin G, Takahashi Y, Gruau G, Briant N, Dia A. Chem. Geol., 2015, 396: 218.

doi: 10.1016/j.chemgeo.2014.12.024     URL    
[85]
Marsac R, Banik N L, Lützenkirchen J, Catrouillet C, Marquardt C M, Johannesson K H. Appl. Geochem., 2017, 79: 52.

doi: 10.1016/j.apgeochem.2017.02.004     URL    
[86]
Jin J, Sun K, Yang Y, Wang Z Y, Han L F, Wang X K, Wu F C, Xing B S. Environ. Sci. Technol., 2018, 52(4): 1880.

doi: 10.1021/acs.est.7b04999     URL    
[87]
Song J N, Jin P K, Jin X, Wang X C. Water Res., 2019, 148: 106.

doi: 10.1016/j.watres.2018.10.039     URL    
[88]
Chen W, Qian C, Liu X Y, Yu H Q. Environ. Sci. Technol., 2014, 48(19): 11119.

doi: 10.1021/es502502n     pmid: 25222835
[89]
Sharma V K, Sayes C M, Guo B L, Pillai S, Parsons J G, Wang C Y, Yan B, Ma X M. Sci. Total Environ., 2019, 653: 1042.

doi: 10.1016/j.scitotenv.2018.10.411     URL    
[90]
Dong B, Liu G F, Zhou J T, Wang J, Jin R F, Zhang Y. J. Hazard. Mater., 2020, 385: 121597.

doi: 10.1016/j.jhazmat.2019.121597     URL    
[91]
Lu L, Wang J, Chen B L. Environ. Pollut., 2018, 232: 505.

doi: 10.1016/j.envpol.2017.09.078     URL    
[92]
Dong B, Liu G F, Zhou J T, Wang J, Jin R F. J. Hazard. Mater., 2020, 383: 121190.

doi: 10.1016/j.jhazmat.2019.121190     URL    
[93]
Plaschke M, Rothe J, Armbruster M K, Denecke M A, Naber A, Geckeis H. J. Synchrotron Radiat., 2010, 17(2): 158.

doi: 10.1107/S0909049509048742     pmid: 20157266
[94]
Orsi M. Chem. Biol. Technol. Agric., 2014, 1(1): 1.

doi: 10.1186/2196-5641-1-1    
[95]
Xie X Y, Guo H G, Yan M Q, Korshin G. Chemosphere, 2019, 236: 124272.

doi: 10.1016/j.chemosphere.2019.07.003     URL    
[96]
Yang B, Wang C J, Cheng X, Zhang Y L, Li W, Wang J Q, Tian Z X, Chu W H, Korshin G V, Guo H G. Water Res., 2021, 202: 117379.

doi: 10.1016/j.watres.2021.117379     URL    
[97]
Abdurahman A, Cui K Y, Wu J, Li S C, Gao R, Dai J, Liang W Q, Zeng F. Ecotoxicol. Environ. Saf., 2020, 198: 110658.

doi: 10.1016/j.ecoenv.2020.110658     URL    
[98]
Xiang Y J, Jiang L, Zhou Y Y, Luo Z R, Zhi D, Yang J, Lam S S. J. Hazard. Mater., 2022, 422: 126843.

doi: 10.1016/j.jhazmat.2021.126843     URL    
[99]
Chen W, Ouyang Z Y, Qian C, Yu H Q. Environ. Pollut., 2018, 233: 1.

doi: S0269-7491(17)32767-7     pmid: 29049941
[100]
Zhu Y F, Li X X, Wang L P, Hui N, Ma J, Chen F. Water Air Soil Pollut., 2021, 232(12): 494.

doi: 10.1007/s11270-021-05455-y    
[101]
Pan T, Liu H, Jiang M Y, Li J, Liu W Y, Jiao Q X, Zhang T T. Chemosphere, 2023, 311: 136938.

doi: 10.1016/j.chemosphere.2022.136938     URL    
[102]
Antilen M, Bustos O, Ramirez G, Canales C, Faundez M, Escudey M, Pizarro C. New J. Chem., 2016, 40(8): 7132.

doi: 10.1039/C6NJ00207B     URL    
[103]
Urdiales C, Gacitua M, Villacura L, Pizarro C, Escudey M, Canales C, AntilÉn M. J. Hazard. Mater., 2020, 385: 121520.

doi: 10.1016/j.jhazmat.2019.121520     URL    
[104]
Zhang H B, Wang J Q, Zhou B Y, Zhou Y, Dai Z F, Zhou Q, Chriestie P, Luo Y M. Environ. Pollut., 2018, 243: 1550.

doi: 10.1016/j.envpol.2018.09.122     URL    
[105]
Niu X Z, Busetti F, Langsa M, CrouÉ J P. Water Res., 2016, 106: 214.

doi: 10.1016/j.watres.2016.10.002     URL    
[106]
Zheng C L, He F, Cao Z W, Cheng X X, Wang Z X. Adsorpt. Sci. Technol., 2022, 2022: 5362178.
[107]
Tan W F, Koopal L K, Weng L P, van Riemsdijk W H, Norde W. Geochimica Cosmochimica Acta, 2008, 72(8): 2090.

doi: 10.1016/j.gca.2008.02.009     URL    
[108]
Tan W F, Koopal L K, Norde W. Environ. Sci. Technol., 2009, 43(3): 591.

doi: 10.1021/es802387u     URL    
[109]
Sander M, Tomaszewski J E, Madliger M, Schwarzenbach R P. Environ. Sci. Technol., 2012, 46(18): 9923.

doi: 10.1021/es3022478     URL    
[110]
Tomaszewski J E, Madliger M, Pedersen J A, Schwarzenbach R P, Sander M. Environ. Sci. Technol., 2012, 46(18): 9932.

doi: 10.1021/es302248u     pmid: 22862550
[111]
Guan Y F, Qian C, Chen W, Huang B C, Wang Y J, Yu H Q. Water Res., 2018, 145: 146.

doi: 10.1016/j.watres.2018.08.019     URL    
[112]
Taherkhani N, Hekmat A, Piri H, Haghbeen K. J. Food Biochem., 2022, 46(10): e14279.
[113]
Tan W B, Liu N K, Dang Q L, Cui D Y, Xi B D, Yu H. Environ. Pollut., 2020, 264: 114678.

doi: 10.1016/j.envpol.2020.114678     URL    
[114]
Zhang M, Shen X F, Zhang H Y, Werner D, Wang B, Yang Y, Tao S, Wang X L. Environ. Sci. Technol., 2019, 53(22): 13201.

doi: 10.1021/acs.est.9b05147     pmid: 31657903
[115]
Jin J, Sun K, Wang Z Y, Yang Y, Han L F, Xing B S. Environ. Sci. Technol., 2017, 51(5): 2635.

doi: 10.1021/acs.est.6b04573     URL    
[116]
Porras J, Giannakis S, Torres-Palma R A, Fernandez J J, Bensimon M, Pulgarin C. Appl. Catal. B Environ., 2018, 235: 75.

doi: 10.1016/j.apcatb.2018.04.062     URL    
[117]
Ryu J, Jung J, Park K, Song W, Choi B, Kweon J. J. Hazard. Mater., 2021, 417: 126088.

doi: 10.1016/j.jhazmat.2021.126088     URL    
[1] 陈超, 王古月, 田莹, 孔正阳, 李凤龙, 朱锦, 应邬彬. 自愈合聚氨酯的研究进展及其在柔性传感领域的应用[J]. 化学进展, 2023, 35(9): 1275-1293.
[2] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[3] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[4] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[5] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[6] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[7] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[8] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[9] 王雪, 陈中慧, 卿光焱*. 基于磷脂膜的界面相互作用研究[J]. 化学进展, 2018, 30(7): 888-901.
[10] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[11] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[12] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[13] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[14] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[15] 钟大根, 刘宗华, 左琴华, 薛巍. 高分子纳米材料与血浆蛋白的相互作用[J]. 化学进展, 2014, 26(04): 638-646.