English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1313-1326 DOI: 10.7536/PC221201 前一篇   后一篇

• 综述 •

PM2.5中二次硫酸盐和硝酸盐生成机制

郭方方, 谢绍东*()   

  1. 北京大学环境科学与工程学院 北京 100871
  • 收稿日期:2022-12-28 修回日期:2023-08-16 出版日期:2023-09-24 发布日期:2023-08-23
  • 作者简介:

    谢绍东 北京大学教授、博士生导师,主要从事城市与区域大气污染成因、来源与控制及区域大气污染综合治理规划等研究,负责完成了国家重点基础研究发展计划(973计划)、国家高技术研究发展计划(863计划)、国家重点研发计划和总理基金大气重污染成因与治理攻关等多项科研项目。建立的挥发性有机物排放源清单编制方法体系被生态环境部作为技术规范在全国颁布实施。曾获首都环境保护先进个人,省部级科技进步一、二等奖共11项以及国家科学技术进步二等奖。

  • 基金资助:
    国家重点研发计划项目(2018YFC0214001)

Formation Mechanisms of Secondary Sulfate and Nitrate in PM2.5

Fangfang Guo, Shaodong Xie()   

  1. College of Environmental Sciences and Engineering, Peking University,Beijing 100871, China
  • Received:2022-12-28 Revised:2023-08-16 Online:2023-09-24 Published:2023-08-23
  • Contact: *e-mail: sdxie@pku.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2018YFC0214001)

二次无机硫酸盐和硝酸盐是PM2.5的关键化学组分,对区域霾污染的形成有十分重要的作用。厘清两者的生成机制对于消除PM2.5污染至关重要。二次硫酸盐和硝酸盐的生成机理十分复杂,包括气相、液相和非均相等多种反应。最近的实验和观测研究揭示了SO2和NO2生成硫酸盐和硝酸盐的新机理和详细的反应动力学,其被用于空气质量模型后可有效提升数值模式对硫酸盐和硝酸盐的时空分布特征及生成过程的模拟。本文系统总结了PM2.5中二次硫酸盐和硝酸盐生成机制的最新进展,重点阐述了SO2和NO2氧化生成硫酸盐和硝酸盐的重要反应途径的机理和反应动力学结果,讨论了影响SO2和NO2氧化速率的因素以及在表征反应动力学时出现的重大实验挑战,同时探讨了硝酸盐对氮氧化物(NOx)、挥发性有机物(VOCs)、氨(NH3)减排的敏感性。最后,对未来研究发展方向提出了建议。

Secondary inorganic sulfate and nitrate, as the key chemical components of PM2.5, play important roles in the formation of severe regional haze events. The deteriorating sulfate and nitrate pollution has brought more serious challenges to the continuous improvement of air quality. Thus, elucidating the formation pathways and key factors of controlling the formation of inorganic sulfate and nitrate is crucial to eliminate PM2.5 pollution in the atmosphere. The formation of sulfate and nitrate involves complex chemical reactions, including gas- and aqueous-phase reactions and multi-phase reactions. Recent experimental and filed studies have revealed new reaction mechanisms and detailed reaction kinetics for the oxidation of SO2 and NO2 to form sulfate and nitrate. Merging new formation pathways of sulfate and nitrate with updating reaction kinetics based on laboratory measurements and field observations, air quality model performance is effectively improved to capture the spatial-temporal variations of sulfate and nitrate and identify their chemical formation pathways. This review provides a synthetic synopsis of recent advances in the fundamental mechanisms of sulfate and nitrate formation. In particular, the mechanisms and reaction kinetic results for a series of individual reaction pathways of current interest for the SO2 and NO2 oxidation are emphasized. The key factors affecting the SO2 and NO2 oxidation rates and significant challenges in laboratory studies of characterizing the reaction kinetics are also discussed. In addition, the sensitivity of nitrate to emission reductions of nitrogen oxides (NOx), volatile organic compounds (VOCs) and ammonia (NH3) is investigated. Finally, suggestions are put forward for the future research directions to improve the understanding of sulfate and nitrate formation.

Contents

1 Introduction

2 Mechanism of particulate sulfate formation

2.1 Gas-phase oxidation

2.2 Aqueous-phase oxidation

2.3 Heterogeneous oxidation

2.4 Multiphase photochemical oxidation

3 Mechanism of particulate nitrate formation

3.1 HNO3 formation

3.2 HNO3-NO3- partitioning

4 Conclusion and outlook

()
表1 HNO3生成的主要化学反应
Table 1 The main reactions contributing to HNO3 formation
[1]
Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q, Ding Y H, Lei Y, Li J H, Wang Z F, Zhang X Y, Wang Y S, Cheng J, Liu Y, Shi Q R, Yan L, Geng G N, Hong C P, Li M, Liu F, Zheng B, Cao J J, Ding A J, Gao J, Fu Q Y, Huo J T, Liu B X, Liu Z R, Yang F M, He K B, Hao J M. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(49): 24463.

doi: 10.1073/pnas.1907956116     URL    
[2]
Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier Van Der Gon H, Facchini M C, Fowler D, Koren I, Langford B, Lohmann U, Nemitz E, Pandis S, Riipinen I, Rudich Y, Schaap M, Slowik J G, Spracklen D V, Vignati E, Wild M, Williams M, Gilardoni S. Atmos. Chem. Phys., 2015, 15(14): 8217.

doi: 10.5194/acp-15-8217-2015     URL    
[3]
Wang Y, Zhang R Y, Saravanan R. Nat. Commun., 2014, 5: 3098.

doi: 10.1038/ncomms4098    
[4]
Zheng B, Zhang Q, Zhang Y, He K B, Wang K, Zheng G J, Duan F K, Ma Y L, Kimoto T. Atmos. Chem. Phys., 2015, 15(4): 2031.

doi: 10.5194/acp-15-2031-2015     URL    
[5]
Wang J D, Zhao B, Wang S X, Yang F M, Xing J, Morawska L, Ding A J, Kulmala M, Kerminen V M, Kujansuu J, Wang Z F, Ding D, Zhang X Y, Wang H B, Tian M, Petäjä T, Jiang J K, Hao J M. Sci. Total Environ., 2017, 584/585: 426.

doi: 10.1016/j.scitotenv.2017.01.027     URL    
[6]
Wen L, Xue L K, Wang X F, Xu C H, Chen T S, Yang L X, Wang T, Zhang Q Z, Wang W X. Atmos. Chem. Phys., 2018, 18(15): 11261.

doi: 10.5194/acp-18-11261-2018     URL    
[7]
Li H Y, Zhang Q, Zheng B, Chen C R, Wu N N, Guo H Y, Zhang Y X, Zheng Y X, Li X, He K B. Atmos. Chem. Phys., 2018, 18(8): 5293.

doi: 10.5194/acp-18-5293-2018     URL    
[8]
Cheng Y F, Zheng G J, Wei C, Mu Q, Zheng B, Wang Z B, Gao M, Zhang Q, He K B, Carmichael G, Pöschl U, Su H. Sci. Adv., 2016, 2(12): e1601530.

doi: 10.1126/sciadv.1601530     URL    
[9]
Quan J N, Liu Q, Li X, Gao Y, Jia X C, Sheng J J, Liu Y G. Atmos. Environ., 2015, 122: 306.

doi: 10.1016/j.atmosenv.2015.09.068     URL    
[10]
Zhang R Y, Wang G H, Guo S, Zamora M L, Ying Q, Lin Y, Wang W G, Hu M, Wang Y. Chem. Rev., 2015, 115(10): 3803.

doi: 10.1021/acs.chemrev.5b00067     URL    
[11]
Xie X D, Hu J L, Qin M M, Guo S, Hu M, Wang H L, Lou S R, Li J Y, Sun J J, Li X, Sheng L, Zhu J L, Chen G Y, Yin J J, Fu W X, Huang C, Zhang Y H. Environ. Int., 2022, 166: 107369.

doi: 10.1016/j.envint.2022.107369     URL    
[12]
Zang H, Zhao Y, Huo J T, Zhao Q B, Fu Q Y, Duan Y S, Shao J Y, Huang C, An J Y, Xue L K, Li Z Y, Li C X, Xiao H Y. Atmos. Chem. Phys., 2022, 22(7): 4355.

doi: 10.5194/acp-22-4355-2022     URL    
[13]
Yang J R, Wang S B, Zhang R Q, Yin S S. Environ. Pollut., 2022, 296: 118716.

doi: 10.1016/j.envpol.2021.118716     URL    
[14]
Tham Y J, Wang Z, Li Q Y, Wang W H, Wang X F, Lu K D, Ma N, Yan C, Kecorius S, Wiedensohler A, Zhang Y H, Wang T. Atmos. Chem. Phys., 2018, 18(17): 13155.

doi: 10.5194/acp-18-13155-2018     URL    
[15]
Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. 3rd. ed. Hoboken, New Jersey: John Wiley & Sons, 2016.
[16]
Zhang D, Zhang R Y. Environ. Sci. Technol., 2005, 39(15): 5722.

doi: 10.1021/es050372d     URL    
[17]
Rodhe H, Crutzen P, Vanderpol A. Tellus, 1981, 33(2): 132.
[18]
Faloona I. Atmos. Environ., 2009, 43(18): 2841.

doi: 10.1016/j.atmosenv.2009.02.043     URL    
[19]
Zheng G J, Duan F K, Su H, Ma Y L, Cheng Y, Zheng B, Zhang Q, Huang T, Kimoto T, Chang D, Pöschl U, Cheng Y F, He K B. Atmos. Chem. Phys., 2015, 15(6): 2969.

doi: 10.5194/acp-15-2969-2015     URL    
[20]
Sarwar G, Simon H, Fahey K, Mathur R, Goliff W S, Stockwell W R. Atmos. Environ., 2014, 85: 204.

doi: 10.1016/j.atmosenv.2013.12.013     URL    
[21]
Sarwar G, Fahey K, Kwok R, Gilliam R C, Roselle S J, Mathur R, Xue J, Yu J Z, Carter W P L. Atmos. Environ., 2013, 68: 186.

doi: 10.1016/j.atmosenv.2012.11.036     URL    
[22]
Mauldin R L, Berndt T, Sipilä M, Paasonen P, Petäjä T, Kim S, KurtÉn T, Stratmann F, Kerminen V M, Kulmala M. Nature, 2012, 488(7410): 193.

doi: 10.1038/nature11278    
[23]
Welz O, Savee J D, Osborn D L, Vasu S S, Percival C J, Shallcross D E, Taatjes C A. Science, 2012, 335(6065): 204.

doi: 10.1126/science.1213229     URL    
[24]
Boy M, Mogensen D, Smolander S, Zhou L, Nieminen T, Paasonen P, Plass-Dülmer C, Sipilä M, Petäjä T, Mauldin L, Berresheim H, Kulmala M. Atmos. Chem. Phys., 2013, 13(7): 3865.

doi: 10.5194/acp-13-3865-2013     URL    
[25]
Liu L, Bei N F, Wu J R, Liu S X, Zhou J M, Li X, Yang Q C, Feng T, Cao J J, Tie X X, Li G H. Atmos. Chem. Phys., 2019, 19(21): 13341.

doi: 10.5194/acp-19-13341-2019     URL    
[26]
Huang H L, Chao W, Lin J J M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(35): 10857.

doi: 10.1073/pnas.1513149112     URL    
[27]
Sipilä M, Jokinen T, Berndt T, Richters S, Makkonen R, Donahue N M, Mauldin R L, KurtÉn T, Paasonen P, Sarnela N, Ehn M, Junninen H, Rissanen M P, Thornton J, Stratmann F, Herrmann H, Worsnop D R, Kulmala M, Kerminen V M, Petäjä T. Atmos. Chem. Phys., 2014, 14(22): 12143.

doi: 10.5194/acp-14-12143-2014     URL    
[28]
Wang Y X, Zhang Q Q, Jiang J K, Zhou W, Wang B Y, He K B, Duan F K, Zhang Q, Philip S, Xie Y Y. J. Geophys. Res. Atmos., 2014, 119(17): 10425.
[29]
Wang G H, Zhang R Y, Gomez M E, Yang L X, Levy Zamora M, Hu M, Lin Y, Peng J F, Guo S, Meng J J, Li J J, Cheng C L, Hu T F, Ren Y Q, Wang Y S, Gao J, Cao J J, An Z S, Zhou W J, Li G H, Wang J Y, Tian P F, Marrero-Ortiz W, Secrest J, Du Z F, Zheng J, Shang D J, Zeng L M, Shao M, Wang W G, Huang Y, Wang Y, Zhu Y J, Li Y X, Hu J X, Pan B W, Cai L, Cheng Y T, Ji Y M, Zhang F, Rosenfeld D, Liss P S, Duce R A, Kolb C E, Molina M J. Proc. Natl. Acad. Sci. U. S. A., 2016, 113(48): 13630.

doi: 10.1073/pnas.1616540113     URL    
[30]
Weber R J, Guo H Y, Russell A G, Nenes A. Nat. Geosci., 2016, 9(4): 282.

doi: 10.1038/ngeo2665    
[31]
Maaß F, Elias H, Wannowius K J. Atmos. Environ., 1999, 33(27): 4413.

doi: 10.1016/S1352-2310(99)00212-5     URL    
[32]
Ye C, Chen H, Hoffmann E H, Mettke P, Tilgner A, He L, Mutzel A, Brüggemann M, Poulain L, Schaefer T, Heinold B, Ma Z B, Liu P F, Xue C Y, Zhao X X, Zhang C L, Zhang F, Sun H, Li Q, Wang L, Yang X, Wang J H, Liu C, Xing C Z, Mu Y J, Chen J M, Herrmann H. Environ. Sci. Technol., 2021, 55(12): 7818.

doi: 10.1021/acs.est.1c00561     URL    
[33]
Liu T Y, Clegg S L, Abbatt J P D. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(3): 1354.

doi: 10.1073/pnas.1916401117     URL    
[34]
Kahan T F, Ardura D, Donaldson D J. J. Phys. Chem. A, 2010, 114(5): 2164.

doi: 10.1021/jp9085156     pmid: 20085262
[35]
Fang Y H, Ye C X, Wang J X, Wu Y S, Hu M, Lin W L, Xu F F, Zhu T. Atmos. Chem. Phys., 2019, 19(19): 12295.

doi: 10.5194/acp-19-12295-2019     URL    
[36]
Sievering H. J. Geophys. Res., 2004, 109(D19): D19317.
[37]
Zhang S, Li D P, Ge S S, Liu S J, Wu C, Wang Y Q, Chen Y B, Lv S J, Wang F L, Meng J J, Wang G H. Sci. Total Environ., 2021, 772: 144897.

doi: 10.1016/j.scitotenv.2020.144897     URL    
[38]
Liu T Y, Chan A W H, Abbatt J P D. Environ. Sci. Technol., 2021, 55(8): 4227.

doi: 10.1021/acs.est.0c06496     URL    
[39]
Liu T Y, Abbatt J P D. Nat. Chem., 2021, 13(12): 1173.

doi: 10.1038/s41557-021-00777-0    
[40]
Xue J, Yu X, Yuan Z B, Griffith S M, Lau A K H, Seinfeld J H, Yu J Z. Nat. Geosci., 2019, 12(12): 977.

doi: 10.1038/s41561-019-0485-5    
[41]
Li L J, Hoffmann M R, Colussi A J. Environ. Sci. Technol., 2018, 52(5): 2686.

doi: 10.1021/acs.est.7b05222     URL    
[42]
Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z J, Shao M, Zeng L M, Molina M J, Zhang R Y. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(49): 17373.

doi: 10.1073/pnas.1419604111     URL    
[43]
Herrmann H, Schaefer T, Tilgner A, Styler S A, Weller C, Teich M, Otto T. Chem. Rev., 2015, 115(10): 4259.

doi: 10.1021/cr500447k     pmid: 25950643
[44]
Chen T Z, Chu B W, Ge Y L, Zhang S P, Ma Q X, He H, Li S M. Environ. Pollut., 2019, 252: 236.

doi: 10.1016/j.envpol.2019.05.119     URL    
[45]
Turši? J, Berner A, Podkrajšek B, Grgić I. Atmos. Environ., 2004, 38(18): 2789.

doi: 10.1016/j.atmosenv.2004.02.036     URL    
[46]
Zheng G J, Su H, Wang S W, Andreae M O, Pöschl U, Cheng Y F. Science, 2020, 369(6509): 1374.

doi: 10.1126/science.aba3719     URL    
[47]
Ge S S, Wang G H, Zhang S, Li D P, Xie Y N, Wu C, Yuan Q, Chen J M, Zhang H L. Environ. Sci. Technol., 2019, 53(24): 14339.

doi: 10.1021/acs.est.9b04196     URL    
[48]
Clifton C L, Altstein N, Huie R E. Environ. Sci. Technol., 1988, 22(5): 586.

doi: 10.1021/es00170a018     URL    
[49]
Guo H Y, Weber R J, Nenes A. Sci. Rep., 2017, 7: 12109.

doi: 10.1038/s41598-017-11704-0    
[50]
Liu M X, Song Y, Zhou T, Xu Z Y, Yan C Q, Zheng M, Wu Z J, Hu M, Wu Y S, Zhu T. Geophys. Res. Lett., 2017, 44(10): 5213.

doi: 10.1002/grl.v44.10     URL    
[51]
Wang G H, Zhang F, Peng J F, Duan L, Ji Y M, Marrero-Ortiz W, Wang J Y, Li J J, Wu C, Cao C, Wang Y, Zheng J, Secrest J, Li Y X, Wang Y Y, Li H, Li N, Zhang R Y. Atmos. Chem. Phys., 2018, 18(14): 10123.

doi: 10.5194/acp-18-10123-2018     URL    
[52]
Rindelaub J D, Craig R L, Nandy L, Bondy A L, Dutcher C S, Shepson P B, Ault A P. J. Phys. Chem. A, 2016, 120(6): 911.

doi: 10.1021/acs.jpca.5b12699     pmid: 26745214
[53]
Craig R L, Nandy L, Axson J L, Dutcher C S, Ault A P. J. Phys. Chem. A, 2017, 121(30): 5690.

doi: 10.1021/acs.jpca.7b05261     URL    
[54]
Wei H R, Vejerano E P, Leng W N, Huang Q S, Willner M R, Marr L C, Vikesland P J. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(28): 7272.

doi: 10.1073/pnas.1720488115     URL    
[55]
Song Q P, Osada K. Atmos. Environ., 2021, 261: 118605.

doi: 10.1016/j.atmosenv.2021.118605     URL    
[56]
Kerminen V M, Hillamo R, Teinilä K, Pakkanen T, Allegrini I, Sparapani R. Atmos. Environ., 2001, 35(31): 5255.

doi: 10.1016/S1352-2310(01)00345-4     URL    
[57]
Metzger S, Mihalopoulos N, Lelieveld J. Atmos. Chem. Phys., 2006, 6(9): 2549.

doi: 10.5194/acp-6-2549-2006     URL    
[58]
Shi G L, Xu J, Peng X, Xiao Z M, Chen K, Tian Y Z, Guan X B, Feng Y C, Yu H F, Nenes A, Russell A G. Environ. Sci. Technol., 2017, 51(8): 4289.

doi: 10.1021/acs.est.6b05736     URL    
[59]
Zhang T, Cao J J, Tie X X, Shen Z X, Liu S X, Ding H, Han Y M, Wang G H, Ho K F, Qiang J, Li W T. Atmos. Res., 2011, 102(1/2): 110.

doi: 10.1016/j.atmosres.2011.06.014     URL    
[60]
Hennigan C J, Izumi J, Sullivan A P, Weber R J, Nenes A. Atmos. Chem. Phys., 2015, 15(5): 2775.

doi: 10.5194/acp-15-2775-2015     URL    
[61]
Trebs I, Metzger S, Meixner F X, Helas G, Hoffer A, Rudich Y, Falkovich A H, Moura M A L, Artaxo P, Slanina J, Andreae M O. J. Geophys. Res., 2005, 110(D7): D07303.
[62]
Song S J, Gao M, Xu W Q, Shao J Y, Shi G L, Wang S X, Wang Y X, Sun Y L, McElroy M B. Atmos. Chem. Phys., 2018, 18(10): 7423.

doi: 10.5194/acp-18-7423-2018     URL    
[63]
Qiu C, Zhang R Y. Phys. Chem. Chem. Phys., 2013, 15(16): 5738.

doi: 10.1039/c3cp43446j     URL    
[64]
Lee Y N, Schwartz S E. Fourth International Conference on Precipitation Scavenging, Dry Deposition, and Resuspension, Santa Monica, California, 1982.
[65]
Angle K J, Neal E E, Grassian V H. Environ. Sci. Technol., 2021, 55(15): 10291.

doi: 10.1021/acs.est.1c01932     URL    
[66]
Tao W, Su H, Zheng G J, Wang J D, Wei C, Liu L X, Ma N, Li M, Zhang Q, Pöschl U, Cheng Y F. Atmos. Chem. Phys., 2020, 20(20): 11729.

doi: 10.5194/acp-20-11729-2020     URL    
[67]
Harris E, Sinha B, van Pinxteren D, Tilgner A, Fomba K W, Schneider J, Roth A, Gnauk T, Fahlbusch B, Mertes S, Lee T, Collett J, Foley S, Borrmann S, Hoppe P, Herrmann H. Science, 2013, 340(6133): 727.

doi: 10.1126/science.1230911     pmid: 23661757
[68]
Alexander B, Park R J, Jacob D J, Gong S L. J. Geophys. Res., 2009, 114(D2): D02309.
[69]
Li J, Zhang Y L, Cao F, Zhang W Q, Fan M Y, Lee X H, Michalski G. Environ. Sci. Technol., 2020, 54(5): 2626.

doi: 10.1021/acs.est.9b07150     URL    
[70]
Shao J Y, Chen Q J, Wang Y X, Lu X, He P Z, Sun Y L, Shah V, Martin R V, Philip S, Song S J, Zhao Y, Xie Z Q, Zhang L, Alexander B. Atmos. Chem. Phys., 2019, 19(9): 6107.

doi: 10.5194/acp-19-6107-2019     URL    
[71]
Yue F G, He P Z, Chi X Y, Wang L Q, Yu X W, Zhang P F, Xie Z Q. Atmos. Pollut. Res., 2020, 11(8): 1351.

doi: 10.1016/j.apr.2020.05.014     URL    
[72]
Chen Q J, Geng L, Schmidt J A, Xie Z Q, Kang H, Dachs J, Cole-Dai J, Schauer A J, Camp M G, Alexander B. Atmos. Chem. Phys., 2016, 16(17): 11433.

doi: 10.5194/acp-16-11433-2016     URL    
[73]
Yiin B S, Margerum D W. Inorg. Chem., 1988, 27(10): 1670.

doi: 10.1021/ic00283a002     URL    
[74]
Xia M, Peng X, Wang W H, Yu C, Sun P, Li Y Y, Liu Y L, Xu Z N, Wang Z, Xu Z, Nie W, Ding A J, Wang T. Atmos. Chem. Phys., 2020, 20(10): 6147.

doi: 10.5194/acp-20-6147-2020     URL    
[75]
Zhang F, Wang Y, Peng J F, Chen L, Sun Y L, Duan L, Ge X L, Li Y X, Zhao J Y, Liu C, Zhang X C, Zhang G, Pan Y P, Wang Y S, Zhang A L, Ji Y M, Wang G H, Hu M, Molina M J, Zhang R Y. Proc. Natl. Acad. Sci. U. S. A., 2020, 117(8): 3960.

doi: 10.1073/pnas.1919343117     URL    
[76]
He H, Wang Y S, Ma Q X, Ma J Z, Chu B W, Ji D S, Tang G Q, Liu C, Zhang H X, Hao J M. Sci. Rep., 2014, 4: 4172.

doi: 10.1038/srep04172    
[77]
Xie Y N, Ding A J, Nie W, Mao H T, Qi X M, Huang X, Xu Z, Kerminen V M, Petäjä T, Chi X G, Virkkula A, Boy M, Xue L K, Guo J, Sun J N, Yang X Q, Kulmala M, Fu C B. J. Geophys. Res. Atmos., 2015, 120(24): 12679.

doi: 10.1002/jgrd.v120.24     URL    
[78]
Liu C, Ma Q X, Liu Y C, Ma J Z, He H. Phys. Chem. Chem. Phys., 2012, 14(5): 1668.

doi: 10.1039/C1CP22217A     URL    
[79]
Zhao Y, Liu Y C, Ma J Z, Ma Q X, He H. Atmos. Environ., 2017, 152: 465.

doi: 10.1016/j.atmosenv.2017.01.005     URL    
[80]
Yu T, Zhao D F, Song X J, Zhu T. Atmos. Chem. Phys., 2018, 18(9): 6679.

doi: 10.5194/acp-18-6679-2018     URL    
[81]
Yang W W, Ma Q X, Liu Y C, Ma J Z, Chu B W, Wang L, He H. J. Phys. Chem. A, 2018, 122(30): 6311.

doi: 10.1021/acs.jpca.8b05130     URL    
[82]
Zhang S P, Xing J, Sarwar G, Ge Y L, He H, Duan F K, Zhao Y, He K B, Zhu L D, Chu B W. Atmos. Environ., 2019, 208: 133.

doi: 10.1016/j.atmosenv.2019.04.004     URL    
[83]
Zhao D F, Song X J, Zhu T, Zhang Z F, Liu Y J, Shang J. Atmos. Chem. Phys., 2018, 18(4): 2481.

doi: 10.5194/acp-18-2481-2018     URL    
[84]
Brodzinsky R, Chang S G, Markowitz S S, Novakov T. J. Phys. Chem., 1980, 84(25): 3354.

doi: 10.1021/j100462a009     URL    
[85]
He G Z, Ma J Z, He H. ACS Catal., 2018, 8(5): 3825.

doi: 10.1021/acscatal.7b04195     URL    
[86]
He G Z, He H. Environ. Sci. Technol., 2020, 54(12): 7070.

doi: 10.1021/acs.est.0c00021     URL    
[87]
Chen Z, Liu P, Wang W G, Cao X, Liu Y X, Zhang Y H, Ge M F. Environ. Sci. Technol., 2022, 56(12): 7637.

doi: 10.1021/acs.est.2c00112     URL    
[88]
Wang W G, Liu M Y, Wang T T, Song Y, Zhou L, Cao J J, Hu J N, Tang G G, Chen Z, Li Z J, Xu Z Y, Peng C, Lian C F, Chen Y, Pan Y P, Zhang Y H, Sun Y L, Li W J, Zhu T, Tian H Z, Ge M F. Nat. Commun., 2021, 12: 1993.

doi: 10.1038/s41467-021-22091-6    
[89]
Hung H M, Hoffmann M R. Environ. Sci. Technol., 2015, 49(23): 13768.

doi: 10.1021/acs.est.5b01658     URL    
[90]
Hung H M, Hsu M N, Hoffmann M R. Environ. Sci. Technol., 2018, 52(16): 9079.

doi: 10.1021/acs.est.8b01391     URL    
[91]
Wang T T, Liu M X, Liu M Y, Song Y, Xu Z Y, Shang F, Huang X, Liao W L, Wang W G, Ge M F, Cao J J, Hu J N, Tang G G, Pan Y P, Hu M, Zhu T. Environ. Sci. Technol., 2022, 56(12): 7771.

doi: 10.1021/acs.est.2c02533     URL    
[92]
Zhang R F, Gen M S, Huang D D, Li Y J, Chan C K. Environ. Sci. Technol., 2020, 54(7): 3831.

doi: 10.1021/acs.est.9b06445     URL    
[93]
Zheng H T, Song S J, Sarwar G, Gen M S, Wang S X, Ding D, Chang X, Zhang S P, Xing J, Sun Y L, Ji D S, Chan C K, Gao J, McElroy M B. Environ. Sci. Technol. Lett., 2020, 7(9): 632.

doi: 10.1021/acs.estlett.0c00368     URL    
[94]
Gen M S, Zhang R F, Huang Dan Dan, Li Y J, Chan C K. Environ. Sci. Technol. Lett., 2019, 6(2): 86.

doi: 10.1021/acs.estlett.8b00681     URL    
[95]
Gen M S, Zhang R F, Li Y J, Chan C K. Environ. Sci. Technol., 2020, 54(16): 9862.

doi: 10.1021/acs.est.0c01540     URL    
[96]
Wang X K, Gemayel R, Hayeck N, Perrier S, Charbonnel N, Xu C H, Chen H, Zhu C, Zhang L W, Wang L, Nizkorodov S A, Wang X M, Wang Z, Wang T, Mellouki A, Riva M, Chen J M, George C. Environ. Sci. Technol., 2020, 54(6): 3114.

doi: 10.1021/acs.est.9b06347     URL    
[97]
Yu Z C, Jang M. Atmos. Chem. Phys., 2018, 18(19): 14609.

doi: 10.5194/acp-18-14609-2018     URL    
[98]
Romer P S, Wooldridge P J, Crounse J D, Kim M J, Wennberg P O, Dibb J E, Scheuer E, Blake D R, Meinardi S, Brosius A L, Thames A B, Miller D O, Brune W H, Hall S R, Ryerson T B, Cohen R C. Environ. Sci. Technol., 2018, 52(23): 13738.

doi: 10.1021/acs.est.8b03861     URL    
[99]
Benedict K B, McFall A S, Anastasio C. Environ. Sci. Technol., 2017, 51(8): 4387.

doi: 10.1021/acs.est.6b06370     URL    
[100]
Ye C X, Zhang N, Gao H L, Zhou X L. Environ. Sci. Technol., 2017, 51(12): 6849.

doi: 10.1021/acs.est.7b00387     URL    
[101]
Wingen L M, Moskun A C, Johnson S N, Thomas J L, Roeselová M, Tobias D J, Kleinman M T, Finlayson-Pitts B J. Phys. Chem. Chem. Phys., 2008, 10(37): 5668.

doi: 10.1039/b806613b     pmid: 18956101
[102]
Richards N K, Wingen L M, Callahan K M, Nishino N, Kleinman M T, Tobias D J, Finlayson-Pitts B J. J. Phys. Chem. A, 2011, 115(23): 5810.

doi: 10.1021/jp109560j     pmid: 21291193
[103]
Richards N K, Finlayson-Pitts B J. Environ. Sci. Technol., 2012, 46(19): 10447.

doi: 10.1021/es300607c     URL    
[104]
George C, Ammann M, D’Anna B, Donaldson D J, Nizkorodov S A. Chem. Rev., 2015, 115(10): 4218.

doi: 10.1021/cr500648z     URL    
[105]
Liu Y Y, Wang T, Fang X Z, Deng Y, Cheng H Y, Bacha A U R, Nabi I, Zhang L W. Sci. Total Environ., 2020, 734: 139415.

doi: 10.1016/j.scitotenv.2020.139415     URL    
[106]
Park J, Jang M, Yu Z C. Environ. Sci. Technol., 2017, 51(17): 9605.

doi: 10.1021/acs.est.7b00588     URL    
[107]
Park J Y, Jang M. RSC Adv., 2016, 6(63): 58617.

doi: 10.1039/C6RA09601H     URL    
[108]
Dupart Y, King S M, Nekat B, Nowak A, Wiedensohler A, Herrmann H, David G, Thomas B, Miffre A, Rairoux P, D’Anna B, George C. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(51): 20842.

doi: 10.1073/pnas.1212297109     URL    
[109]
Ma Q X, Wang L, Chu B W, Ma J Z, He H. J. Phys. Chem. A, 2019, 123(7): 1311.

doi: 10.1021/acs.jpca.8b11433     URL    
[110]
Chen X R, Wang H C, Lu K D, Li C M, Zhai T Y, Tan Z F, Ma X F, Yang X P, Liu Y H, Chen S Y, Dong H B, Li X, Wu Z J, Hu M, Zeng L M, Zhang Y H. Environ. Sci. Technol., 2020, 54(15): 9243.

doi: 10.1021/acs.est.0c00972     URL    
[111]
Wang H C, Lu K D, Guo S, Wu Z J, Shang D J, Tan Z F, Wang Y J, Le Breton M, Lou S R, Tang M J, Wu Y S, Zhu W F, Zheng J, Zeng L M, Hallquist M, Hu M, Zhang Y H. Atmos. Chem. Phys., 2018, 18(13): 9705.

doi: 10.5194/acp-18-9705-2018     URL    
[112]
Brown S S, DubÉ W P, Peischl J, Ryerson T B, Atlas E, Warneke C, de Gouw J A, te Lintel Hekkert S, Brock C A, Flocke F, Trainer M, Parrish D D, Feshenfeld F C, Ravishankara A R. J. Geophys. Res., 2011, 116(D24): D23405.
[113]
Heintz F, Platt U, Flentje H, Dubois R. J. Geophys. Res., 1996, 101(D17): 22891.
[114]
Alexander B, Sherwen T, Holmes C D, Fisher J A, Chen Q J, Evans M J, Kasibhatla P. Atmos. Chem. Phys., 2020, 20(6): 3859.

doi: 10.5194/acp-20-3859-2020     URL    
[115]
Alexander B, Hastings M G, Allman D J, Dachs J, Thornton J A, Kunasek S A. Atmos. Chem. Phys., 2009, 9(14): 5043.

doi: 10.5194/acp-9-5043-2009     URL    
[116]
Michalski G, Scott Z, Kabiling M, Thiemens M H. Geophys. Res. Lett., 2003, 30(16): 1870.
[117]
Wang Y L, Song W, Yang W, Sun X C, Tong Y D, Wang X M, Liu C Q, Bai Z P, Liu X Y. J. Geophys. Res. Atmos., 2019, 124(7): 4174.

doi: 10.1029/2019JD030284     URL    
[118]
Atkinson R. Atmos. Environ., 2000, 34(12/14): 2063.

doi: 10.1016/S1352-2310(99)00460-4     URL    
[119]
He P Z, Xie Z Q, Chi X Y, Yu X W, Fan S D, Kang H, Liu C, Zhan H C. Atmos. Chem. Phys., 2018, 18(19): 14465.

doi: 10.5194/acp-18-14465-2018     URL    
[120]
Wang H C, Lu K D, Chen X R, Zhu Q D, Chen Q, Guo S, Jiang M Q, Li X, Shang D J, Tan Z F, Wu Y S, Wu Z J, Zou Q, Zheng Y, Zeng L M, Zhu T, Hu M, Zhang Y H. Environ. Sci. Technol. Lett., 2017, 4(10): 416.

doi: 10.1021/acs.estlett.7b00341     URL    
[121]
Wahner A, Mentel T F, Sohn M. Geophys. Res. Lett., 1998, 25(12): 2169.

doi: 10.1029/98GL51596     URL    
[122]
Fan M Y, Zhang Y L, Lin Y C, Hong Y H, Zhao Z Y, Xie F, Du W, Cao F, Sun Y L, Fu P Q. Environ. Sci. Technol., 2022, 56(11): 6870.

doi: 10.1021/acs.est.1c02843     URL    
[123]
Bertram T H, Thornton J A. Atmos. Chem. Phys., 2009, 9(21): 8351.

doi: 10.5194/acp-9-8351-2009     URL    
[124]
Davis J M, Bhave P V, Foley K M. Atmos. Chem. Phys., 2008, 8(17): 5295.

doi: 10.5194/acp-8-5295-2008     URL    
[125]
Gržinić G, Bartels-Rausch T, Berkemeier T, Türler A, Ammann M. Atmos. Chem. Phys., 2015, 15(23): 13615.

doi: 10.5194/acp-15-13615-2015     URL    
[126]
Griffiths P T, Badger C L, Cox R A, Folkers M, Henk H H, Mentel T F. J. Phys. Chem. A, 2009, 113(17): 5082.

doi: 10.1021/jp8096814     pmid: 19385680
[127]
Bertram T H, Thornton J A, Riedel T P, Middlebrook A M, Bahreini R, Bates T S, Quinn P K, Coffman D J. Geophys. Res. Lett., 2009, 36(19): L19803.

doi: 10.1029/2009GL040248     URL    
[128]
Gaston C J, Thornton J A, Ng N L. Atmos. Chem. Phys., 2014, 14: 5693.

doi: 10.5194/acp-14-5693-2014     URL    
[129]
Wang Z, Wang W H, Tham Y J, Li Q Y, Wang H, Wen L, Wang X F, Wang T. Atmos. Chem. Phys., 2017, 17(20): 12361.

doi: 10.5194/acp-17-12361-2017     URL    
[130]
McDuffie E E, Fibiger D L, DubÉ W P, Lopez-Hilfiker F, Lee B H, Thornton J A, Shah V, JaeglÉ L, Guo H Y, Weber R J, Michael Reeves J, Weinheimer A J, Schroder J C, Campuzano-Jost P, Jimenez J L, Dibb J E, Veres P, Ebben C, Sparks T L, Wooldridge P J, Cohen R C, Hornbrook R S, Apel E C, Campos T, Hall S R, Ullmann K, Brown S S. J. Geophys. Res. Atmos., 2018, 123(8): 4345.

doi: 10.1002/jgrd.v123.8     URL    
[131]
Yu C, Wang Z, Xia M, Fu X, Wang W H, Tham Y J, Chen T S, Zheng P G, Li H Y, Shan Y, Wang X F, Xue L K, Zhou Y, Yue D L, Ou Y B, Gao J, Lu K D, Brown S S, Zhang Y H, Wang T. Atmos. Chem. Phys., 2020, 20(7): 4367.

doi: 10.5194/acp-20-4367-2020     URL    
[132]
Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Häseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F. Atmos. Chem. Phys., 2013, 13(2): 1057.

doi: 10.5194/acp-13-1057-2013     URL    
[133]
Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, OrdÓñez C. Atmos. Chem. Phys., 2016, 16(18): 12239.

doi: 10.5194/acp-16-12239-2016     URL    
[134]
Chuang M T, Wu C F, Lin C Y, Lin W C, Chou C C K, Lee C T, Lin T H, Fu J S, Kong S S K. Atmos. Environ., 2022, 269: 118856.

doi: 10.1016/j.atmosenv.2021.118856     URL    
[135]
Fu X, Wang T, Gao J, Wang P, Liu Y M, Wang S X, Zhao B, Xue L K. Environ. Sci. Technol., 2020, 54(7): 3881.

doi: 10.1021/acs.est.9b07248     URL    
[136]
Qin M M, Hu A Q, Mao J J, Li X, Sheng L, Sun J J, Li J Y, Wang X S, Zhang Y H, Hu J L. Sci. Total Environ., 2022, 810: 152268.

doi: 10.1016/j.scitotenv.2021.152268     URL    
[137]
Feng T, Zhao S Y, Zhang X, Wang Q Y, Liu L, Li G H, Tie X X. Sci. Total Environ., 2020, 745: 140961.

doi: 10.1016/j.scitotenv.2020.140961     URL    
[138]
Jung D, de la Paz D, Notario A, Borge R. Sci. Total Environ., 2022, 827: 154126.

doi: 10.1016/j.scitotenv.2022.154126     URL    
[139]
Liu T T, Hong Y W, Li M R, Xu L L, Chen J S, Bian Y H, Yang C, Dan Y B, Zhang Y N, Xue L K, Zhao M, Huang Z, Wang H. Atmos. Chem. Phys., 2022, 22(3): 2173.

doi: 10.5194/acp-22-2173-2022     URL    
[140]
Lu K D, Fuchs H, Hofzumahaus A, Tan Z F, Wang H C, Zhang L, Schmitt S H, Rohrer F, Bohn B, Broch S, Dong H B, Gkatzelis G I, Hohaus T, Holland F, Li X, Liu Y, Liu Y H, Ma X F, Novelli A, Schlag P, Shao M, Wu Y S, Wu Z J, Zeng L M, Hu M, Kiendler-Scharr A, Wahner A, Zhang Y H. Environ. Sci. Technol., 2019, 53(18): 10676.

doi: 10.1021/acs.est.9b02422     URL    
[141]
Li K, Jacob D J, Liao H, Qiu Y L, Shen L, Zhai S X, Bates K H, Sulprizio M P, Song S J, Lu X, Zhang Q, Zheng B, Zhang Y L, Zhang J Q, Lee H C, Kuk S K. Proc. Natl. Acad. Sci. U. S. A., 2021, 118(10): e2015797118.

doi: 10.1073/pnas.2015797118     URL    
[142]
Fu X, Wang T, Zhang L, Li Q Y, Wang Z, Xia M, Yun H, Wang W H, Yu C, Yue D L, Zhou Y, Zheng J Y, Han R. Atmos. Chem. Phys., 2019, 19(1): 1.

doi: 10.5194/acp-19-1-2019     URL    
[143]
Li J Y, Zhang N, Wang P, Choi M, Ying Q, Guo S, Lu K D, Qiu X H, Wang S X, Hu M, Zhang Y H, Hu J L. Environ. Pollut., 2021, 287: 117624.

doi: 10.1016/j.envpol.2021.117624     URL    
[144]
Thornton J A, Kercher J P, Riedel T P, Wagner N L, Cozic J, Holloway J S, DubÉ W P, Wolfe G M, Quinn P K, Middlebrook A M, Alexander B, Brown S S. Nature, 2010, 464(7286): 271.

doi: 10.1038/nature08905    
[145]
Wang X, Jacob D J, Fu X, Wang T, Le Breton M, Hallquist M, Liu Z R, McDuffie E E, Liao H. Environ. Sci. Technol., 2020, 54(16): 9908.

doi: 10.1021/acs.est.0c02296     URL    
[146]
Qiu X H, Ying Q, Wang S X, Duan L, Zhao J, Xing J, Ding D, Sun Y L, Liu B X, Shi A J, Yan X, Xu Q C, Hao J M. Atmos. Chem. Phys., 2019, 19(10): 6737.

doi: 10.5194/acp-19-6737-2019     URL    
[147]
Sommariva R, Hollis L D J, Sherwen T, Baker A R, Ball S M, Bandy B J, Bell T G, Chowdhury M N, Cordell R L, Evans M J, Lee J D, Reed C, Reeves C E, Roberts J M, Yang M X, Monks P S. Atmos. Sci. Lett., 2018, 19(8): e844.

doi: 10.1002/asl.2018.19.issue-8     URL    
[148]
Ahern A T, Goldberger L, Jahl L, Thornton J, Sullivan R C. Environ. Sci. Technol., 2018, 52(2): 550.

doi: 10.1021/acs.est.7b04386     URL    
[149]
Young C J, Washenfelder R A, Edwards P M, Parrish D D, Gilman J B, Kuster W C, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Roberts J M, Griffith S, Dusanter S, Stevens P S, Flynn J, Grossberg N, Lefer B, Holloway J S, Peischl J, Ryerson T B, Atlas E L, Blake D R, Brown S S. Atmos. Chem. Phys., 2014, 14(7): 3427.

doi: 10.5194/acp-14-3427-2014     URL    
[150]
Young C J, Washenfelder R A, Roberts J M, Mielke L H, Osthoff H D, Tsai C, Pikelnaya O, Stutz J, Veres P R, Cochran A K, van den Boer T C, Flynn J, Grossberg N, Haman C L, Lefer B, Stark H, Graus M, de Gouw J, Gilman J B, Kuster W C, Brown S S. Environ. Sci. Technol., 2012, 46(20): 10965.

doi: 10.1021/es302206a     URL    
[151]
Wang X F, Wang H, Xue L K, Wang T, Wang L W, Gu R R, Wang W H, Tham Y J, Wang Z, Yang L X, Chen J M, Wang W X. Atmos. Environ., 2017, 156: 125.

doi: 10.1016/j.atmosenv.2017.02.035     URL    
[152]
Wang H C, Tang M J, Tan Z F, Peng C, Lu K D. Progress in Chemistry, 2020, 32(10): 1535.
(王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 化学进展, 2020, 32(10): 1535.).

doi: 10.7536/PC200304    
[153]
Alicke B. J. Geophys. Res., 2003, 108(D4): 8247.
[154]
Xue C Y, Zhang C L, Ye C, Liu P F, Catoire V, Krysztofiak G, Chen H, Ren Y G, Zhao X X, Wang J H, Zhang F, Zhang C X, Zhang J W, An J L, Wang T, Chen J M, Kleffmann J, Mellouki A, Mu Y J. Environ. Sci. Technol., 2020, 54(18): 11048.

doi: 10.1021/acs.est.0c01832     URL    
[155]
Womack C C, McDuffie E E, Edwards P M, Bares R, Gouw J A, Docherty K S, DubÉ W P, Fibiger D L, Franchin A, Gilman J B, Goldberger L, Lee B H, Lin J C, Long R, Middlebrook A M, Millet D B, Moravek A, Murphy J G, Quinn P K, Riedel T P, Roberts J M, Thornton J A, Valin L C, Veres P R, Whitehill A R, Wild R J, Warneke C, Yuan B, Baasandorj M, Brown S S. Geophys. Res. Lett., 2019, 46(9): 4971.

doi: 10.1029/2019GL082028    
[156]
Zhai S X, Jacob D J, Wang X, Liu Z R, Wen T X, Shah V, Li K, Moch J M, Bates K H, Song S J, Shen L, Zhang Y Z, Luo G, Yu F Q, Sun Y L, Wang L T, Qi M Y, Tao J, Gui K, Xu H H, Zhang Q, Zhao T L, Wang Y S, Lee H C, Choi H, Liao H. Nat. Geosci., 2021, 14(6): 389.

doi: 10.1038/s41561-021-00726-z    
[157]
Lu M M, Tang X, Feng Y C, Wang Z F, Chen X S, Kong L, Ji D S, Liu Z R, Liu K X, Wu H J, Liang S W, Zhou H, Hu K. Sci. Total Environ., 2021, 788: 147747.

doi: 10.1016/j.scitotenv.2021.147747     URL    
[158]
Li M M, Zhang Z H, Yao Q, Wang T J, Xie M, Li S, Zhuang B L, Han Y. Atmos. Chem. Phys., 2021, 21(19): 15135.

doi: 10.5194/acp-21-15135-2021     URL    
[159]
Dong X Y, Li J, Fu J S, Gao Y, Huang K, Zhuang G S. Sci. Total Environ., 2014, 481: 522.

doi: 10.1016/j.scitotenv.2014.02.076     URL    
[160]
Shah V, JaeglÉ L, Thornton J A, Lopez-Hilfiker F D, Lee B H, Schroder J C, Campuzano-Jost P, Jimenez J L, Guo H Y, Sullivan A P, Weber R J, Green J R, Fiddler M N, Bililign S, Campos T L, Stell M, Weinheimer A J, Montzka D D, Brown S S. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(32): 8110.

doi: 10.1073/pnas.1803295115     URL    
[161]
Balamurugan V, Chen J, Qu Z, Bi X, Keutsch F N. Atmos. Chem. Phys., 2022, 22(11): 7105.

doi: 10.5194/acp-22-7105-2022     URL    
[162]
Han X, Zhu L Y, Liu M X, Song Y, Zhang M G. Atmos. Chem. Phys., 2020, 20(16): 9979.

doi: 10.5194/acp-20-9979-2020     URL    
[163]
Xu Z Y, Liu M X, Zhang M S, Song Y, Wang S X, Zhang L, Xu T T, Wang T T, Yan C Q, Zhou T, Sun Y L, Pan Y P, Hu M, Zheng M, Zhu T. Atmos. Chem. Phys., 2019, 19(8): 5605.

doi: 10.5194/acp-19-5605-2019     URL    
[164]
Ye Z L, Guo X R, Cheng L, Cheng S Y, Chen D S, Wang W L, Liu B. Atmos. Environ., 2019, 219: 116989.

doi: 10.1016/j.atmosenv.2019.116989     URL    
[165]
Viatte C, Wang T Z, Van Damme M, Dammers E, Meleux F, Clarisse L, Shephard M W, Whitburn S, Coheur P F, Cady-Pereira K E, Clerbaux C. Atmos. Chem. Phys., 2020, 20(1): 577.

doi: 10.5194/acp-20-577-2020     URL    
[166]
Wang S S, Nan J L, Shi C Z, Fu Q Y, Gao S, Wang D F, Cui H X, Saiz-Lopez A, Zhou B. Sci. Rep., 2015, 5: 15842.

doi: 10.1038/srep15842    
[167]
Mozurkewich M. Atmos. Environ. A Gen. Top., 1993, 27(2): 261.

doi: 10.1016/0960-1686(93)90356-4     URL    
[168]
Wu C, Zhang S, Wang G H, Lv S J, Li D P, Liu L, Li J J, Liu S J, Du W, Meng J J, Qiao L P, Zhou M, Huang C, Wang H L. Environ. Sci. Technol., 2020, 54(24): 15622.

doi: 10.1021/acs.est.0c04544     URL    
[169]
Tang M J, Cziczo D J, Grassian V H. Chem. Rev., 2016, 116(7): 4205.

doi: 10.1021/acs.chemrev.5b00529     URL    
[170]
Tobo Y, Zhang D Z, Matsuki A, Iwasaka Y. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(42): 17905.

doi: 10.1073/pnas.1008235107     URL    
[171]
Liu Y, Gibson Cain, Wang H, Grassian, Laskin A. J. Phys. Chem. A, 2008, 112(7): 1561.

doi: 10.1021/jp076169h     pmid: 18232670
[172]
Li W J, Shao L Y, Shi Z B, Chen J M, Yang L X, Yuan Q, Yan C, Zhang X Y, Wang Y Q, Sun J Y, Zhang Y M, Shen X J, Wang Z F, Wang W X. J. Geophys. Res. Atmos., 2014, 119(2): 1044.
[173]
Goodman A L, Underwood G M, Grassian V H. J. Geophys. Res., 2000, 105(D23): 29053.
[174]
Wang G H, Cheng C L, Huang Y, Tao J, Ren Y Q, Wu F, Meng J J, Li J J, Cheng Y T, Cao J J, Liu S X, Zhang T, Zhang R, Chen Y B. Atmos. Chem. Phys., 2014, 14(21): 11571.

doi: 10.5194/acp-14-11571-2014     URL    
[175]
Wang G H, Zhou B H, Cheng C L, Cao J J, Li J J, Meng J J, Tao J, Zhang R J, Fu P Q. Atmos. Chem. Phys., 2013, 13(2): 819.

doi: 10.5194/acp-13-819-2013     URL    
[176]
Gard E E, Kleeman M J, Gross D S, Hughes L S, Allen J O, Morrical B D, Fergenson D P, Dienes T, Gälli M E, Johnson R J, Cass G R, Prather K A. Science, 1998, 279(5354): 1184.

pmid: 9469803
[177]
Saul T D, Tolocka M P, Johnston M V. J. Phys. Chem. A, 2006, 110(24): 7614.

doi: 10.1021/jp060639a     URL    
[178]
Gupta D, Kim H, Park G, Li X, Eom H J, Ro C U. Atmos. Chem. Phys., 2015, 15(6): 3379.

doi: 10.5194/acp-15-3379-2015     URL    
[179]
Finlayson-Pitts B J. Proc. Natl. Acad. Sci. U. S. A., 2010, 107(15): 6566.

doi: 10.1073/pnas.1003038107     URL    
[180]
Ryder O S, Ault A P, Cahill J F, Guasco T L, Riedel T P, Cuadra-Rodriguez L A, Gaston C J, Fitzgerald E, Lee C, Prather K A, Bertram T H. Environ. Sci. Technol., 2014, 48(3): 1618.

doi: 10.1021/es4042622     URL    
[1] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[2] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[3] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[4] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[5] 王玉珏, 胡敏, 李晓, 徐楠. 大气颗粒物中棕色碳的化学组成、来源和生成机制[J]. 化学进展, 2020, 32(5): 627-641.
[6] 王海潮, 唐明金, 谭照峰, 彭超, 陆克定. 硝酰氯的大气化学[J]. 化学进展, 2020, 32(10): 1535-1546.
[7] 杨世迎, 张宜涛, 郑迪. 高级还原技术:一种水处理新技术[J]. 化学进展, 2016, 28(6): 934-941.
[8] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.
[9] 王福庆, 陈剑*, 张锋, 衣宝廉. 锂离子电池聚阴离子型正极材料[J]. 化学进展, 2012, 24(08): 1456-1465.
[10] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[11] 刘金强 钱超 陈新志. 钝化芳环的硝化研究进展*[J]. 化学进展, 2009, 21(12): 2635-2641.
[12] 杨世迎,陈友媛,胥慧真,王萍,刘玉红,张卫,王茂东. 过硫酸盐活化高级氧化新技术*[J]. 化学进展, 2008, 20(09): 1433-1438.