English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1077-1096 DOI: 10.7536/PC221132 前一篇   后一篇

• 综述 •

锂电池高电压电解液

任启蒙1, 王青磊2,*(), 李因文2, 宋学省2, 上官雪慧2,*(), 李法强2,*()   

  1. 1 临沂大学化学化工学院 临沂 276005
    2 临沂大学材料科学与工程学院 276003
  • 收稿日期:2022-12-01 修回日期:2023-03-19 出版日期:2023-07-24 发布日期:2023-06-03
  • 作者简介:

    李法强 博士,临沂大学材料学院教授,博导。主要从事盐湖资源综合利用及新能源材料等方面的研究工作。

  • 基金资助:
    国家自然科学基金项目(22209065); 国家自然科学基金项目(22172070); 山东省自然科学基金项目(ZR2021QE039); 山东省自然科学基金项目(ZR2021QE149); 山东省自然科学基金项目(ZR2020MB082); 临沂市重点研发(2021019zkt); 山东省高等学校青年创新团队人才引育计划

High Voltage Electrolytes for Lithium Batteries

Qimeng Ren1, Qinglei Wang2(), Yinwen Li2, Xuesheng Song2, Xuehui Shangguan2(), Faqiang Li2()   

  1. 1 School of Chemistry & Chemical Engineering, Linyi University,Linyi 276005, China
    2 School of Materials Science and Engineering, Linyi University,Linyi 276003, China
  • Received:2022-12-01 Revised:2023-03-19 Online:2023-07-24 Published:2023-06-03
  • Contact: * Corresponding author e-mail: shangguanxuehui@lyu.edu.cn (Xuehui Shangguan);wangqinglei@lyu.edu.cn (Qinglei Wang);lifaqiang@lyu.edu.cn (Faqiang Li)
  • Supported by:
    National Natural Science Foundation of China(22209065); National Natural Science Foundation of China(22172070); Natural Science Foundation of Shandong Province(ZR2021QE039); Natural Science Foundation of Shandong Province(ZR2021QE149); Natural Science Foundation of Shandong Province(ZR2020MB082); Key R&D Plan of Linyi City(2021019zkt); 2022 Shandong Province Higher Education Youth Innovation Team Development Plan

随着我国“碳达峰”、“碳中和”战略的实施,发展清洁能源、推进新能源产业发展已成为全社会共识。锂电池因高能量密度、高功率密度、长循环寿命和绿色环保等显著优势,已成为新一代储能设备。其发展对缓解能源危机、带动新旧动能转换、实现“双碳”战略目标具有重要意义。为了进一步提高锂电池的能量密度,最有效的策略是采用高电压或高比容量的正极材料。然而,传统碳酸酯基电解液无法在高电压下稳定循环,因此拓宽电解液的电化学窗口尤为重要。本文总结了高电压电解液有机溶剂和添加剂的作用机理并探究了拓宽电解液电化学窗口的有效策略,同时对水系电解液、固态电解质、聚合物凝胶电解质的特性进行了归纳,最后对高电压电解液未来的发展和前景做出总结和展望,为锂电池高电压电解液的设计提供了科学依据。

With the proposal of "peak carbon dioxide emissions" and "carbon neutral" strategic objectives, developing clean energy and promoting the development of new energy industry has become the consensus of the whole society. Lithium battery as the candidate for new generation of energy storage equipment due to its remarkable advantages such as high energy density, high power density, long cycle life and environmental friendliness. Its development plays a significant role in alleviating energy crisis, driving the conversion of old kinetic energy into new and achieving the strategic goal of "carbon peaking and carbon neutrality". In order to further improve the energy density of lithium batteries, the most effective strategy is to use high voltage or high specific capacity cathode materials. However, due to the low oxidation stability and narrow electrochemical window of traditional carbonate ester electrolytes, they are prone to oxidative decomposition when the working voltage exceeds 4.2 V, which cannot be cycled stably at high voltages, so it is particularly important to broaden the electrochemical window of electrolytes. This paper mainly discusses the mechanism of organic solvents and additives in high-voltage electrolytes, explores effective methods to broaden the electrochemical window of new electrolytes, summarizes the characteristics of aqueous electrolytes, solid electrolytes, and polymer gel electrolytes, and finally; summarizes and outlooks the future development and prospects of high-voltage electrolytes to provide scientific basis for the design and development of high-voltage electrolytes for lithium batteries.

Contents

1 Introduction

2 Working mechanism of high voltage electrolyte

3 Research progress on the high-voltage electrolyte for lithium batteries

3.1 New electrolyte organic solvents

3.2 High voltage electrolyte additive

3.3 Aqueous electrolyte

3.4 Solid state electrolyte

3.5 Gel polymer electrolyte

4 Conclusion and outlook

()
图1 电池的电极和电解液中相对电子能量和电极/电解液界面膜构成条件示意图[13]
Fig.1 Schematic illustration of open-circuit energy of liquid electrolyte and conditions for electrode-electrolyte interphase formation[13]. Copyright 2010, American Chemical Society
图2 各种高电压有机溶剂的优缺点
Fig.2 Advantages and disadvantages of various high-voltage organic solvents.
图3 (a)传统的低浓度电解液(LCE),(b)HCE,以及(c)LHCE中的溶液结构示意图,(d)LHCE在电极上形成稳定和均匀的固态电极/电解液界面膜的示意图[52]
Fig.3 Schematic diagram of the solution structures in (a)conventional low concentrated electrolyte (LCE), (b)highly concentrated electrolyte (HCE), and (c)locally highly concentrated electrolyte (LHCE).(d)Schematic diagram of the formation of stable and uniform solid electrode/electrolyte interphases on the electrode in LHCE electrolyte[52]. Copyright 2022, Royal Society Of Chemistry
图4 使用EC/DMC电解液(a)正极表面示意图(c)负极表面示意图;使用TMS/FEC电解液的(b)正极表面示意图和(d)负极表面示意图[61]
Fig.4 Schematic diagrams of (a)cathode surface,(c)anode surface in EC/DMC electrolyte;(b)cathode surface and(d)anode surface in TMS/FEC electrolyte[61]. Copyright 2022, Elsevier
表1 碳酸酯、醚、氟化碳酸酯和氟化醚的氧化电位和HOMO/LUMO能级[67]
Table 1 Oxidation potential and HOMO/LUMO energies of carbonates, ethers, fluorinated carbonates, and fluorinated ethers[67]. Copyright 2013, Royal Society Of Chemistry
图5 原始和100圈循环之后的LNMO正极FT-IR光谱(a)Gen 2电解液(b)HVE电解液;原始和100圈循环之后的石墨负极FT-IR光谱(c)Gen 2 电解液(d)HVE 电解液;使用HVE和Gen 2电解液的石墨/LNMO电池在(e)室温(f)55℃下的长循环测试[64]
Fig.5 FT-IR spectra of LNMO cathode pristine and after 100 cycles in(a)Gen 2 electrolyte,(b)HVE electrolyte; graphite anode pristine and after 100 cycles in(c)Gen 2 electrolyte and(d)HVE electrolyte; Cycling performance of graphite/LNMO cells at (e)RT and(f)55℃ with HVE electrolyte and Gen 2 electrolyte[64]. Copyright 2013, Elsevier
图6 (a)不同溶剂HOMO-LUMO能级(b)使用LSV测试不同电解液的氧化稳定性[78];(c)L-LDT电解液的SEI构成机理图[79]
Fig.6 (a)Comparison of HOMO-LUMO energy levels of different electrolytes.(b)LSV test for oxidation stability of different electrolytes[78]; Copyright 2022, American Chemical Society.(c)Schematic illustration of the SEI structure in the L-LDT electrolyte[79]. Copyright 2022, Elsevier
图7 (a)不同电解液对NCM622/Li 电池电极的作用机理示意图,(b)线性扫描伏安法示意图,(c)长循环放电比容量图,(d)长循环库仑效率图[7]
Fig.7 (a)Schematic diagram of mechanism on NCM622/Li battery electrode with different electrolytes.(b)The linear sweep voltammetry. Cycling performance (c)and Coulombic efficiency (d)of the NCM622/Li half cells in the different electrolytes[7]. Copyright 2021, Elsevier
图8 各种添加剂的优缺点
Fig.8 Advantages and disadvantages of various additives.
图9 (a)TMB稳定电池正极的作用机理图[100];(b)TMSB提高LIB的高电压性能的作用机理图;LiNi0.5Co0.2Mn0.3O2/石墨电池在(c)第1个循环和(d)第150个循环后的EIS阻抗图[101]
Fig.9 (a)Schematic illustration of the contribution of TMB to stabilizing cathode interface[100]; Copyright 2019, American Chemical Society.(b)Schematic illustration of TMSB to enhance the high voltage performance of LIB. EIS patterns of the LiNi0.5Co0.2Mn0.3O2/graphite cells after (c)the 1st cycle and (d)the 150th cycles[101]. Copyright 2013, Elsevier
图10 (a)LiDFBP在富锂正极构建SEI膜的效果示意图[105];采用TTEP电解液的LiCoO2/Li电池在25℃下的(b)倍率测试,(c)长循环测试;LiCoO2/graphite电池在(d)55℃,(e)25℃下的长循环测试;(f)空白电解液(e)采用TTEP电解液的扫描电镜图像[106]
Fig.10 (a)Schematic diagram of the effects of LiDFBP in constructing SEI film in Li-rich cathode[105]; Copyright 2017, Wiley Online Library. (b)Rate capabilities, (c)cycling performances of LiCoO2/Li cells using base electrolyte and 0.1 wt% TTEP electrolyte at 25℃; LiCoO2/graphite cells cycling performances at(d)55℃,(e)25℃,SEM images of LiCoO2 electrodes after cycled in the (f)base and(g)0.1 wt% TTEP electrolyte[106]. Copyright 2019, Elsevier
图11 (a~c)结构式与结合能Eb(Eb,kJ/mol)、(a)A-HF,(b)A-F,(c)A-H+ (A=EC、 EMC、DEC、 TTS);电解液中添加1 wt% HF的19F 核磁共振谱图(d)空白电解液(e)添加2 wt% TTS的电解液,(f)循环500次后的空白电解液和含有2 wt% TTS电解液的LNMO/Li电池中提取的锂负极上过渡金属离子的含量示意图[111];(g)不同电解质的前沿分子轨道能级,(h)Li/Li对称电池的恒电流长循环,(i)初始放电过程中Li/Li对称电池的电压-时间曲线,(j)50 h循环后Li/Li对称电池的Nyquist图[112]
Fig.11 Optimized structures and binding energy (Eb, kJ/mol)of (a)A-HF,(b)A-F and(c)A-H+ (A= EC, EMC, DEC and TTS);19F NMR spectra of (d)base and(e)2 wt% TTS-containing electrolytes after adding 1 wt% HF aqueous solution;(f)content diagram of transition metal ions on lithium electrode extracted from base electrolyte and LNMO/Li battery containing 2 wt% TTS electrolyte after 500 cycles[111]; Copyright 2020, Royal Society Of Chemistry.(g)Frontier molecular orbital energies of different electrolytes. (h)Galvanostatic long-term cycling of the Li/Li symmetrical cell. (i)Voltage-time profiles of Li/Li symmetric cells for initial discharge process.(j)Nyquist plots of Li/Li symmetric cells after 50 h cycles[112]. Copyright 2021, American Chemical Society
图12 (a)FEC添加剂对锂金属负极的SEI膜构成影响示意图(b)0%和5 vol% FEC 10次循环后Cu上剥离的锂SEI膜XPS表征图(b)F 1s、(c)Li 1s[118];EC、EMC、DEC、LiPF6和LiPO2F2的氧化电位(V vs. Li/Li+)(d)有及无添加剂的LNCM/Li电池的(e)循环伏安曲线图和(f)计时电流响应图,(g)电化学测试前后电解液的19F NMR谱;有及无添加剂的LNCM/Li电池的(h)长循环图和(i)库仑效率图[119]
Fig.12 (a)Schematic diagram of the effect of FEC additives on SEI layer on a Li metal anode. (b)F 1s and (c)Li 1s XPS characterization spectra of the SEI layer induced by 0% and 5 vol% FEC after lithium stripping on Cu substrate after ten cycles[118]. Copyright 2017, Wiley Online Library. (d)Calculated oxidation potential (V vs. Li/Li+) of EC, EMC, DEC, LiPF6 and LiPO2F2 (e)cyclic voltammogram and (f)chronoamperometric responses of LNCM/Li cells with and without additive; (g)19F NMR spectra of electrolytes before and after electrochemical test;(h)cyclic stability and (i)Coulombic efficiency of LNCM/Li cells with and without additive[119]. Copyright 2018, Elsevier.
图13 (a)循环中PS在富锂NCM正极的保护机制和相变过程示意图[122];(b)MPS在LNMO正极的作用机理示意图[123]
Fig.13 (a)Schematic diagram of the PS protection mechanism on the Li-rich-NMC cathode during cycling and gradual transformation from the layered to the spinel structure[122]. Copyright 2015, Royal Society Of Chemistry;(b)Schematic diagram of the role of MPS additive on the surface of the LNMO cathode[123].Copyright 2022, American Chemical Society
图14 (a)有及无DTD添加剂的NCM/Li电池正极的形貌和作用机理示意图,(b)原始正极(c)未使用DTD添加剂(d)使用DTD添加剂的TEM图像[128]
Fig.14 (a)Schematic illustration of NCM/Li cells cycling with and without DTD, TEM images of the (b)fresh cathode, and cycled cathode with(c)baseline and(d)DTD containing electrolytes[128].Copyright 2017, The Electrochemical Society
[1]
Feng D J, Chen S M, Wang R M, Chen T H, Gu S J, Su J L, Dong T, Liu Y W. J. Electrochem. Soc., 2020, 167(11): 110544.

doi: 10.1149/1945-7111/aba4e7     URL    
[2]
Cao X, Zou L F, Matthews B E, Zhang L C, He X Z, Ren X D, Engelhard M H, Burton S D, El-Khoury P Z, Lim H S, Niu C J, Lee H, Wang C S, Arey B W, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Energy Storage Mater., 2021, 34: 76.
[3]
Li G X. Adv. Energy Mater., 2021, 11(7): 2002891.

doi: 10.1002/aenm.v11.7     URL    
[4]
Yang H C, Li J, Sun Z H, Fang R P, Wang D W, He K, Cheng H M, Li F. Energy Storage Mater., 2020, 30: 113.
[5]
Mao S L, Wu Q, Ma F Y, Zhao Y, Wu T, Lu Y Y. Chem. Commun., 2021, 57(7): 840.

doi: 10.1039/D0CC06849G     URL    
[6]
Lin D C, Liu Y Y, Cui Y. Nat. Nanotechnol., 2017, 12(3): 194.

doi: 10.1038/nnano.2017.16    
[7]
Yan S X, Wang Y L, Chen T H, Gan Z D, Chen S M, Liu Y W, Zhang S J. J. Power Sources, 2021, 491: 229603.

doi: 10.1016/j.jpowsour.2021.229603     URL    
[8]
Zhang J Y, Yao X H, Misra R K, Cai Q, Zhao Y L. J. Mater. Sci. Technol., 2020, 44: 237.

doi: 10.1016/j.jmst.2020.01.017    
[9]
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117(15): 10403.

doi: 10.1021/acs.chemrev.7b00115     URL    
[10]
Doi T, Hashinokuchi M, Inaba M. Curr. Opin. Electrochem., 2018, 9: 49.
[11]
Guo K L, Qi S H, Wang H P, Huang J D, Wu M G, Yang Y L, Li X, Ren Y R, Ma J M. Small Sci., 2022, 2(5): 2100107.

doi: 10.1002/smsc.v2.5     URL    
[12]
Wang J H, Yamada Y, Sodeyama K, Chiang C H, Tateyama Y, Yamada A. Nat. Commun., 2016, 7: 12032.

doi: 10.1038/ncomms12032    
[13]
Goodenough J B, Kim Y. Chem. Mater., 2010, 22(3): 587.

doi: 10.1021/cm901452z     URL    
[14]
Tong B, Song Z Y, Wan H H, Feng W F, Armand M, Liu J C, Zhang H, Zhou Z B. InfoMat, 2021, 3(12): 1364.

doi: 10.1002/inf2.v3.12     URL    
[15]
Wu W Y, Bai Y, Wang X R, Wu C. Chin. Chemical Lett., 2021, 32(4): 1309.

doi: 10.1016/j.cclet.2020.10.009     URL    
[16]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2011, 115(42): 12120.

doi: 10.1021/jp204401t     URL    
[17]
Tan S, Ji Y J, Zhang Z R, Yang Y. ChemPhysChem, 2014, 15(10): 1956.

doi: 10.1002/cphc.v15.10     URL    
[18]
Janssen P, Schmitz R, Müller R, Isken P, Lex-Balducci A, Schreiner C, Winter M, Cekić-Lasković I, Schmitz R,. Electrochimica Acta, 2014, 125: 101.

doi: 10.1016/j.electacta.2014.01.023     URL    
[19]
Jurng S, Brown Z L, Kim J, Lucht B L. Energy Environ. Sci., 2018, 11(9): 2600.

doi: 10.1039/C8EE00364E     URL    
[20]
Zuo X X, Deng X, Ma X D, Wu J H, Liang H Y, Nan J M. J. Mater. Chem. A, 2018, 6(30): 14725.

doi: 10.1039/C8TA04558E     URL    
[21]
Drozhzhin O A, Shevchenko V A, Zakharkin M V, Gamzyukov P I, Yashina L V, Abakumov A M, Stevenson K J, Antipov E V. Electrochimica Acta, 2018, 263: 127.

doi: 10.1016/j.electacta.2018.01.037     URL    
[22]
Shao N, Sun X G, Dai S, Jiang D E. J. Phys. Chem. B, 2012, 116(10): 3235.

doi: 10.1021/jp211619y     URL    
[23]
Zhao H J, Yu X Q, Li J D, Li B, Shao H Y, Li L, Deng Y H. J. Mater. Chem. A, 2019, 7(15): 8700.

doi: 10.1039/C9TA00126C     URL    
[24]
Qin Z M, Hong B, Duan B Y, Hong S, Chen Y C, Lai Y Q, Feng J. Electrochimica Acta, 2018, 276: 412.

doi: 10.1016/j.electacta.2018.04.193     URL    
[25]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438     pmid: 23294028
[26]
Dong Y N, Young B T, Zhang Y Z, Yoon T, Heskett D R, Hu Y F, Lucht B L. ACS Appl. Mater. Interfaces, 2017, 9(24): 20467.

doi: 10.1021/acsami.7b01481     URL    
[27]
Xu M Q, Zhou L, Dong Y N, Chen Y J, Demeaux J, MacIntosh A D, Garsuch A, Lucht B L. Energy Environ. Sci., 2016, 9(4): 1308.

doi: 10.1039/C5EE03360H     URL    
[28]
Kazzazi A, Bresser D, Kuenzel M, Hekmatfar M, Schnaidt J, Jusys Z, Diemant T, Behm R J, Copley M, Maranski K, Cookson J, de Meatza I, Axmann P, Wohlfahrt-Mehrens M, Passerini S. J. Power Sources, 2021, 482: 228975.

doi: 10.1016/j.jpowsour.2020.228975     URL    
[29]
Li X, Liu J D, He J, Qi S H, Wu M G, Wang H P, Jiang G X, Huang J D, Wu D X, Li F, Ma J M. Adv. Sci., 2022, 9(20): 2201297.

doi: 10.1002/advs.v9.20     URL    
[30]
Ji W X, Huang H, Zheng D, Zhang X X, Ding T Y, Lambert T H, Qu D Y. Energy Storage Mater., 2020, 32: 185.
[31]
Zhang S S. J. Power Sources, 2006, 162(2): 1379.

doi: 10.1016/j.jpowsour.2006.07.074     URL    
[32]
Zhang H, Eshetu G G, Judez X, Li C M, Rodriguez-Martínez L M, Armand M. Angewandte Chemie Int. Ed., 2018, 57(46): 15002.

doi: 10.1002/anie.v57.46     URL    
[33]
Kim K, Ma H, Park S, Choi N S. ACS Energy Lett., 2020, 5(5): 1537.

doi: 10.1021/acsenergylett.0c00468     URL    
[34]
Sun X G, Wan S, Guang H Y, Fang Y X, Reeves K S, Chi M F, Dai S. J. Mater. Chem. A, 2017, 5(3): 1233.

doi: 10.1039/C6TA07757A     URL    
[35]
Younesi R, Veith G M, Johansson P, Edström K, Vegge T. Energy Environ. Sci., 2015, 8(7): 1905.

doi: 10.1039/C5EE01215E     URL    
[36]
Wang C, Wang T, Wang L L, Hu Z L, Cui Z L, Li J D, Dong S M, Zhou X H, Cui G L. Adv. Sci., 2019, 6(22): 1901036.

doi: 10.1002/advs.v6.22     URL    
[37]
Roy B, Cherepanov P, Nguyen C, Forsyth C, Pal U, Mendes T C, Howlett P, Forsyth M, MacFarlane D, Kar M. Adv. Energy Mater., 2021, 11(36): 2101422.

doi: 10.1002/aenm.v11.36     URL    
[38]
Chen X, Usrey M, Peña-Hueso A, West R, Hamers R J. J. Power Sources, 2013, 241: 311.

doi: 10.1016/j.jpowsour.2013.04.079     URL    
[39]
Qian Q L, Yang Y F, Shao H X. Phys. Chem. Chem. Phys., 2017, 19(42): 28772.

doi: 10.1039/C7CP04839D     URL    
[40]
Zhang Y J, Wu Y, Li H Y, Chen J H, Lei D N, Wang C X. Nat. Commun., 2022, 13: 1297.

doi: 10.1038/s41467-022-28959-5     pmid: 35277497
[41]
Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H S, Matthews B E, Lee H, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, Zhang J G. Nat. Energy, 2019, 4(9): 796.

doi: 10.1038/s41560-019-0464-5    
[42]
Zeng Z Q, Murugesan V, Han K S, Jiang X Y, Cao Y L, Xiao L F, Ai X P, Yang H X, Zhang J G, Sushko M L, Liu J. Nat. Energy, 2018, 3(8): 674.

doi: 10.1038/s41560-018-0196-y    
[43]
Zou Y G, Shen Y B, Wu Y Q, Xue H J, Guo Y J, Liu G, Wang L M, Ming J. Chem. Eur. J., 2020, 26(35): 7930.

doi: 10.1002/chem.v26.35     URL    
[44]
Yamada Y, Wang J H, Ko S, Watanabe E, Yamada A. Nat. Energy, 2019, 4(4): 269.

doi: 10.1038/s41560-019-0336-z    
[45]
Zheng J M, Lochala J A, Kwok A, Deng Z D, Xiao J. Adv. Sci., 2017, 4(8): 1700032.

doi: 10.1002/advs.v4.8     URL    
[46]
Lin S S, Hua H M, Lai P B, Zhao J B. Adv. Energy Mater, 2021, 11(36): 2101775.

doi: 10.1002/aenm.v11.36     URL    
[47]
Ma G Q, Wang L, He X M, Zhang J J, Chen H C, Xu W G, Ding Y S. ACS Appl. Energy Mater., 2018, 1(10): 5446.
[48]
Wang W, Zhang J L, Yang Q, Wang S W, Wang W H, Li B H. ACS Appl. Mater. Interfaces, 2020, 12(20): 22901.

doi: 10.1021/acsami.0c03952     URL    
[49]
Perez Beltran S, Cao X, Zhang J G, Balbuena P B. Chem. Mater., 2020, 32(14): 5973.

doi: 10.1021/acs.chemmater.0c00987     URL    
[50]
Ren X D, Zou L F, Cao X, Engelhard M H, Liu W, Burton S D, Lee H, Niu C J, Matthews B E, Zhu Z H, Wang C M, Arey B W, Xiao J, Liu J, Zhang J G, Xu W. Joule, 2019, 3(7): 1662.

doi: 10.1016/j.joule.2019.05.006     URL    
[51]
Yamada Y, Yamada A. J. Electrochem. Soc., 2015, 162(14): A2406.

doi: 10.1149/2.0041514jes     URL    
[52]
Chang C Y, Yao Y, Li R R, Cong Z F, Li L W, Guo Z H, Hu W G, Pu X. J. Mater. Chem. A, 2022, 10(16): 9001.

doi: 10.1039/D1TA10618J     URL    
[53]
Xu K. Chem. Rev., 2014, 114(23): 11503.

doi: 10.1021/cr500003w     URL    
[54]
Xiang J, Wu F, Chen R J, Li L, Yu H G. J. Power Sources, 2013, 233: 115.

doi: 10.1016/j.jpowsour.2013.01.123     URL    
[55]
Fan X L, Wang C S. Chem. Soc. Rev., 2021, 50(18): 10486.

doi: 10.1039/D1CS00450F     URL    
[56]
Sun X G, Angell C A. Electrochem. Commun., 2005, 7(3): 261.

doi: 10.1016/j.elecom.2005.01.010     URL    
[57]
Sun X G, Austen Angell C. Solid State Ionics, 2004, 175(1): 257.

doi: 10.1016/j.ssi.2003.11.035     URL    
[58]
Sun X G, Angell C A. Electrochem. Commun., 2009, 11(7): 1418.

doi: 10.1016/j.elecom.2009.05.020     URL    
[59]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources, 2014, 262: 123.

doi: 10.1016/j.jpowsour.2014.03.099     URL    
[60]
Su C C, He M N, Redfern P C, Curtiss L A, Shkrob I A, Zhang Z C. Energy Environ. Sci., 2017, 10(4): 900.

doi: 10.1039/C7EE00035A     URL    
[61]
Dong L W, Liu Y P, Chen D J, Han Y P, Ji Y P, Liu J P, Yuan B T, Dong Y F, Li Q, Zhou S Y, Zhong S J, Liang Y F, Yang M Q, Yang C H, He W D. Energy Storage Mater., 2022, 44: 527.
[62]
Zheng Q F, Li G J, Zheng X W, Xing L D, Xu K, Li W S. Energy Environ. Mater., 2022, 5(3): 906.

doi: 10.1002/eem2.v5.3     URL    
[63]
Wu F, Xiang J, Li L, Chen J Z, Tan G Q, Chen R J. J. Power Sources, 2012, 202: 322.

doi: 10.1016/j.jpowsour.2011.11.065     URL    
[64]
Hu L B, Zhang Z C, Amine K. Electrochem. Commun., 2013, 35: 76.

doi: 10.1016/j.elecom.2013.08.009     URL    
[65]
Holoubek J, Yu M Y, Yu S C, Li M Q, Wu Z H, Xia D W, Bhaladhare P, Gonzalez M S, Pascal T A, Liu P, Chen Z. ACS Energy Lett., 2020, 5(5): 1438.

doi: 10.1021/acsenergylett.0c00643     URL    
[66]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D. Langmuir, 2014, 30(25): 7414.

doi: 10.1021/la501368y     pmid: 24885475
[67]
Zhang Z C, Hu L B, Wu H M, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energy Environ. Sci., 2013, 6(6): 1806.

doi: 10.1039/c3ee24414h     URL    
[68]
Fu C K, Ma Y L, Lou S F, Cui C, Xiang L Z, Zhao W, Zuo P J, Wang J J, Gao Y Z, Yin G P. J. Mater. Chem. A, 2020, 8(4): 2066.

doi: 10.1039/C9TA11341J     URL    
[69]
Kim Y S, Lee S H, Son M Y, Jung Y M, Song H K, Lee H. ACS Appl. Mater. Interfaces, 2014, 6(3): 2039.

doi: 10.1021/am405092y     URL    
[70]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. Electrochimica Acta, 2019, 298: 818.

doi: 10.1016/j.electacta.2018.12.104     URL    
[71]
Fu F, Liu Y, Sun C, Cong L N, Liu Y L, Sun L Q, Xie H M. Energy Environ. Mater., 2023, 6(3): e12367.

doi: 10.1002/eem2.v6.3     URL    
[72]
Zhang Q Q, Liu K, Ding F, Li W, Liu X J, Zhang J L. ACS Appl. Mater. Interfaces, 2017, 9(35): 29820.

doi: 10.1021/acsami.7b09119     URL    
[73]
Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A. J. Am. Chem. Soc., 2014, 136(13): 5039.

doi: 10.1021/ja412807w     pmid: 24654781
[74]
Li S P, Fang S, Li Z W, Chen W Y, Dou H, Zhang X G. Batter. Supercaps, 2022, 5(4): e202100416.
[75]
Amanchukwu C V, Yu Z A, Kong X, Qin J, Cui Y, Bao Z N. J. Am. Chem. Soc., 2020, 142(16): 7393.

doi: 10.1021/jacs.9b11056     pmid: 32233433
[76]
Holoubek J, Yan Q Z, Liu H D, Hopkins E J, Wu Z H, Yu S C, Luo J, Pascal T A, Chen Z, Liu P. ACS Energy Lett., 2022, 7(2): 675.

doi: 10.1021/acsenergylett.1c02723     URL    
[77]
Jiao S H, Ren X D, Cao R G, Engelhard M H, Liu Y Z, Hu D H, Mei D H, Zheng J M, Zhao W G, Li Q Y, Liu N, Adams B D, Ma C, Liu J, Zhang J G, Xu W. Nat. Energy, 2018, 3(9): 739.

doi: 10.1038/s41560-018-0199-8    
[78]
Zhao Y, Zhou T H, El Kazzi M, Coskun A. ACS Appl. Energy Mater., 2022, 5(6): 7784.

doi: 10.1021/acsaem.2c01261     URL    
[79]
Xia M, Lin M, Liu G P, Cheng Y, Jiao T P, Fu A, Yang Y, Wang M S, Zheng J M. Chem. Eng. J., 2022, 442: 136351.

doi: 10.1016/j.cej.2022.136351     URL    
[80]
Horiuchi S, Zhu H J, Forsyth M, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M. Electrochimica Acta, 2017, 241: 272.

doi: 10.1016/j.electacta.2017.04.165     URL    
[81]
Hu M, Pang X L, Zhou Z. J. Power Sources, 2013, 237: 229.

doi: 10.1016/j.jpowsour.2013.03.024     URL    
[82]
Dong L, Liang F X, Wang D, Zhu C Z, Liu J H, Gui D Y, Li C H. Electrochimica Acta, 2018, 270: 426.

doi: 10.1016/j.electacta.2018.03.108     URL    
[83]
Yong T Q, Zhang L Z, Wang J L, Mai Y J, Yan X D, Zhao X Y. J. Power Sources, 2016, 328: 397.

doi: 10.1016/j.jpowsour.2016.08.044     URL    
[84]
Li H F, Pang J, Yin Y P, Zhuang W D, Wang H, Zhai C X, Lu S G. RSC Adv., 2013, 3(33): 13907.

doi: 10.1039/c3ra40275d     URL    
[85]
Lombardo L, Brutti S, Navarra M A, Panero S, Reale P. J. Power Sources, 2013, 227: 8.

doi: 10.1016/j.jpowsour.2012.11.017     URL    
[86]
Li F, Liu J D, He J, Hou Y Y, Wang H P, Wu D X, Huang J D, Ma J M. Angewandte Chemie Int. Ed., 2022, 61(27): e202205091.
[87]
Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2004, 6(2): 126.

doi: 10.1016/j.elecom.2003.10.024     URL    
[88]
Lee S Y, Park Y J. ACS Omega, 2020, 5(7): 3579.

doi: 10.1021/acsomega.9b03932     URL    
[89]
Liu Y L, Hamam I, Dahn J R. J. Electrochem. Soc., 2020, 167(11): 110527.

doi: 10.1149/1945-7111/aba36a    
[90]
Michan A L, Parimalam B S, Leskes M, Kerber R N, Yoon T, Grey C P, Lucht B L. Chem. Mater., 2016, 28(22): 8149.

doi: 10.1021/acs.chemmater.6b02282     URL    
[91]
El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D. J. Electrochem. Soc., 2009, 156(2): A103.

doi: 10.1149/1.3029674     URL    
[92]
Tornheim A, He M N, Su C C, Zhang Z C. J. Electrochem. Soc., 2017, 164(1): A6366.

doi: 10.1149/2.0471701jes     URL    
[93]
Xia J, Dahn J R. J. Power Sources, 2016, 324: 704.

doi: 10.1016/j.jpowsour.2016.06.008     URL    
[94]
Burns J C, Petibon R, Nelson K J, Sinha N N, Kassam A, Way B M, Dahn J R. J. Electrochem. Soc., 2013, 160(10): A1668.

doi: 10.1149/2.031310jes     URL    
[95]
Petibon R, Xia J, Ma L, Bauer M K G, Nelson K J, Dahn J R. J. Electrochem. Soc., 2016, 163(13): A2571.

doi: 10.1149/2.0321613jes     URL    
[96]
Xia J, Aiken C P, Ma L, Kim G Y, Burns J C, Chen L P, Dahn J R. J. Electrochem. Soc., 2014, 161(6): A1149.

doi: 10.1149/2.108406jes     URL    
[97]
Haregewoin A M, Wotango A S, Hwang B J. Energy Environ. Sci., 2016, 9(6): 1955.

doi: 10.1039/C6EE00123H     URL    
[98]
Zhang B D, Wang L L, Wang X T, Zhou S Y, Fu A, Yan Y W, Wang Q S, Xie Q S, Peng D L, Qiao Y, Sun S G. Energy Storage Mater., 2022, 53: 492.
[99]
Wang X T, Gu Z Y, Li W H, Zhao X X, Guo J Z, Du K D, Luo X X, Wu X L. Chem. Asian J., 2020, 15(18): 2803.

doi: 10.1002/asia.v15.18     URL    
[100]
Liu Q Y, Yang G J, Liu S, Han M, Wang Z X, Chen L Q. ACS Appl. Mater. Interfaces, 2019, 11(19): 17435.

doi: 10.1021/acsami.9b03417     URL    
[101]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M. J. Power Sources, 2013, 229: 308.

doi: 10.1016/j.jpowsour.2012.12.056     URL    
[102]
Shim E G, Nam T H, Kim J G, Kim H S, Moon S I. Electrochimica Acta, 2009, 54(8): 2276.

doi: 10.1016/j.electacta.2008.10.037     URL    
[103]
Zhu Y M, Luo X Y, Zhi H Z, Liao Y H, Xing L D, Xu M Q, Liu X, Xu K, Li W S. J. Mater. Chem. A, 2018, 6(23): 10990.

doi: 10.1039/C8TA01236A     URL    
[104]
Sun H H, Liu J D, He J, Wang H P, Jiang G X, Qi S H, Ma J M. Sci. Bull., 2022, 67(7): 725.

doi: 10.1016/j.scib.2022.01.012     URL    
[105]
Han J G, Park I, Cha J, Park S, Park S, Myeong S, Cho W, Kim S S, Hong S Y, Cho J, Choi N S. ChemElectroChem, 2017, 4(1): 3.

doi: 10.1002/celc.201600812     URL    
[106]
Liang X, Huang J, Zheng Y, Shi P C, Sun Y, Xiang H F. Electrochimica Acta, 2019, 316: 228.

doi: 10.1016/j.electacta.2019.05.137    
[107]
Zhang H P, Xia Q, Wang B, Yang L C, Wu Y P, Sun D L, Gan C L, Luo H J, Bebeda A W, van Ree T. Electrochem. Commun., 2009, 11(3): 526.

doi: 10.1016/j.elecom.2008.11.050     URL    
[108]
Tu W Q, Ye C C, Yang X R, Xing L D, Liao Y H, Liu X, Li W S. J. Power Sources, 2017, 364: 23.

doi: 10.1016/j.jpowsour.2017.08.021     URL    
[109]
Peebles C, Sahore R, Gilbert J A, Garcia J C, Tornheim A, Bareño J, Iddir H, Liao C, Abraham D P. J. Electrochem. Soc., 2017, 164(7): A1579.

doi: 10.1149/2.1101707jes     URL    
[110]
Park S, Jeong S Y, Lee T K, Park M W, Lim H Y, Sung J, Cho J, Kwak S K, Hong S Y, Choi N S. Nat. Commun., 2021, 12: 838.

doi: 10.1038/s41467-021-21106-6    
[111]
Chen H Y, Chen J W, Zhang W G, Xie Q M, Che Y X, Wang H R, Xing L D, Xu K, Li W S. J. Mater. Chem. A, 2020, 8(42): 22054.

doi: 10.1039/D0TA07438A     URL    
[112]
Liu Y C, Hong L, Jiang R, Wang Y D, Patel S V, Feng X Y, Xiang H F. ACS Appl. Mater. Interfaces, 2021, 13(48): 57430.

doi: 10.1021/acsami.1c18783     URL    
[113]
Yang T X, Zeng H N, Wang W L, Zhao X Y, Fan W Z, Wang C Y, Zuo X X, Zeng R H, Nan J M. J. Mater. Chem. A, 2019, 7(14): 8292.

doi: 10.1039/C9TA01293A     URL    
[114]
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Sci. Adv., 2018, 4(12): eaau9245.

doi: 10.1126/sciadv.aau9245     URL    
[115]
Beichel W, Klose P, Blattmann H, Hoecker J, Kratzert D, Krossing I. ChemElectroChem, 2018, 5(10): 1415.

doi: 10.1002/celc.v5.10     URL    
[116]
Shi P C, Liu F F, Feng Y Z, Zhou J F, Rui X H, Yu Y. Small, 2020, 16(30): 2001989.

doi: 10.1002/smll.v16.30     URL    
[117]
Xu N B, Shi J W, Liu G P, Yang X R, Zheng J M, Zhang Z R, Yang Y. J. Power Sources Adv., 2021, 7: 100043.

doi: 10.1016/j.powera.2020.100043     URL    
[118]
Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Adv. Funct. Mater., 2017, 27(10): 1605989.

doi: 10.1002/adfm.v27.10     URL    
[119]
Chen J W, Xing L D, Yang X R, Liu X, Li T J, Li W S. Electrochimica Acta, 2018, 290: 568.

doi: 10.1016/j.electacta.2018.09.077     URL    
[120]
Zhao D N, Wang P, Cui X L, Mao L P, Li C L, Li S Y. Electrochimica Acta, 2018, 260: 536.

doi: 10.1016/j.electacta.2017.12.103     URL    
[121]
Zhao W M, Ji Y J, Zhang Z R, Lin M, Wu Z L, Zheng X, Li Q, Yang Y. Curr. Opin. Electrochem., 2017, 6(1): 84.
[122]
Pires J, Timperman L, Castets A, Santos Peña J, Dumont E, Levasseur S, Dedryvère R, Tessier C, Anouti M. RSC Adv., 2015, 5(52): 42088.

doi: 10.1039/C5RA05650K     URL    
[123]
Huang Y G, Li Y, Tan C L, Huang Z K, Pan Q C, Chu Y Q, Zheng F H, Wang H Q, Li Q Y. ACS Appl. Energy Mater., 2022, 5(1): 639.

doi: 10.1021/acsaem.1c03150     URL    
[124]
Li B, Wang Y Q, Tu W Q, Wang Z S, Xu M Q, Xing L D, Li W S. Electrochimica Acta, 2014, 147: 636.

doi: 10.1016/j.electacta.2014.09.151     URL    
[125]
Jankowski P, Lindahl N, Weidow J, Wieczorek W, Johansson P. ACS Appl. Energy Mater., 2018, 1(6): 2582.

doi: 10.1021/acsaem.8b00295     URL    
[126]
Xia J, Petibon R, Sinha N N, Dahn J R. J. Electrochem. Soc., 2015, 162(12): A2227.

doi: 10.1149/2.0151512jes     URL    
[127]
Wang Z S, Rao M M, Li J H, Ye C C, Liu Z D, Xu Q S, Jin X J, Du R A, Xie Q M, Luo W, Li W S, Qiu Y C. J. Electroanal. Chem., 2019, 851: 113411.

doi: 10.1016/j.jelechem.2019.113411     URL    
[128]
Hong P B, Xu M Q, Liao B, Wu Y N, Lin N N, Huang Q M, Li W S. J. Electrochem. Soc., 2017, 164(13): A2914.

doi: 10.1149/2.0181713jes     URL    
[129]
Hong P B, Xu M Q, Chen D R, Chen X Q, Xing L D, Huang Q M, Li W S. J. Electrochem. Soc., 2016, 164(2): A137.

doi: 10.1149/2.0531702jes     URL    
[130]
Shi X T, Zheng T L, Xiong J W, Zhu B Y, Cheng Y J, Xia Y G. ACS Appl. Mater. Interfaces, 2021, 13(48): 57107.

doi: 10.1021/acsami.1c15690     URL    
[131]
Peng Z, Cao X, Gao P Y, Jia H P, Ren X D, Roy S, Li Z D, Zhu Y, Xie W P, Liu D Y, Li Q Y, Wang D Y, Xu W, Zhang J G. Adv. Funct. Mater., 2020, 30(24): 2001285.

doi: 10.1002/adfm.v30.24     URL    
[132]
Han S Y, Zhang H, Fan C J, Fan W Z, Yu L. Solid State Ion., 2019, 337: 63.

doi: 10.1016/j.ssi.2019.03.027     URL    
[133]
Chen X, Zhang Q. Acc. Chem. Res., 2020, 53(9): 1992.

doi: 10.1021/acs.accounts.0c00412     URL    
[134]
Tan J F, Liu J P. ENERGY ENVIRONMENTAL Mater., 2021, 4(3): 302.

doi: 10.1002/eem2.v4.3     URL    
[135]
Zhang H, Liu X, Li H H, Hasa I, Passerini S. Angewandte Chemie Int. Ed., 2021, 60(2): 598.

doi: 10.1002/anie.v60.2     URL    
[136]
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. Science, 2015, 350(6263): 938.

doi: 10.1126/science.aab1595     URL    
[137]
Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Nat. Energy, 2016, 1(10): 16129.

doi: 10.1038/nenergy.2016.129    
[138]
Cui G L. Matter, 2020, 2(4): 805.

doi: 10.1016/j.matt.2020.02.003     URL    
[139]
Lu Y, Zhao C Z, Yuan H, Cheng X B, Huang J Q, Zhang Q. Adv. Funct. Mater., 2021, 31(18): 2009925.

doi: 10.1002/adfm.v31.18     URL    
[140]
Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J, Guo Y G. Angew. Chem., 2020, 132(29): 12167.

doi: 10.1002/ange.v132.29     URL    
[141]
Kim T, Song W T, Son D Y, Ono L K, Qi Y B. J. Mater. Chem. A, 2019, 7(7): 2942.

doi: 10.1039/C8TA10513H     URL    
[142]
Zhao N, Khokhar W, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W. Joule, 2019, 3(5): 1190.

doi: 10.1016/j.joule.2019.03.019     URL    
[143]
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. Nat. Mater., 2011, 10(9): 682.

doi: 10.1038/nmat3066    
[144]
Zhao F P, Liang J W, Yu C, Sun Q, Li X N, Adair K, Wang C H, Zhao Y, Zhang S M, Li W H. Adv. Energy Mater., 2020, 10(9): 1903422.

doi: 10.1002/aenm.v10.9     URL    
[145]
Hao X G, Zhao Q, Su S M, Zhang S Q, Ma J B, Shen L, Yu Q P, Zhao L, Liu Y, Kang F Y, He Y B. Adv. Energy Mater., 2019, 9(34): 1901604.

doi: 10.1002/aenm.v9.34     URL    
[146]
Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. Nano Energy, 2019, 61: 119.

doi: 10.1016/j.nanoen.2019.04.058     URL    
[147]
Luo W, Gong Y H, Zhu Y Z, Li Y J, Yao Y G, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y F, Wachsman E D, Hu L B. Adv. Mater., 2017, 29(22): 1606042.

doi: 10.1002/adma.v29.22     URL    
[148]
Qiu J L, Liu X Y, Chen R S, Li Q H, Wang Y, Chen P H, Gan L Y, Lee S J, Nordlund D, Liu Y J, Yu X Q, Bai X D, Li H, Chen L Q. Adv. Funct. Mater., 2020, 30(22): 1909392.

doi: 10.1002/adfm.v30.22     URL    
[149]
Homann G, Stolz L, Neuhaus K, Winter M, Kasnatscheew J. Adv. Funct. Mater., 2020, 30(46): 2006289.

doi: 10.1002/adfm.v30.46     URL    
[150]
Li S, Chen Y M, Liang W F, Shao Y F, Liu K W, Nikolov Z, Zhu Y. Joule, 2018, 2(9): 1838.

doi: 10.1016/j.joule.2018.06.008     URL    
[151]
Zhou W D, Wang S F, Li Y T, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138(30): 9385.

doi: 10.1021/jacs.6b05341     URL    
[152]
Zhang X K, Xie J, Shi F F, Lin D C, Liu Y Y, Liu W, Pei A, Gong Y J, Wang H X, Liu K, Xiang Y, Cui Y. Nano Lett., 2018, 18(6): 3829.

doi: 10.1021/acs.nanolett.8b01111     URL    
[153]
Chen S M, Wen K H, Fan J T, Bando Y, Golberg D. J. Mater. Chem. A, 2018, 6(25): 11631.

doi: 10.1039/C8TA03358G     URL    
[154]
Lv Z L, Zhou Q, Zhang S, Dong S M, Wang Q L, Huang L, Chen K, Cui G L. Energy Storage Mater., 2021, 37: 215.
[155]
Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. Adv. Mater., 2020, 32(17): 2000399.

doi: 10.1002/adma.v32.17     URL    
[156]
Song X F, Zhang Y N, Ye Y W, Liu Z F, Cheng F, Li H R. ACS Appl. Energy Mater., 2020, 3(5): 4906.

doi: 10.1021/acsaem.0c00485     URL    
[157]
Zheng Y W, Li X W, Fullerton W R, Qian Q, Shang M W, Niu J J, Li C Y. ACS Appl. Energy Mater., 2021, 4(6): 5639.

doi: 10.1021/acsaem.1c00451     URL    
[1] 玉笛声, 刘昌林, 林雪, 盛利志, 江丽丽. 快充型锂离子电池电极材料与电解液结构调控及设计[J]. 化学进展, 2024, 36(1): 132-144.
[2] 施坦, 寇东辉, 薛亚南, 张淑芬, 马威. 基于苯硼酸衍生物的糖类传感器[J]. 化学进展, 2024, 36(1): 106-119.
[3] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[4] 徐志远, 高国伟, 李延生, 廖擎纬, 胡敬芳, 张学记. 居家诊断心肌梗死:基于适体的cTnI传感技术[J]. 化学进展, 2023, 35(8): 1266-1274.
[5] 刘韬, 苗君萍, 王珑珑, 胡云霞. 相转化纳滤膜的膜材料结构设计及调控策略[J]. 化学进展, 2023, 35(8): 1199-1213.
[6] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[7] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[8] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[9] 刘苏慧, 张飞飞, 王小青, 刘普旭, 杨江峰. 钛基金属有机框架材料合成的研究进展[J]. 化学进展, 2023, 35(12): 1752-1763.
[10] 黄铭浩, 王跃达, 侯倩, 项宏发. 锂金属电池电解液的理论计算模拟研究[J]. 化学进展, 2023, 35(12): 1847-1863.
[11] 谢志莹, 郑新华, 王明明, 于海洲, 仇晓燕, 陈维. 水系锌离子电池[J]. 化学进展, 2023, 35(11): 1701-1726.
[12] 张广相, 马驰, 付传凯, 刘子维, 霍华, 马玉林. 钠离子电池低温电解质的研究进展与挑战[J]. 化学进展, 2023, 35(10): 1534-1543.
[13] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[14] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[15] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
阅读次数
全文


摘要

锂电池高电压电解液