English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1040-1052 DOI: 10.7536/PC221126 前一篇   后一篇

• 综述 •

六氯丁二烯的排放源及环境污染特征

赵晨妍1,2,3, 孙宇翔1,2,3, 杨莉莉1,3, 郑明辉1,2,3, 刘书廷1,3, 刘国瑞1,2,3,*()   

  1. 1 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
    2 国科大杭州高等研究院 环境学院 杭州 310024
    3 中国科学院大学资源与环境学院 北京 100049
  • 收稿日期:2022-11-28 修回日期:2023-03-17 出版日期:2023-07-24 发布日期:2023-03-30
  • 作者简介:

    刘国瑞 中科院生态环境研究中心研究员,博士生导师,国科大杭州高等研究院环境学院教授。中科院创新交叉团队负责人,研究方向为持久性有机污染物和持久性自由基的环境行为和污染特征。在Nat. Commun., Prog. Energy Combust. Sci., Environ. Sci. Technol.Trends Anal. Chem.等发表论文160余篇,撰写中英文专著5部。担任Ecotoxicology and Environmental Safety, Sustainable HorizonsEmerging Contaminants副主编,担任Trends in Analytical Chemistry客座编辑。获2019国家科技进步二等奖和2019年生态环境部环保科技一等奖,获第13届国际PTS大会青年科学家奖。

  • 基金资助:
    第二次青藏高原综合科学考察研究(2019QZKK0605); 国家自然科学基金(92143201); 国家自然科学基金(22076201); 中国科学院创新交叉团队项目(JCTD-2019-03)

Source and Environmental Characteristics of Hexachlorobutadiene

Chenyan Zhao1,2,3, Yuxiang Sun1,2,3, Lili Yang1,3, Minghui Zheng1,2,3, Shuting Liu1,3, Guorui Liu1,2,3()   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085,China
    2 School of Environment,Hangzhou Institute for Advanced Study,UCAS,Hangzhou 310024,China
    3 College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2022-11-28 Revised:2023-03-17 Online:2023-07-24 Published:2023-03-30
  • Contact: * e-mail: grliu@rcees.ac.cn
  • Supported by:
    Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0605); National Natural Science Foundation of China(92143201); National Natural Science Foundation of China(22076201); CAS Interdisciplinary Innovation Team(JCTD-2019-03)

六氯丁二烯是2015年列入《关于持久性有机污染物的斯德哥尔摩公约》进行管控的新持久性有机污染物(POPs)。六氯丁二烯在环境中难降解、可长距离迁移、具有生物富集性,对生物和人类健康具有潜在危害。目前对六氯丁二烯排放源的认识还非常缺乏,对其环境污染特征的研究还不够系统,针对六氯丁二烯的控制技术和策略有待开发。本文总结了六氯丁二烯的环境和生物赋存水平,梳理了六氯丁二烯的管控过程、潜在排放源及排放量,并讨论了六氯丁二烯的生成机理、自然环境中的降解过程、以及相关的减排策略和控制技术。本文可为控制六氯丁二烯的源排放、减少环境污染水平和降低人体暴露提供参考。

Hexachlorobutadiene (HCBD) is a new persistent organic pollutant (POPs) added into the Stockholm Convention on POPs since 2015. HCBD has attracted worldwide attention due to its persistence, bioaccumulation, and potential for long-range transport, with potential adverse effects on humans and biota. However, the knowledge about the source, environmental characteristics, control techniques and strategies are still very lacking. The levels of HCBD in environmental and biological samples are summarized and analyzed in this review. The control process, potential emission sources and emission amount of HCBD are reviewed. The formation mechanism of hexachlorobutadiene, the degradation process in natural environment, and the related emission reduction strategies and control technologies are discussed. This paper can provide important reference for controlling the emission of HCBD, reducing their environmental level, and reducing human exposure.

Contents

1 Introduction

2 Environmental occurrence of HCBD

2.1 Atmosphere

2.2 Water

2.3 Soil

2.4 Organisms

3 Emission sources in China

3.1 Chemical production source

3.2 Waste incineration and landfill sources

4 Natural degradation

5 Control measures of HCBD at home and abroad

6 Corelation and synergistic emission reduction of HCBD and other POPs

6.1 Synergistic emission reduction

6.2 Emission reduction measures

7 Conclusion and outlook

()
表1 HCBD的基本理化性质[1]
Table 1 The main physical and chemical properties of HCBD
图1 六氯丁二烯的化学结构式 (a) 及价层电子密度 (b)
Fig.1 The chemical structure of HCBD (a) and the valence electron density (b)
表2 大气环境中HCBD的浓度
Table 2 Concentrations of hexachlorobutadiene in atmosphere in different areas
表3 HCBD在不同水体中的赋存水平
Table 3 Concentrations of hexachlorobutadiene in different water bodies
表4 HCBD在不同地区生物体内的水平(μg·kg-1·lw)
Table 4 Concentrations of hexachlorobutadiene detected in organisms in different areas
图2 HCBD的生成路径[36]
Fig.2 Three formation pathways of hexachlorobutadiene from several hydrocarbons synthesized from the results of researches by Heindl and Hutzinge[73], Sherry et al.[74], Tirey et al.[75], Wehrmeier et al.[76], summarized by Zhang[36].
图3 乙炔燃烧过程中HCBD的生成机理[69]
Fig.3 The formation mechanism of HCBD during acetylene combustion
图4 HCBD国际管控相关事件的时间轴
Fig.4 Timeline of international control process of hexachlorobutadiene
表5 HCBD的国内管控和测试标准
Table 5 Management and control of hexachlorobutadiene in China
[1]
Persistent Organic Pollutants Review Committee POPRC. Risk profile on hexachlorobutadiene, Stockholm Convention, (2012). [2023-03-01]. http://www.pops.int/TheConvention/POPsReviewCommittee/ReportsandDecisions/tabid/3309/Default.aspx.
[2]
Vorkamp K, RigÉt F F. Chemosphere, 2014, 111: 379.

doi: 10.1016/j.chemosphere.2014.04.019     pmid: 24997943
[3]
David Constant W, Pardue J H, Delaune R D, Blanchard K, Breitenbeck G A. Environ. Prog., 1995, 14(1): 51.

doi: 10.1002/(ISSN)1547-5921     URL    
[4]
Cord-Ruwisch R, James D L, Charles W. J. Biotechnol., 2009, 142(2): 151.

doi: 10.1016/j.jbiotec.2009.04.001     pmid: 19447513
[5]
Veith G D, Kuehl D W, Leonard E N, Puglisi F A, Lemke A E. Pestic. Monit. J., 1979, 13(1): 1.

pmid: 114967
[6]
Demers M J, Kelly E N, Blais J M, Pick F R, St Louis V L, Schindler D W. Environ. Sci. Technol., 2007, 41(8): 2723.

pmid: 17533830
[7]
Tang Z W, Huang Q F, Cheng J L, Qu D, Yang Y F, Guo W. Ecotoxicol. Environ. Saf., 2014, 108: 329.

doi: 10.1016/j.ecoenv.2014.07.024     URL    
[8]
Kociba R J, Schwetz B A, Keyes D G, Jersey G C, Ballard J J, Dittenber D A, Quast J F, Wade C E, Humiston C G. Environ. Health Perspect., 1977, 21: 49.

doi: 10.1289/ehp.772149     URL    
[9]
Nash J A, King L J, Lock E A, Green T. Toxicol. Appl. Pharmacol., 1984, 73(1): 124.

doi: 10.1016/0041-008X(84)90061-9     URL    
[10]
Swain A, Turton J, Scudamore C L, Pereira I, Viswanathan N, Smyth R, Munday M, McClure F, Gandhi M, Sondh S, York M. J. Appl. Toxicol., 2011, 31(4): 366.

doi: 10.1002/jat.1624     URL    
[11]
Sadeghnia H R, Yousefsani B S, Rashidfar M, Boroushaki M T, Asadpour E, Ghorbani A. Ren. Fail., 2013, 35(8): 1151.

doi: 10.3109/0886022X.2013.815546     pmid: 23876083
[12]
Duprat P, Gradiski D. Acta Pharmacol. Toxicol., 1978, 43(5): 346.

doi: 10.1111/j.1600-0773.1978.tb02277.x     URL    
[13]
Staples B, Howse M, Mason H, Bell G M. Occup. Environ. Med., 2003, 60(7): 463.

pmid: 12819278
[14]
Birner G, Werner M, Ott M M, Dekant W. Toxicol. Appl. Pharmacol., 1995, 132(2): 203.

doi: 10.1006/taap.1995.1100     URL    
[15]
Bouroshaki M T, Sadeghnia H R, Banihasan M, Yavari S. Ren. Fail., 2010, 32(5): 612.

doi: 10.3109/08860221003778056     pmid: 20486845
[16]
Hermanson M H, Isaksson E, Hann R, Ruggirello R M, Teixeira C, Muir D C G. ACS Earth Space Chem., 2021, 5(9): 2534.

doi: 10.1021/acsearthspacechem.1c00211     URL    
[17]
Persistent Organic Pollutants Review Committee POPRC. Health effects support Evaluation of new information in relation to the listing of hexachlorobutadiene in Annex C to the Stockholm Convention on Persistent Organic Pollutants (executive summary) for hexachlorobutadiene, Stockholm Convention, (2013-09-19). [2023-03-01]. http://www.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC12/Overview/tabid/5171/Default.aspx.
[18]
Hou X W, Zhang H Y, Li Y L, Yu M, Liu J Y, Jiang G B. Environ. Sci.: Processes Impacts, 2017, 19(10): 1327.
[19]
EPA. Ambient water quality criteria for hexachlorobutadiene, EPA, (1980-10). [2023-03-01]. https://www.epa.gov/sites/default/files/2019-03/documents/ambient-wqc-hexachlorobutadiene-1980.pdf.
[20]
Nan S Q, Zhang L L, Zhang D, Liang J, Duo K X, Zhang J, Wang L L. Ecol. Environ. Sci., 2014, 23(9): 1438.
(南淑清, 张霖琳, 张丹, 梁晶, 多可辛, 张军, 王玲玲. 生态环境学报, 2014, 23(9): 1438.).
[21]
Fang Y Y, Nie Z Q, Die Q Q, Tian Y J, Liu F, He J, Huang Q F. Chemosphere, 2017, 178: 340.

doi: 10.1016/j.chemosphere.2017.02.151     URL    
[22]
Fang Y Y, Nie Z Q, Die Q Q, Tian Y J, Liu F, He J, Huang Q F. Stoch. Environ. Res. Risk Assess., 2018, 32(4): 1179.

doi: 10.1007/s00477-017-1412-1     URL    
[23]
van Drooge B L, Marco E, Grimalt J O. Sci. Total Environ., 2018, 628/629: 782.

doi: 10.1016/j.scitotenv.2018.02.088     URL    
[24]
Surenjav E, Lkhasuren J, Fiedler H. Chemosphere, 2022, 297: 134180.

doi: 10.1016/j.chemosphere.2022.134180     URL    
[25]
Colborn T, Schultz K, Herrick L, Kwiatkowski C. Hum. Ecol. Risk Assess. Int. J., 2014, 20(1): 86.

doi: 10.1080/10807039.2012.749447     URL    
[26]
Feng L L, Hu X F, Yu X J, Zhang W Y. Chinese Journal of Chromatography, 2016, 34(2): 209.

doi: 10.3724/SP.J.1123.2015.09023     URL    
(冯丽丽, 胡晓芳, 于晓娟, 张文英. 色谱, 2016, 34(2): 209.).

doi: 10.3724/SP.J.1123.2015.09023    
[27]
Yang M M, Mao H T, Li H L, Yang F C, Cao F F, Wang Y. Environ. Res., 2023, 216: 114139.

doi: 10.1016/j.envres.2022.114139     URL    
[28]
Juang D E, Yuan C S, Hsueh S C, Chiou L J. Int. J. Environ. Sci. Technol., 2009, 6(1): 91.

doi: 10.1007/BF03326063     URL    
[29]
Lv Y B, Tan L, Teng E J, Wang C, Lu T F, Liang X. Environmental Chemistry, 2013(5): 726.
(吕怡兵, 谭丽, 滕恩江, 王超, 吕天峰, 梁宵. 环境化学, 2013(5): 726.).
[30]
Zhang L F, Yang W L, Xue L N, Li X X, Dong L. Proceedings of 2016 Persistent Organic Pollution Forum & 11th International Symposium on Persistent Organic Pollutants. Beijing: Chinese Society of Environmental Sciences, 2016.
(张利飞, 杨文龙, 薛令楠, 李晓秀, 董亮. 2016持久性有机污染论坛暨第十一届持久性有机污染物国际学术研讨会论文集. 北京: 中国环境科学学会, 2016.).
[31]
Li H Y, Wang Y S, Liu F, Tong L L, Li K, Yang H, Zhang L. Environ. Pollut., 2018, 239: 554.

doi: 10.1016/j.envpol.2018.04.065     URL    
[32]
Moeck C, Radny D, Borer P, Rothardt J, Auckenthaler A, Berg M, Schirmer M. J. Hydrol., 2016, 542: 437.

doi: 10.1016/j.jhydrol.2016.09.023     URL    
[33]
Santolaria Z, Arruebo T, Pardo A, Matesanz J M, BartolomÉ A, Caixach J, Lanaja F J, Urieta J S. Water Air Soil Pollut., 2015, 226(11): 383.

doi: 10.1007/s11270-015-2648-3     URL    
[34]
Maire J, Joubert A, Kaifas D, Invernizzi T, Marduel J, Colombano S, Cazaux D, Marion C, Klein P Y, Dumestre A, Fatin-Rouge N. Sci. Total Environ., 2018, 612: 1149.

doi: 10.1016/j.scitotenv.2017.08.309     URL    
[35]
Maire J, Coyer A, Fatin-Rouge N. J. Hazard. Mater., 2015, 299: 630.

doi: 10.1016/j.jhazmat.2015.07.071     URL    
[36]
Zhang H Y, Shen Y T, Liu W C, He Z Q, Fu J J, Cai Z W, Jiang G B. Environ. Pollut., 2019, 253: 831.

doi: 10.1016/j.envpol.2019.07.090     URL    
[37]
Chen X C, Luo Q, Wang D H, Gao J J, Wei Z, Wang Z J, Zhou H D, Mazumder A. Environ. Pollut., 2015, 206: 64.

doi: 10.1016/j.envpol.2015.06.027     URL    
[38]
Liu L H, Zhou H D. Environ. Monit. Assess., 2011, 173(1/4): 825.

doi: 10.1007/s10661-010-1426-3     URL    
[39]
Nuhu A A, Basheer C, Abu-Thabit N Y, Alhooshani K, Al-Arfaj A R. Talanta, 2011, 87: 284.

doi: 10.1016/j.talanta.2011.10.019     URL    
[40]
Cho E, Khim J, Chung S, Seo D, Son Y. Sci. Total Environ., 2014, 491/492: 138.

doi: 10.1016/j.scitotenv.2014.03.025     URL    
[41]
Estevez E, del Carmen Cabrera M, Fernández-Vera J R, Molina-Díaz A, Robles-Molina J, del Pino Palacios-Díaz M. Sci. Total Environ., 2016, 551/552: 186.

doi: 10.1016/j.scitotenv.2016.01.177     URL    
[42]
Shen Z, Jin J X, Zheng J C, Zhang J. Adm. Tech. Environ. Monit., 2016, 28(5): 68.
(沈桢, 金京勋, 郑家传, 张建荣. 环境监测管理与技术, 2016, 28(5): 68.).
[43]
Tao Y M, Meng J, Li Q Q, Shi B, Su G J, Guo L X. Environmental Science, 2021, 42(3): 1053.
(陶誉铭, 孟晶, 李倩倩, 史斌, 苏贵金, 郭立新. 环境科学, 2021, 42(3): 1053.).
[44]
Arellano L, Fernández P, LÓpez J F, Rose N L, Nickus U, Thies H, Stuchlik E, Camarero L, Catalan J, Grimalt J O. Atmos. Chem. Phys., 2014, 14(9): 4441.

doi: 10.5194/acp-14-4441-2014     URL    
[45]
Wania F, MacKay D, Hoff J T. Environ. Sci. Technol., 1999, 33(1): 195.

doi: 10.1021/es980806n     URL    
[46]
Pinto M I, Vale C, Sontag G, Noronha J P. Mar. Pollut. Bull., 2016, 106(1/2): 335.

doi: 10.1016/j.marpolbul.2016.03.028     URL    
[47]
Wang R S, Zhang X, Xu Q J, Du M M, Yan C Z. Acta Sci. Circumst., 2012, 32(11): 2874.
[48]
Bruschweiler B J. Regul. Toxicol. Pharmacol., 2010, 58(2): 341.

doi: 10.1016/j.yrtph.2010.07.009     URL    
[49]
Robles-Molina J, Gilbert-LÓpez B, García-Reyes J F, Molina-Díaz A. Talanta, 2010, 82(4): 1318.

doi: 10.1016/j.talanta.2010.06.053     pmid: 20801335
[50]
Matejczyk M, Płaza G A, Nałęcz-Jawecki G, Ulfig K, Markowska-Szczupak A. Chemosphere, 2011, 82(7): 1017.

doi: 10.1016/j.chemosphere.2010.10.066     pmid: 21087786
[51]
Liu J. Master Dissertation of Chinese Center for Disease Control and Prevention, 2016. 2016.
(刘婕. 中国疾病预防控制中心硕士论文, 2016.).
[52]
Cabrerizo A, Dachs J, Moeckel C, Ojeda M J, Caballero G, BarcelÓ D, Jones K C. Environ. Sci. Technol., 2011, 45(11): 4785.

doi: 10.1021/es200400e     pmid: 21534636
[53]
CalderÓn-Preciado D, JimÉnez-Cartagena C, Matamoros V, Bayona J M. Water Res., 2011, 45(1): 221.

doi: 10.1016/j.watres.2010.07.050     URL    
[54]
Tang Z W, Huang Q F, Nie Z Q, Yang Y F, Yang J, Qu D, Cheng J L. Stoch. Environ. Res. Risk Assess., 2016, 30(4): 1249.

doi: 10.1007/s00477-015-1144-z     URL    
[55]
Zhang H Y, Wang Y W, Sun C, Yu M, Gao Y, Wang T, Liu J Y, Jiang G B. Environ. Sci. Technol., 2014, 48(3): 1525.

doi: 10.1021/es405171t     URL    
[56]
Fantke P, Jolliet O. Int. J. Life Cycle Assess., 2016, 21(5): 722.

doi: 10.1007/s11367-015-0910-y     URL    
[57]
Sun J T, Pan L L, Tsang D C W, Zhan Y, Liu W X, Wang X L, Zhu L Z, Li X D. Chemosphere, 2016, 163: 422.

doi: 10.1016/j.chemosphere.2016.08.038     URL    
[58]
Sun J T, Pan L L, Zhan Y, Zhu L Z. Environ. Sci. Pollut. Res., 2018, 25(4): 3378.

doi: 10.1007/s11356-017-0707-6     URL    
[59]
Persistent Organic Pollutants Review Committee POPRC. Draft Guidance on Preparing Inventories of Hexachlorobutadiene (HCBD), Stockholm Convention, (2017-04-22). [2023-03-01]. http://www.pops.int/Implementation/NationalImplementationPlans/GuidanceArchive/NewlyDevelopedGuidance/GuidanceforHCBD/tabid/6229/Default.aspx.
[60]
Lu Y, Chen Z F, Chen Y J, Xu Y Z, Chen Y Y, Dai X X, Yao L, Qi Z H, Cai Z W. J. Hazard. Mater., 2021, 417: 126002.

doi: 10.1016/j.jhazmat.2021.126002     URL    
[61]
Balmer J E, Hung H, Vorkamp K, Letcher R J, Muir D C G. Emerg. Contam., 2019, 5: 116.
[62]
Laska A L, Bartell C K, Laseter J L. Bull. Environ. Contam. Toxicol., 1976, 15(5): 535.

doi: 10.1007/BF01685701     URL    
[63]
Briones Á Á, Hernández-Guzmán F A, González-Armas R, Galván-Magaña F, Marmolejo-Rodríguez A J, Sánchez-González A, Ramírez-álvarez N. Sci. Total Environ., 2022, 806: 151369.

doi: 10.1016/j.scitotenv.2021.151369     URL    
[64]
Kong Q Q, Wang Y, Yang X. Bull. Environ. Contam. Toxicol., 2020, 104(1): 1.

doi: 10.1007/s00128-019-02744-5    
[65]
Cristofori P, Sauer A V, Trevisan A. Cell Biol. Toxicol., 2015, 31(1): 1.

doi: 10.1007/s10565-015-9293-x     pmid: 25665826
[66]
Lava R, Majoros L I, Dosis I, Ricci M. Trac Trends Anal. Chem., 2014, 59: 103.

doi: 10.1016/j.trac.2014.02.018     URL    
[67]
Persistent Organic Pollutants Review Committee POPRC. Report of the Persistent Organic Pollutants Review Committee on the Work of its Ninth Meeting: Risk Management Evaluation on Hexachlorobutadiene, Stockholm Convention, (2013-11-11). [2023-03-01]. http://www.pops.int/Convention/POPsReviewCommittee/LatestMeeting/POPRC9/POPRC9Documents/tabid/3281/Default.aspx.
[68]
van der Gon H, van het Bolscher M, Visschedijk A, Zandveld P. Atmos. Environ., 2007, 41(40): 9245.

doi: 10.1016/j.atmosenv.2007.06.055     URL    
[69]
Lenoir D, Wehrmeier A, Sidhu S S, Taylor P H. Chemosphere, 2001, 43(1): 107.

pmid: 11233817
[70]
Wang L, Bie P J, Zhang J B. Environ. Pollut., 2018, 238: 204.

doi: S0269-7491(17)35032-7     pmid: 29554568
[71]
Pu D F, Wang Y, Ma R. China Chlor-Alkali, 2022, 8: 27.
(浦达飞, 汪洋, 马睿. 中国氯碱, 2022, 8: 27.).
[72]
Kajiwara N, Noma Y, Matsukami H, Tamiya M, Koyama T, Terai T, Koiwa M, Sakai S. J. Environ. Chem. Eng., 2019, 7(6): 103464.

doi: 10.1016/j.jece.2019.103464     URL    
[73]
Heindl A, Hutzinger O. Chemosphere, 1987, 16(8/9): 1949.

doi: 10.1016/0045-6535(87)90193-7     URL    
[74]
Sherry D, McCulloch A, Liang Q, Reimann S, Newman P A. Environ. Res. Lett., 2018, 13(2): 024004.

doi: 10.1088/1748-9326/aa9c87     URL    
[75]
Tirey D A, Taylor P H, Kasner J, Dellinger B. Combust. Sci. Technol., 1990, 74(1/6): 137.

doi: 10.1080/00102209008951685     URL    
[76]
Wehrmeier A, Lenoir D, Sidhu S S, Taylor P H, Rubey W A, Kettrup A, Dellinger B. Environ. Sci. Technol., 1998, 32(18): 2741.

doi: 10.1021/es980050s     URL    
[77]
Eswi C. Study on Waste Related Issues of Newly Listed POPs and Candidate POPs. BIPRO, 2011.
[78]
USA. ubmission Information from the USA: Information on Unintentional Releases of Hexachlorobutadiene, Stockholm Conventio, (2016-01-20). [2023-03-01]. http://chm.pops.int/TheConvention/POPsReviewCommittee/Meetings/POPRC11/POPRC11Followup/HCBDInfoRequest/tabid/4813/Default.aspx.
[79]
United States Environmental Protection Agency. National Priority Chemicals Trends Report (2005-2007). United States Environmental Protection Agency, 2010.
[80]
UNEP. Evaluation of new information for the addition of hexachlorobutadiene to annex c of the stockholm convention, Stockholm Conventio, (2016-04-15). [2023-03-01]. https://www.informea.org/en/evaluation-new-information-addition-hexachlorobutadiene-annex-c-stockholm-convention.
[81]
Deutscher R L, Cathro K J. Chemosphere, 2001, 43(2): 147.

pmid: 11297394
[82]
Liang W Y, Sun X L, Li F S, Li M, Dai W B. China Nonferrous Metall., 2020, 49(4): 36.
(梁文玉, 孙晓林, 李凤善, 黎敏, 戴文彬. 中国有色冶金, 2020, 49(4): 36.).
[83]
Lysychenko G, Weber R, Kovach V, Gertsiuk M, Watson A, Krasnova I. Environ. Sci. Pollut. Res., 2015, 22(19): 14391.

doi: 10.1007/s11356-015-5184-1     URL    
[84]
USA. Comments on the draft document relating to the recommendation on listing of hexachlorobutadiene (HCBD) in Annex C to the Convention, Stockholm Convention, (2016-05-16). [2023-03-01]. http://chm.pops.int/theconvention/popsreviewcommittee/meetings/poprc11/poprc11followup/commentshcbd/tabid/5101/default.aspx.
[85]
Lahaniatis E S, Bieniek D, Vollner L, Korte F. Chemosphere, 1981, 10(8): 935.

doi: 10.1016/0045-6535(81)90093-X     URL    
[86]
Zhang H Y, Jiang L, Zhou X, Zeng T, He Z Q, Huang X W, Chen J M, Song S. Anal. Bioanal. Chem., 2018, 410(7): 1893.

doi: 10.1007/s00216-018-0849-5    
[87]
Zhang X H, Yang M M, Sun X M, Wang X L, Wang Y. Sci. Total Environ., 2018, 627: 256.

doi: 10.1016/j.scitotenv.2018.01.163     URL    
[88]
Derco J, Dudáš J, Valičková M, Šimovičová K, KecskÉs J. Chem. Eng. Process. Process. Intensif., 2015, 94: 78.

doi: 10.1016/j.cep.2015.03.014     URL    
[89]
šimkovič K, Derco J, Dudáš J, Urminská B. Chem. Biochem. Eng. Q., 2017, 31(2): 161.

doi: 10.15255/CABEQ     URL    
[90]
Ministry of Environmental Protection. Water quality-Determination of volatile halogenated organic compounds-Headspace gas. Beijing: China Environmental Science Press, 1997.
(环境保护部. 水质挥发性卤代烃的测定顶空气相色谱法(GB 17130-1997). 北京: 中国环境科学出版社, 1997.).
[91]
Ministry of Environmental Protection. Environmental quality standards for surface water. Beijing: China Environmental Science Press, 2002.
(环境保护部. 地表水环境质量标准(GB3838-2002). 北京: 中国环境科学出版社, 2002.).
[92]
State Administration for Market Regulation. Standards for drinking water quality (GB 5749-2006). Beijing: Standards Press of China, 2006.
(国家市场监督管理总局. 生活饮用水卫生标准 (GB 5749-2006). 北京: 中国标准出版社, 2006.).
[93]
Ministry of Environmental Protection. Water quality-Determination of volatile organic compounds-Purge and trap/gas chromatography (HJ 686-2014). Beijing: China Environmental Science Press, 2014.
(环境保护部. 水质挥发性有机物的测定吹扫捕集/气相色谱法 (HJ 686-2014). 北京: 中国环境科学出版社, 2014. ).
[94]
Ministry of Environmental Protection. Emission standard of pollutants for petroleum chemistry industry (GB31571-2015). Beijing: China Environmental Science Press, 2015.
(环境保护部. 石油化学工业污染物排放标准 (GB31571-2015). 北京: 中国环境科学出版社, 2015.).
[95]
Wang, M X. Master Dissertation of Xi'an University of Science and Technology, 2021.
(王敏祥. 西安科技大学硕士论文, 2021.).
[96]
Zhang L F, Yang W L, Zhang L L, Li X X. Chemosphere, 2015, 133: 1.

doi: 10.1016/j.chemosphere.2015.02.044     URL    
[97]
Barnes G, Baxter J, Litva A, Staples B. Soc. Sci. Med., 2002, 55(12): 2227.

doi: 10.1016/S0277-9536(01)00367-7     URL    
[98]
Weber R, Watson A, Forter M, Oliaei F. Waste Manag. Res. J. A Sustain. Circ. Econ., 2011, 29(1): 107.
[99]
Chang M B, Huang T F. Chemosphere, 2000, 40(2): 159.

pmid: 10665428
[100]
Yan M, Li X D, Chen T, Lu S Y, Yan J H, Cen K F. J. Environ. Sci., 2010, 22(10): 1637.

doi: 10.1016/S1001-0742(09)60300-4     URL    
[101]
Yang L L, Wang S, Peng X, Zheng M H, Yang Y P, Xiao K, Liu G R. Sci. Total Environ., 2019, 664: 107.

doi: 10.1016/j.scitotenv.2019.02.001     URL    
[102]
Lu H J. Environ. Sanit. Eng., 2017, 25(3): 74.
(芦会杰. 环境卫生工程, 2017, 25(3): 74).
[103]
Li G F. 8th Member Representative Conference of the Shanghai Society of Environmental Sciences. Shanghai: Shanghai Society of Environmental Sciences, 2021.
(李广夫. 暨上海市环境科学学会第八届会员代表大会论文集. 上海: 上海市环境科学学会, 2021.).
[1] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[2] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[3] 马玲玲 徐殿斗 陈扬 柴之芳. 短链氯化石蜡分析方法*[J]. 化学进展, 2010, 22(04): 720-726.
[4] 张干,刘向. 大气持久性有机污染物(POPs)被动采样*[J]. 化学进展, 2009, 21(0203): 297-306.
[5] 郭丽,巴特,郑明辉. 多氯萘的研究*[J]. 化学进展, 2009, 21(0203): 377-389.
[6] 王斌,余刚,黄俊,胡洪营. QSAR/QSPR在POPs归趋与风险评价中的应用*[J]. 化学进展, 2007, 19(10): 1612-1619.
[7] 牛军峰,余刚,刘希涛. 水相中POPs光化学降解研究进展*[J]. 化学进展, 2005, 17(05): 938-948.