English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1053-1064 DOI: 10.7536/PC221116 前一篇   后一篇

• 综述 •

普鲁士蓝基钠离子电池正极材料的改性

李清萍, 李涛, 邵琛琛, 柳伟*()   

  1. 中国海洋大学材料科学与工程学院 青岛 266000
  • 收稿日期:2022-11-24 修回日期:2023-03-03 出版日期:2023-07-24 发布日期:2023-04-30
  • 作者简介:

    柳伟 研发钠、钾离子电池,锌离子电池等新型高性能储能器件,探索与之匹配的新材料体系,取得了系列成果。目前在Adv.Energy.Mater., Adv Funct. Mater., ACS Nano, Energy Storage Materials, J. Mater. Chem. A, Small等权威期刊发表论文70余篇,主持包括国家自然科学面上基金、山东省自然科学基金重大基础研究项目等多项科研项目,担任Advanced Materials, Adv.Func.Mater. ACS Nano, Nano Energy等高水平期刊审稿人,并担任基金委、科技部评审专家等相关工作。

Modification of Cathode Materials for Prussian Blue-Based Sodium-Ion Batteries

Qingping Li, Tao Li, Chenchen Shao, Wei Liu()   

  1. School of Materials Science and Engineering, Ocean University of China,Qingdao 266000, China
  • Received:2022-11-24 Revised:2023-03-03 Online:2023-07-24 Published:2023-04-30
  • Contact: * e-mail: weiliu@ouc.edu.cn

普鲁士蓝(PB)及其类似物(PBAs)由三维框架结构构成,能够为钠离子的嵌入脱出提供较宽的通道,是一种理想的钠离子电池(SIB)正极材料。然而,PBAs材料中存在大量水分子和空位,在很大程度上降低了钠离子的存储位点,且金属有机框架中的过渡金属离子易于在循环过程中析出,导致PBAs正极材料的储钠容量有限和循环稳定性不佳。近年来,多种PBAs改性技术被研究出来,使其电化学储钠性能得到明显提升。本文基于近期相关工作和已有的文献报道,从不同改性技术的工艺设计、制备方法、电化学行为等方面进行了总结,系统综述并展望了PBAs正极材料各种改性技术在钠离子电池中的研究进程。

Prussian blue (PB) and its analogues (PBAs), which are composed of three-dimensional frame structure, are ideal cathode materials for sodium ion battery (SIB) and can provide a wide channel for sodium ion embedding and removal. However, there are a lot of water molecules and vacancies in PBAs materials, which greatly reduces the storage sites of sodium ions. Furthermore, transition metal ions in the metal organic framework are easy to dissolve during the cycles, resulting in limited sodium storage capacity and poor cycle stability of PBAs cathode materials. In recent years, a variety of PBAs modification technologies have been developed to improve their sodium storage performance. Based on recent related work and existing literature reports, this paper summarizes the process design, preparation methods, electrochemical behavior and other aspects of different modification technologies, and systematically reviews and prospects the research progress of various modification technologies of PBAs cathode materials in sodium ion batteries.

Contents

1 Introduction

2 Structure of Prussian blue and its analogues

3 Modification method of Prussian blue cathode material

3.1 Chelating agent assisted method

3.2 Increase Na+ concentration

3.3 Element doping

3.4 Inactive layer coating

3.5 Conductive agent composite technology

3.6 Self-assembly

3.7 Other modification methods

4 Conclusion and outlook

()
图1 (a,b) PW-1的SEM图像;(c,d) PW-2的SEM图像; (e) PW形成机理示意图[25]
Fig.1 SEM images of (a,b) PW-1 and (c,d) PW-2 ; (e) Schematic diagram of the formation mechanism of PW-1[25]
图2 (a) 立方相NiHCF的电子态密度;(b) 单斜相NiHCF的电子态密度[35]
Fig.2 (a,b) Electronic density of states of NaNiFe(CN)6 (cubic NiHCF) and Na2NiFe(CN)6 (monoclinic NiHCF), respectively[35]
图3 (a~d) PB-0M, PB-1M, PB-2M, PB-4M的SEM图像;(e~h) PB-0M, PB-1M, PB-2M和PB-4M在室温、2.0 V-4 V、0.2 C电流密度下充放电曲线[40]
Fig.3 SEM of (a) PB-0M, (b) PB-1M, (c) PB-2M, and (d) PB-4M; Charge-discharge profiles of (e) PB-0M, (f) PB-1M, (g) PB-2M, and (h) PB-4M between 2.0 and 4.0 V at 0.2 C at RT[40]
图4 (a, b) NiHCF和K-NiHCF的透射电镜(TEM)图像;(c~e) Na+的优化迁移路径和相应的NiHCF和K-NiHCF的能垒分布;(f,j) NiHCF和K-NiHCF的总态密度(TDOS)图像[52]
Fig.4 (a,b) TEM images of NiHCF and K-doped NiHCF, respectively; (c~e) The optimized migration paths of Na+ ions and the corresponding energy barrier profiles for NiHCF and K-doped NiHCF species; (f, g) the total density of state (TDOS) patterns of NiHCF and K-doped NiHCF[52]
图5 (a) PBM@PBN样品合成过程示意图;(b) PBM@PBN的EDS元素分布图;(c) PBM@PBN的TEM图和选区电子衍射(SAED)图[54]
Fig.5 (a) Schematic illustration of the synthesis process of PBM@PBN sample; (b) EDS mapping of PBM@PBN sampl; (c) TEM image and SAED pattern of PBM@PBN sample[54]
图6 (a) NFFCN-Original, NFFCN-0.005M NiCl2, NFFCN-0.002M NiCl2 在500 mA·g-1的循环稳定性;(b) NFFCN-Original和NFFCN-0.002M NiCl2的倍率性能[55]
Fig.6 (a) the cycling performance of NFFCN-Original, NFFCN-0.005M NiCl2, NFFCN-0.002M NiCl2 at 500 mA·g-1; (b) rate performance comparison of NFFCN-Original and NFFCN-0.002M NiCl2[55]
图7 (a) MnFeHCF@MnFeHCF核壳材料的制备过程;(b) 在不同铁/锰摩尔比下合成的MnFeHCF @MnFeHCF样品[57]
Fig.7 (a) Preparation process of MnFeHCF@MnFeHCF core-shell material; (b) MnFeHCF@MnFeHCF samples synthesized under different Fe/Mn molar ratios[57]
图8 (a)高度均匀的NMHCF/RGO的合成工艺;(b) NMHCF的SEM图像;(c) NMHCF/RGO的SEM图像;(d) NMHCF/RGO的TEM图像;(e) NMHCF/RGO的元素分布图像;(f) NMHCF和NMHCF/RGO的倍率性能[59]
Fig.8 (a) Synthesis process of highly uniform NMHCF/RGO. SEM images of (b) NMHCF and (c) NMHCF/RGO samples; TEM images of (d) NMHCF/RGO; (e) Elemental mapping images of the NMHCF/RGO; (f) Rate performances of NMHCF/RGO and NMHCF[59]
图9 (a, b) PB的SEM图像;(c, d) PB@PANI-NP的SEM图像;(e, f) PB@PANI的SEM图像[65]
Fig.9 SEM images of (a, b) PB; (c, d) PB@PANI-NP and (e, f) PB@PANI[65]
图10 (a) Na1.58Fe[Fe(CN)6]0.92纳米空心球的合成过程和Na1.58Fe[Fe(CN)6]0.92纳米球电极在钠离子电池中的放电机理的化学图解[70];(b,c) Na1.58Fe[Fe(CN)6]0.92纳米空心球的TEM图像[70];(d) 制备多级中空棒状普鲁士蓝的合成方法[71]; (e~g) PW-HN在1 h、12 h、24 h的场发射扫描电镜(FESEM)图像[72]; (h) PW-HN的横截面FESEM图像[72]
Fig.10 (a) Schematic illustration of the synthesis procedure for Na1.58Fe[Fe(CN)6]0.92 hollow nanospheres and the discharge mechanism of Na1.58Fe[Fe(CN)6]0.92 nanosphere electrodes in sodium-ion batteries.[70].; (b,c) TEM images of hollow Na1.58Fe[Fe(CN)6]0.92[70] ; (d) Synthetic procedures for the preparation of hierarchical hollow rod-like Prussian blue[71]; (e~g) Time-dependent FESEM images of PW-HN after the reaction time of 1 h, 12 h, 24 h[72]; (h) Cross-section FESEM images of PW-HN[72]
表1 通过不同方法改性的PBAs的性能对比
Table 1 Performance comparison of PBAs modified by different methods
PBAs Modification method Discharge specific capacity Cyclic stability Rate capability ref
Na1.56Mn[Fe(CN)6]0.860.14·1.2H2O Chelating agent assisted 133 mAh·g-1 at 15 mA·g-1 80% after 100 cycles at 150 mA·g-1 89 mAh·g-1 at 300 mA·g-1 22
Na1.80Mn[Fe(CN)6]0.98·1.76H2O Chelating agent assisted 144 mAh·g-1 at 0.1 C 72.7% after 2100 cycles at 1 C 86.6 mAh·g-1 at 10 C 25
Na2.01Ni[Fe(CN)6]0.85·1.61H2O Chelating agent assisted 86.3 mAh·g-1 at 0.2C 90.4% after 800 cycles at 0.5 C 74.9 mAh·g-1 at 10 C 32
Na2.2Ni[Fe(CN)6]0.80.2·2.5H2O Chelating agent assisted 76.4 mAh·g-1 at 0.2 C 90.4% after 16 000 cycles at 20 C 71.9 mAh·g-1 at 10 C 33
Na1.92Mn[Fe(CN)6]0.98·1.38H2O Chelating agent assisted 152.8 mAh·g-1 at 10 mA·g-1 82 % after 500 cycles at 100 mA·g-1 110.3 mAh·g-1 at 1 A·g-1 34
Na1.48Ni[Fe(CN)6]0.89·2.87H2O Chelating agent assisted 85.7 mAh·g-1 at 0.1 C 78% after 1200 cycles at 50 C 66.2 mAh·g-1 at 50 C 35
Na0.22Ni[Fe(CN)6]0.76·3.67H2O Chelating agent assisted 78 mAh·g-1 at 17 mA·g-1 97.3% after 1200 cycles at
300 mAh·g-1
57.5 mAh·g-1 at 4.25 A·g-1 36
Na1.87Co[Fe(CN)6]0.98·2.2H2O Increase Na+ concentration 151 mAh·g-1 at 20 mA·g-1 85.2% after 100 cycles at 20 mA·g-1 115 mAh·g-1 at 400 mA·g-1 26
Na1.96Mn[Mn(CN)6]0.990.01·2H2O Increase Na+ concentration 209 mAh·g-1 at 0.2 C 75% after 100 cycles at 2 C - 39
NaxFe[Fe(CN)6]y·nH2O Increase Na+ concentration 130 mAh·g-1 at 0.2 C - 110 mAh·g-1 at 5 C 40
Na1.52Ni0.24Fe0.76[Fe(CN)6]0.95·3.06H2O Element doping 105.9 mAh·g-1 at 20 mA·g-1 73.1% after 1000 cycles at 1 A·g-1 55.5 mAh·g-1 at 2 A·g-1 44
Na2Cu0.6Ni0.4[Fe(CN)6] Element doping 62 mAh·g-1 at 0.5 C 96% after 1000 cycles at 10 C 56 mAh·g-1 at 10 C 45
Na1.68Ni0.14Co0.86[Fe(CN)6]0.84 Element doping 145 mAh·g-1 at 15 mA·g-1 90% after 100 cycles at 750 mA·g-1 110 mAh·g-1 at 750 mA·g-1 46
Na1.85Ni0.40Co0.31Fe0.29
[Fe(CN)6]0.97·2.5H2O
Element doping 120.4 mAh·g-1 at 20 mA·g-1 95.6% after 1000 cycles at 2 A·g-1 80 mA·h-1 at 2 A·g-1 48
Na1.61K0.13Ni[Fe(CN)6]0.89·
1.48H2O
Element doping 87.1 mAh·g-1 at 10 mA·g-1 86.1% after 500 cycles at 800 mA·g-1 68.2 mAh·g-1 at 200 mA·g-1 52
Mn[Fe(CN)6]@Ni[Fe(CN)6] Inactive layer coating 126.9 mAh·g-1 at 0.5 C 74.3% after 800 cycles at 1 C 87.2 mAh·g-1 at 10 C 54
NNiFCN@NFFCN Inactive layer coating 113.67 mAh·g-1 at 20 mA·g-1 83.18 after 100 cycles at 500 mA·g-1 82.9 mAh·g-1 at 500 mA·g-1 55
FeHCF@CuHCF Inactive layer coating 89 mAh·g-1 at 50 mA·g-1 80.6 after 1000 cycles at 50 mA·g-1 51.9 mAh·g-1 at 1.6 A g-1 56
NaMn[Fe(CN)6]/RGO Conductive agent
composite technology
161 mAh·g-1 at 20 mA·g-1 - 90 mAh·g-1 at 1 A·g-1 59
NaxFe[Fe(CN)6]/CNT Conductive agent
composite technology
142 mAh·g-1 at 0.1 C at -25℃ 86% after 1000 cycles at 2.4 C at -25℃ 88.4 mA·h g-1 at 2.4 C at -25℃ 63
NaxFe[Fe(CN)6]@PANI Conductive agent
composite technology
108.3 mAh·g-1 at 100 mA·g-1 93.4% after 500 cycles at 100 mA·g-1 90.3 mAh·g-1 at 2 A·g-1 65
Na2Fe[Fe(CN)6]@PANI Conductive agent
composite technology
149.9 mAh·g-1 at 1 C 62.7% after 500 cycles at 1 C 125.6 mAh·g-1 at 20 C 66
Na1.58Fe[Fe(CN)6]0.92 Self-assembly 142 mAh·g-1 at 0.1 C 90% after 800 cycles at 2 C 101 mAh·g-1 at 5 C 70
Na0.99Mn0.37Fe0.63[Fe(CN)6]0.96·1.36H2O Self-assembly 117.3 mAh·g-1 at 1 C 98.5% after 200 cycles at 1 C 92.4 mAh·g-1 at 20 C 71
Na3.1Fe4[Fe(CN)6]3 Self-assembly 115 mAh·g-1 at 2 C 65% after 10 000 cycles at 10 C 83 mAh·g-1 at 50 C 72
[1]
Hwang J Y, Myung S T, Sun Y K. Chem. Soc. Rev., 2017, 46(12): 3529.

doi: 10.1039/C6CS00776G     URL    
[2]
Hu Y S, Komaba S, Forsyth M, Johnson C, Rojo T. Small Methods, 2019, 3(4): 1900184.

doi: 10.1002/smtd.v3.4     URL    
[3]
Wang Z N, Sougrati M T, He Y W, Le Pham P N, Xu W, Iadecola A, Ge R L, Zhou W H, Zheng Q, Li X F, Wang J H. Nano Energy, 2023, 109: 108256.

doi: 10.1016/j.nanoen.2023.108256     URL    
[4]
Choi A, Kim T, Kim M H, Lee S W, Jung Y H, Lee H W. Adv. Funct. Mater., 2022, 32(19): 2111901.

doi: 10.1002/adfm.v32.19     URL    
[5]
Wang B Q, Han Y, Wang X, Bahlawane N, Pan H G, Yan M, Jiang Y Z. iScience, 2018, 3: 110.

doi: 10.1016/j.isci.2018.04.008     URL    
[6]
Shen X, Zhou Q, Han M, Qi X G, Li B, Zhang Q Q, Zhao J M, Yang C, Liu H Z, Hu Y S. Nat. Commun., 2021, 12: 2848.

doi: 10.1038/s41467-021-23132-w    
[7]
Deng L, Yu F D, Xia Y, Jiang Y S, Sui X L, Zhao L, Meng X H, Que L F, Wang Z B. Nano Energy, 2021, 82: 105659.

doi: 10.1016/j.nanoen.2020.105659     URL    
[8]
Liu Q N, Hu Z, Li W J, Zou C, Jin H L, Wang S, Chou S L, Dou S X. Energy Environ. Sci., 2021, 14(1): 158.

doi: 10.1039/D0EE02997A     URL    
[9]
Wang C C, Liu L J, Zhao S, Liu Y C, Yang Y B, Yu H J, Lee S, Lee G H, Kang Y M, Liu R, Li F J, Chen J. Nat. Commun., 2021, 12: 2256.

doi: 10.1038/s41467-021-22523-3    
[10]
Li C F, Li A, Li M J, Xiong P X, Liu Y S, Cheng M R, Geng D L, Xu Y H. ACS Appl. Mater. Interfaces, 2022, 14(21): 24462.

doi: 10.1021/acsami.2c05005     URL    
[11]
Geng W G, Zhang Z H, Yang Z L, Tang H Y, He G. Chem. Commun., 2022, 58(28): 4472.

doi: 10.1039/D2CC00699E     URL    
[12]
Sun J G, Ye H L, Oh J A S, Plewa A, Sun Y, Wu T, Sun Q M, Zeng K Y, Lu L. Energy Storage Mater., 2021, 43: 182.
[13]
Peng J, Zhang W, Liu Q N, Wang J Z, Chou S L, Liu H K, Dou S X. Adv. Mater., 2022, 34(15): 2108384.

doi: 10.1002/adma.v34.15     URL    
[14]
Marzak P, Yun J, Dorsel A, Kriele A, Gilles R, Schneider O, Bandarenka A S. J. Phys. Chem. C, 2018, 122(16): 8760.

doi: 10.1021/acs.jpcc.8b00395     URL    
[15]
Nai J W, Zhang J T, Lou X W (David), Chem, 2018, 4(8): 1967.

doi: 10.1016/j.chempr.2018.07.001     URL    
[16]
Wu X Y, Sun M Y, Shen Y F, Qian J F, Cao Y L, Ai X P, Yang H X. ChemSusChem, 2014, 7(2): 407.

doi: 10.1002/cssc.201301036     URL    
[17]
Niu L, Chen L, Zhang J, Jiang P, Liu Z P. J. Power Sources, 2018, 380: 135.

doi: 10.1016/j.jpowsour.2018.01.083     URL    
[18]
Peng J, Li C, Yin J W, Wang J S, Yu Y H, Shen Y, Fang J, Chen A N, Xu Y, Rehman R, Fang C, Miao L, Jiang R Z, Li Q, Han J T, Huang Y H. ACS Appl. Energy Mater., 2019, 2(1): 187.

doi: 10.1021/acsaem.8b01686    
[19]
Moritomo Y, Yoshida Y, Iwaizumi H, Inoue D, Nagai I, Shibata T. J. Phys. Soc. Jpn., 2021, 90(1): 013601.

doi: 10.7566/JPSJ.90.013601     URL    
[20]
Li M, Mullaliu A, Passerini S, Giorgetti M. Batteries, 2021, 7(1): 5.

doi: 10.3390/batteries7010005     URL    
[21]
Baster D, Kondracki Ł, Oveisi E, Trabesinger S, Girault H H. ACS Appl. Energy Mater., 2021, 4(9): 9758.

doi: 10.1021/acsaem.1c01832     URL    
[22]
Zuo D X, Wang C P, Wu J W, Qiu H J, Zhang Q, Han J J, Liu X J. Solid State Ion., 2019, 340: 115025.

doi: 10.1016/j.ssi.2019.115025     URL    
[23]
Jiang M W, Hou Z D, Wang J J, Ren L B, Zhang Y, Wang J G. Nano Energy, 2022, 102: 107708.

doi: 10.1016/j.nanoen.2022.107708     URL    
[24]
Wheeler S, Capone I, Day S, Tang C, Pasta M. Chem. Mater., 2019, 31(7): 2619.

doi: 10.1021/acs.chemmater.9b00471    
[25]
Shen Z L, Guo S H, Liu C L, Sun Y P, Chen Z, Tu J, Liu S Y, Cheng J P, Xie J, Cao G S, Zhao X B. ACS Sustainable Chem. Eng., 2018, 6(12): 16121.

doi: 10.1021/acssuschemeng.8b02758     URL    
[26]
Li C, Zang R, Li P X, Man Z M, Wang S J, Li X M, Wu Y H, Liu S S, Wang G X. Chem. Asian J., 2018, 13(3): 342.

doi: 10.1002/asia.v13.3     URL    
[27]
Xie B X, Zuo P J, Wang L G, Wang J J, Huo H, He M X, Shu J, Li H F, Lou S F, Yin G P. Nano Energy, 2019, 61: 201.

doi: 10.1016/j.nanoen.2019.04.059     URL    
[28]
Xu L, Li H, Wu X Y, Shao M M, Liu S Y, Wang B, Zhao G Y, Sheng P, Chen X, Han Y, Cao Y L, Ai X P, Qian J F, Yang H X. Electrochem. Commun., 2019, 98: 78.

doi: 10.1016/j.elecom.2018.11.019    
[29]
Yan C X, Zhao A L, Zhong F P, Feng X M, Chen W H, Qian J F, Ai X P, Yang H X, Cao Y L. Electrochimica Acta, 2020, 332: 135533.

doi: 10.1016/j.electacta.2019.135533     URL    
[30]
Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Nat. Commun., 2020, 11: 980.

doi: 10.1038/s41467-020-14444-4    
[31]
Qin M S, Ren W H, Jiang R X, Li Q, Yao X H, Wang S Q, You Y, Mai L Q. ACS Appl. Mater. Interfaces, 2021, 13(3): 3999.

doi: 10.1021/acsami.0c20067     URL    
[32]
Xu Y, Chang M, Fang C, Liu Y, Qiu Y G, Ou M Y, Peng J, Wei P, Deng Z, Sun S X, Sun X P, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2019, 11(33): 29985.

doi: 10.1021/acsami.9b10312     URL    
[33]
Sun Y P, Xu Y L, Xu Z, Sun Y, Xu X W, Tu J, Xie J, Liu S Y, Zhao X B. J. Mater. Chem. A, 2021, 9(37): 21228.

doi: 10.1039/D1TA05998J     URL    
[34]
Peng F W, Yu L, Gao P Y, Liao X Z, Wen J G, He Y S, Tan G Q, Ren Y, Ma Z F. J. Mater. Chem. A, 2019, 7(39): 22248.

doi: 10.1039/C9TA08603J     URL    
[35]
Xu Y, Wan J, Huang L, Ou M Y, Fan C Y, Wei P, Peng J, Liu Y, Qiu Y G, Sun X P, Fang C, Li Q, Han J T, Huang Y H, Alonso J A, Zhao Y S. Adv. Energy Mater., 2019, 9(4): 1803158.

doi: 10.1002/aenm.v9.4     URL    
[36]
Xu Y, Ou M Y, Liu Y, Xu J, Sun X P, Fang C, Li Q, Han J T, Huang Y H. Nano Energy, 2020, 67: 104250.

doi: 10.1016/j.nanoen.2019.104250     URL    
[37]
Xu Y, Wan J, Huang L, Xu J, Ou M Y, Liu Y, Sun X P, Li S, Fang C, Li Q, Han J T, Huang Y H, Zhao Y S. Energy Storage Mater., 2020, 33: 432.
[38]
Wu X Y, Deng W W, Qian J F, Cao Y L, Ai X P, Yang H X. J. Mater. Chem. A, 2013, 1(35): 10130.

doi: 10.1039/c3ta12036h     URL    
[39]
Lee H W, Wang R Y, Pasta M, Woo Lee S, Liu N, Cui Y. Nat. Commun., 2014, 5: 5280.

doi: 10.1038/ncomms6280    
[40]
Chen Y C, Woo H J, Rizwan M binti Yahya R, Cui D H, Luo D, Chen L, Arof A K M, Wang F. ACS Appl. Energy Mater., 2019, 2(12): 8570.

doi: 10.1021/acsaem.9b01491     URL    
[41]
Oliver-Tolentino M, González M M, Osiry H, Ramos-Sánchez G, González I. Dalton Trans., 2018, 47(46): 16492.

doi: 10.1039/c8dt03595d     pmid: 30406804
[42]
Xie J P, Ma L, Li J L, Yin X Q, Wen Z R, Zhong Y L, Li C W, Liu Y, Shen Z X, Mai W J, Hong G, Zhang W J. Adv. Mater., 2022, 34(44): 2205625.

doi: 10.1002/adma.v34.44     URL    
[43]
Oliver-Tolentino M A, Vázquez-Samperio J, Arellano-Ahumada S N, Guzmán-Vargas A, Ramírez-Rosales D, Wang J A, Reguera E. J. Phys. Chem. C, 2018, 122(36): 20602.

doi: 10.1021/acs.jpcc.8b05506     URL    
[44]
Wang J, Mi C H, Nie P, Dong S Y, Tang S Y, Zhang X G. J. Electroanal. Chem., 2018, 818: 10.

doi: 10.1016/j.jelechem.2018.04.011     URL    
[45]
Li W F, Zhang F, Xiang X D, Zhang X C. ChemElectroChem, 2018, 5(2): 350.

doi: 10.1002/celc.201700958     URL    
[46]
Peng J, Wang J S, Yi H C, Hu W J, Yu Y H, Yin J W, Shen Y, Liu Y, Luo J H, Xu Y, Wei P, Li Y Y, Jin Y, Ding Y, Miao L, Jiang J J, Han J T, Huang Y H. Adv. Energy Mater., 2018, 8(11): 1702856.

doi: 10.1002/aenm.201702856     URL    
[47]
Ge P, Li S J, Shuai H L, Xu W, Tian Y, Yang L, Zou G Q, Hou H S, Ji X B. Adv. Mater., 2019, 31(3): 1806092.

doi: 10.1002/adma.v31.3     URL    
[48]
Zhang L L, Wei C, Fu X Y, Chen Z Y, Yan B, Sun P P, Chang K J, Yang X L. Carbon Energy, 2021, 3(5): 827.

doi: 10.1002/cey2.v3.5     URL    
[49]
Li J K, He X, Ostendorp S, Zhang L, Hou X, Zhou D, Yan B, Meira D M, Yang Y, Jia H, Schumacher G, Wang J, Paillard E, Wilde G, Winter M, Li J. Electrochimica Acta, 2020, 342: 135928.

doi: 10.1016/j.electacta.2020.135928     URL    
[50]
Shettigar A, Moorthy B, Paulraj V, Kim D K, Bharathi K K. ECS J. Solid State Sci. Technol., 2021, 10(6): 061012.

doi: 10.1149/2162-8777/ac0a42    
[51]
Chen Z Y, Fu X Y, Zhang L L, Yan B, Yang X L. ACS Appl. Mater. Interfaces, 2022, 14(4): 5506.

doi: 10.1021/acsami.1c23793     URL    
[52]
Wei C, Fu X Y, Zhang L L, Liu J, Sun P P, Gao L, Chang K J, Yang X L. Chem. Eng. J., 2021, 421: 127760.

doi: 10.1016/j.cej.2020.127760     URL    
[53]
Yang D Z, Xu J, Liao X Z, He Y S, Liu H M, Ma Z F. Chem. Commun., 2014, 50(87): 13377.

doi: 10.1039/C4CC05830E     URL    
[54]
Feng F, Chen S L, Zhao S Q, Zhang W L, Miao Y G, Che H Y, Liao X Z, Ma Z F. Chem. Eng. J., 2021, 411: 128518.

doi: 10.1016/j.cej.2021.128518     URL    
[55]
Sun J G, Ye H L, Oh J A S, Sun Y, Plewa A, Wang Y M, Wu T, Zeng K Y, Lu L. Nano Res., 2022, 15(3): 2123.

doi: 10.1007/s12274-021-3844-7    
[56]
Wang Z H, Huang Y X, Luo R, Wu F, Li L, Xie M, Huang J Q, Chen R J. J. Power Sources, 2019, 436: 226868.

doi: 10.1016/j.jpowsour.2019.226868     URL    
[57]
Zuo D X, Wang C P, Han J J, Han Q H, Hu Y N, Wu J W, Qiu H J, Zhang Q, Liu X J. J. Mater. Sci. Technol., 2022, 114: 180.

doi: 10.1016/j.jmst.2021.11.020     URL    
[58]
Parajuli D, Tanaka H, Sakurai K, Hakuta Y, Kawamoto T. Materials, 2021, 14(5): 1151.

doi: 10.3390/ma14051151     URL    
[59]
Wang H, Xu E Z, Yu S M, Li D T, Quan J J, Xu L, Wang L, Jiang Y. ACS Appl. Mater. Interfaces, 2018, 10(40): 34222.

doi: 10.1021/acsami.8b11157     URL    
[60]
Wang H, Wang L, Chen S M, Li G P, Quan J J, Xu E Z, Song L, Jiang Y. J. Mater. Chem. A, 2017, 5(7): 3569.

doi: 10.1039/C6TA10592K     URL    
[61]
Prabakar S J R, Jeong J, Pyo M. RSC Adv., 2015, 5(47): 37545.

doi: 10.1039/C5RA04769B     URL    
[62]
Luo J H, Sun S X, Peng J, Liu B, Huang Y Y, Wang K, Zhang Q, Li Y Y, Jin Y, Liu Y, Qiu Y G, Li Q, Han J T, Huang Y H. ACS Appl. Mater. Interfaces, 2017, 9(30): 25317.

doi: 10.1021/acsami.7b06334     URL    
[63]
You Y, Yao H R, Xin S, Yin Y X, Zuo T T, Yang C P, Guo Y G, Cui Y, Wan L J, Goodenough J B. Adv. Mater., 2016, 28(33): 7243.

doi: 10.1002/adma.201600846    
[64]
Yuan Y B, Bin D, Dong X L, Wang Y G, Wang C X, Xia Y Y. ACS Sustainable Chem. Eng., 2020, 8(9): 3655.

doi: 10.1021/acssuschemeng.9b06588     URL    
[65]
Zhang Q, Fu L, Luan J Y, Huang X B, Tang Y G, Xie H L, Wang H Y. J. Power Sources, 2018, 395: 305.

doi: 10.1016/j.jpowsour.2018.05.085     URL    
[66]
Luo Y, Yang L X, Liu Q, Yan Y W. R. Soc. Open Sci., 2021, 8(11): 211092.

doi: 10.1098/rsos.211092     URL    
[67]
Peng F W, Yu L, Yuan S Q, Liao X Z, Wen J G, Tan G Q, Feng F, Ma Z F. ACS Appl. Mater. Interfaces, 2019, 11(41): 37685.

doi: 10.1021/acsami.9b12041     URL    
[68]
Wang X, Wang B Q, Tang Y X, Xu B B, Liang C, Yan M, Jiang Y Z. J. Mater. Chem. A, 2020, 8(6): 3222.

doi: 10.1039/C9TA12376H     URL    
[69]
Kim D S, Yoo H, Park M S, Kim H. J. Alloys Compd., 2019, 791: 385.

doi: 10.1016/j.jallcom.2019.03.317     URL    
[70]
Tang X, Liu H, Su D W, Notten P H L, Wang G X. Nano Res., 2018, 11(8): 3979.

doi: 10.1007/s12274-018-1979-y    
[71]
Feng F, Chen S L, Liao X Z, Ma Z F. Small Methods, 2019, 3(4): 1800259.

doi: 10.1002/smtd.v3.4     URL    
[72]
Ren W H, Zhu Z X, Qin M S, Chen S, Yao X H, Li Q, Xu X M, Wei Q L, Mai L Q, Zhao C. Adv. Funct. Mater., 2019, 29(15): 1806405.

doi: 10.1002/adfm.v29.15     URL    
[73]
Lim C Q X, Tan Z K. ACS Appl. Energy Mater., 2021, 4(6): 6214.

doi: 10.1021/acsaem.1c00987     URL    
[74]
Wang P Y, Li Y H, Zhu D G, Gong F L, Fang S M, Zhang Y H, Sun S M. Dalton Trans., 2022, 51(25): 9622.

doi: 10.1039/D2DT01171A     URL    
[75]
Peng J, Zhang W, Hu Z, Zhao L F, Wu C, Peleckis G, Gu Q F, Wang J Z, Liu H K, Dou S X, Chou S L. Nano Lett., 2022, 22(3): 1302.

doi: 10.1021/acs.nanolett.1c04492     URL    
[1] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[2] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[7] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[8] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[9] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[12] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[13] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[14] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[15] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.