English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 1005-1017 DOI: 10.7536/PC220811 前一篇   后一篇

• 综述 •

杂原子掺杂石墨烯的制备及其作为超级电容器电极材料

吴云鹏1,2, 王晓峰1, 李本仙1, 赵旭东1,*(), 刘晓旸1,*()   

  1. 1 吉林大学无机合成与制备化学国家重点实验室 长春 130012
    2 长春理工大学化学与环境工程学院 长春 130022
  • 收稿日期:2022-08-15 修回日期:2023-02-15 出版日期:2023-07-24 发布日期:2023-06-15
  • 基金资助:
    国家自然科学基金项目(22171101)

Preparation of Heteroatom Doped Graphene and Its Application as Electrode Materials for Supercapacitors

Yunpeng Wu1,2, Xiaofeng Wang1, Benxian Li1, Xudong Zhao1(), Xiaoyang Liu1()   

  1. 1 State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University,Changchun 130012, China
    2 School of Chemistry and Environmental Engineering, Changchun University of Science and Technology,Changchun 130022, China
  • Received:2022-08-15 Revised:2023-02-15 Online:2023-07-24 Published:2023-06-15
  • Contact: * e-mail: liuxy@jlu.edu.cn(Xiaoyang Liu); xdzhao@jlu.edu.cn(Xudong Zhao)
  • Supported by:
    National Natural Science Foundation of China(22171101)

石墨烯具有比表面积大、导电性高等特点,在电化学储能领域得到了广泛的关注。然而其作为电极材料时体积能量密度较低,因此在应用中存在着一定的困难。杂原子掺杂是一种提高石墨烯电化学性质的有效手段,可以增强石墨烯作为电极材料时的储能性能。本文概述了杂原子掺杂石墨烯的制备方法,介绍了不同种类的杂原子掺杂对石墨烯电化学性质的影响,及其应用于超级电容器的代表性工作,最后展望了该研究领域未来的发展方向。

Owing to its vast surface area and remarkable electrical conductivity, graphene has attracted extensive attention in the realm of electrochemical energy storage. Nevertheless, its volumetric energy density as an electrode material is quite low, thus presenting certain difficulties in its application as an electrode material. Heteroatom doping is a viable approach to enhance the electrochemical properties of graphene, thereby augmenting the energy storage capability of graphene as an electrode material. This paper provides a summary of the preparation of heteroatom-doped graphene, examines how heteroatom doping affects graphene’s electrochemical properties, explores the application of graphene in supercapacitors, and finally looks ahead to the future development course of this research domain.

Contents

1 Introduction

2 Preparation of heteroatom doped graphene

2.1 Chemical vapor deposition (CVD)

2.2 Chemical synthesis

2.3 Mechanical ball milling

2.4 Hydrothermal

2.5 Other methods

3 Application of heteroatom doped graphene as electrode material for supercapacitor

3.1 Nitrogen doping

3.2 Boron doping

3.3 Phosphorus doping

3.4 Sulfur doping

3.5 Other heteroatoms doping

3.6 Co-doping

4 Conclusion and outlook

()
图1 杂原子掺杂石墨烯的文章发表数量变化趋势
Fig.1 Trends in the amount of articles published about heteroatom-doped graphene
图2 NiNOG的(a)制备过程示意图;(b)SEM图像;(c)XPS光谱[40]
Fig.2 (a) Schematic illustration of the preparation process of NiNOG; (b) SEM image of NiNOG; (c) XPS spectra of NiNOG[40]. Copyright 2022, Elsevier
图3 不同环境下氧化石墨烯包覆MS的水热处理示意图[49]
Fig.3 Schematic illustration of the hydrothermal treatment of GO coated MS in different conditions[49]. Copyright 2020, Chinese Chemical Society
图4 超掺杂法制备(a) 氮掺杂石墨烯, (b) 磷掺杂石墨烯示意图[56,57]
Fig.4 Schematic of the preparation of (a) nitrogen doping graphene, and (b) phosphorus doping graphene by elemental superdoping[56,57] Copyright 2019, American Chemical Society; 2016, Springer
图5 (a) 超级电容器的组成;(b, c) EDLC和PC充电时的工作原理
Fig.5 (a) Composition of a supercapacitor; (b, c) schematic of the charge storage mechanism of EDLC and PC
图6 N-6、N-5和N-Q的结构示意图
Fig.6 Schematic structures of N-6, N-5 and N-Q
Fig.7 BC3、BC2O和BCO2的结构示意图 Schematic structures of BC3、BC2O和BCO2
图8 磷掺杂石墨烯中含磷结构的示意图
Fig.8 Schematic diagram of phosphorus-containing structure in phosphorus-doped graphene
图9 (a)PGA的SEM图像;(b)1 A/g电流密度下,PGA电极的循环稳定性(插图为第1次和第10 000次循环的CV曲线)[73]
Fig.9 (a) SEM image of PGA; (b) cycle stability of PGA electrode at 1 A/g (Inset: CV profile for 1st and 10 000th cycle)[73]. Copyright 2020, ESG
图10 硫掺杂石墨烯中含硫结构的示意图
Fig.10 Schematic diagram of Sulfur-containing structure in sulfur-doped graphene
图11 掺杂原子种类及其特性
Fig.11 Species and characteristics of doped atoms
表1 杂原子掺杂石墨烯作为超级电容器电极材料的性能比较
Table 1 Performance of heteroatom-doped graphene as electrode materials for supercapacitors
Material Atom(s) Synthesis method/ React condition Dopant Carbon source Performance Ref
1 N-HtrGO N Hydrothermal/150℃, 12 h Urea GO 244 F/g at 50 mV/s, 105% at 2000 cycles 86
2 NHGNSs N Thermally annealed/ 360℃, 5 h NH3 GO 126 F/g at 1 A/g, 91% at 2000 cycles 66
3 PG-Ni N Thermally annealed/ 800℃, 2 h N2 GO 575 F/g at 0.5 A/g, 89.5% at 10 000 cycles 68
4 FNG N Ball milling/500 rpm, 24 h Melamine Expanded graphite 83.8 mF/cm2 at 0.6 mA/cm2, 93.8% at 5000 cycles 38
5 NG-DWCNT N CVD/ 1300℃ under Ar Urea Ethanol 563 F/g at 50 A/g, 94.35% at 5000 cycles 27
6 NGH N Hydrothermal/ 90℃, 4 h Carbamide GO 199.8 F/g at 2 A/g, 97% at 20000 cycles 87
7 NG N Hydrogel strategy Pyrrole GO 455.4 F/g at 1 A/g, 97.4% at 5000 cycles 88
8 BMG B Hydrothermal/180℃, 4 h Boric acid GO 336 F/g at 0.1 A/g, 98% at 5000 cycles 89
9 HTBAGO B Supercritical fluid processing/400℃, 1 h Boric acid GO 286 F/g at 1 A/g, 96% at 10 000 cycles 70
10 B-rGO B Electrochemical synthesis Boric acid GO 446 F/g at 0.1 A/g, 95.6% at 2000 cycles 90
11 BGNS B Solvothermal/150℃, 12 h Boric acid GO 125 F/g at 1 A/g, 83% at 2000 cycles 91
12 P-TRG P Thermal annealing/ 800℃, 30 min H3PO4 GO 115 F/g at 0.05 A/g, 97% at 5000 cycles 72
13 PO-graphene P Electrochemical synthesis (NH4)3PO4 Graphite rod 1634.2 F/g at 3.5 mA/cm2, 67% at 500 cycles 92
14 PGA P Solvothermal/150℃, overnight Phytic Acid GO 225.3 F/g at 1 A/g, 95% at 10 000 cycles 73
15 PGO P Supercritical fluid processing/400℃, 1 h Na3PO4 GO 518 F/g at 1 A/g, 98% at 5000 cycles 93
16 S-GEs S Electrochemical synthesis H2SO4 Pencil graphite 1833 mF/cm2 at 10 mA/cm2, 95% at 1000 cycles 74
17 S@G S Heat treatment/155℃, 8 h S Nanomesh graphene 257 F/g at 0.25 A/g, 87% at 10 000 cycles 94
18 S-rGO S Microwave-assisted synthesis/140℃, 30 min Na2S GO 237.6 F/g at 0.1 A/g, 113% at 5000 cycles 75
19 L-P LIG S Laser direct writing Polyethersulfone Lignin 22 mF/cm2 at 0.05 mA/cm2, 89.8% at 9000 cycles 95
20 Cl-RGOFs Cl Hydrothermal/180℃, 3 h HCl GO 210 F/g at 1 A/g, 94.3% at 5000 cycles 77
21 FGA F Hydrothermal/150℃, 12 h HF GO 279.8 F/g at 0.5 A/g, 94.3% at 5000 cycles 96
22 NiNOG Ni, N, O Ball milling/ 400 rpm, 10 h Ni(NO3)2·6H2O Melamine Graphite 532 F/g at 1 A/g, 87.5% at 10 000 cycles 40
23 NP-rGO N, P Supramolecular
polymerization
Melamine
Phytic acid
GO 416 F/g at 1 A/g, 94.63% at 10 000 cycles 97
24 s-SPG S, P Thermal activation/ 900℃, 1 h Phytic acid
Thioglycolic acid
GO 168 F/g at 1 A/g, 91.7% at 2000 cycles 54
25 N, S, PHHGO N, S, P Hydrothermal/ 140℃, 2 h NH4H2PO4
L-cysteine
GO 295 F/g at 1 A/g, 93.5% at 10 000 cycles 85
26 S, N-FLG N, S Microwave irradiation/900 W and 2.45 GHz for a few seconds H2SO4 HNO3 Graphite 298 F/g at 1 A/g, 95% at 10 000 cycles 84
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896     pmid: 15499015
[2]
Pan X R, Ji J H, Zhang N N, Xing M Y. Chin. Chemical Lett., 2020, 31(6): 1462.

doi: 10.1016/j.cclet.2019.10.002     URL    
[3]
Ares P, Novoselov K S. Nano Mater. Sci., 2022, 4(1): 3.
[4]
Han J H, Huang G, Wang Z L, Lu Z, Du J, Kashani H, Chen M W. Adv. Mater., 2018, 30(38): 1803588.

doi: 10.1002/adma.v30.38     URL    
[5]
Nandee R, Chowdhury M A, Shahid A, Hossain N, Rana M. Results Eng., 2022, 15: 100474.

doi: 10.1016/j.rineng.2022.100474     URL    
[6]
Sung Y Y, Vejayan H, Baddeley C J, Richardson N V, Grillo F, Schaub R. ACS Nano, 2022, 16(7): 10281.

doi: 10.1021/acsnano.1c11372     URL    
[7]
Luo H, Yu G. Chem. Mater., 2022, 34(8): 3588.

doi: 10.1021/acs.chemmater.1c04215     URL    
[8]
Zhu J Y, Wang L X, Gan X M, Tang T T, Qin F W, Luo W X, Li Q Q, Guo N N, Zhang S, Jia D Z, Song H H. Energy Storage Mater., 2022, 47: 158.
[9]
Mondal S, Das S R, Sahoo L, Dutta S, Gautam U K. J. Am. Chem. Soc., 2022, 144(6): 2580.

doi: 10.1021/jacs.1c10636     URL    
[10]
Guo T H, Wang H Y, Han W H, Zhang J, Wang C L, Ma T S, Zhang Z Q, Deng Z Q, Chen D, Xu W W, Liu X H, Huang L K, Hu Z Y, Zhu Y J. Nano Energy, 2022, 98: 107298.

doi: 10.1016/j.nanoen.2022.107298     URL    
[11]
Chen W Q, Xiao P S, Chen H H, Zhang H T, Zhang Q C, Chen Y S. Adv. Mater., 2019, 31(9): 1802403.

doi: 10.1002/adma.v31.9     URL    
[12]
Lin X R, Hu Y X, Hu K L, Lin X, Xie G Q, Liu X J, Reddy K M, Qiu H J. ACS Mater. Lett., 2022, 4(5): 978.
[13]
Yoshii T, Chida K, Nishihara H, Tani F. Chem. Commun., 2022, 58(22): 3578.

doi: 10.1039/D1CC07228E     URL    
[14]
Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20): 7067.

doi: 10.1039/C4CS00141A     URL    
[15]
Tiwari S K, Mishra R K, Ha S K, Huczko A. ChemNanoMat, 2018, 4(7): 598.

doi: 10.1002/cnma.v4.7     URL    
[16]
Zhan D, Yan J X, Lai L F, Ni Z H, Liu L, Shen Z X. Adv. Mater., 2012, 24(30): 4055.

doi: 10.1002/adma.201200011     URL    
[17]
Yang Y L, Wu M G, Zhu X W, Xu H, Ma S, Zhi Y F, Xia H, Liu X M, Pan J, Tang J Y, Chai S P, Palmisano L, Parrino F, Liu J L, Ma J Z, Wang Z L, Tan L, Zhao Y F, Song Y F, Singh P, Raizada P, Jiang D L, Li D, Geioushy R A, Ma J Z, Zhang J T, Hu S, Feng R J, Liu G, Liu M H, Li Z H, Shao M F, Li N, Peng J H, Ong W J, Kornienko N, Xing Z Y, Fan X J, Ma J M. Chin. Chemical Lett., 2019, 30(12): 2065.

doi: 10.1016/j.cclet.2019.11.001     URL    
[18]
Shao G F, Ovsianytskyi O, Bekheet M F, Gurlo A. Chem. Commun., 2020, 56(3): 450.

doi: 10.1039/C9CC09092D     URL    
[19]
Vangelidis I, Bellas D V, Suckow S, Dabos G, Castilla S, Koppens F H L, Ferrari A C, Pleros N, Lidorikis E. ACS Photonics, 2022, 9(6): 1992.

doi: 10.1021/acsphotonics.2c00100     pmid: 35726242
[20]
Ye X H, Qi M, Yang H Y, Mediko F S, Qiang H, Yang Y L, He C Z. Chem. Eng. Sci., 2022, 247: 117017.

doi: 10.1016/j.ces.2021.117017     URL    
[21]
Chen K N, Wang Q R, Niu Z Q, Chen J. J. Energy Chem., 2018, 27(1): 12.

doi: 10.1016/j.jechem.2017.08.015     URL    
[22]
Wang Y M, Wu X L, Han Y Q, Li T X. J. Energy Storage, 2021, 42: 103053.

doi: 10.1016/j.est.2021.103053     URL    
[23]
Kumar R, Sahoo S, Joanni E, Singh R K, Maegawa K, Tan W K, Kawamura G, Kar K K, Matsuda A. Mater. Today, 2020, 39: 47.

doi: 10.1016/j.mattod.2020.04.010     URL    
[24]
Rösicke F, Gluba M A, Shaykhutdinov T, Sun G G, Kratz C, Rappich J, Hinrichs K, Nickel N H. Chem. Commun., 2017, 53(67): 9308.

doi: 10.1039/C7CC03951D     URL    
[25]
Sun X L, Zhang J, Wang X N, Zhang C Y, Hu P G, Mu Y B, Wan X B, Guo Z X, Lei S B. Chem. Commun., 2013, 49(87): 10317.

doi: 10.1039/c3cc45431b     URL    
[26]
Sealy C. Nano Today, 2022, 43: 101442.

doi: 10.1016/j.nantod.2022.101442     URL    
[27]
Muangrat W, Obata M, Htay M T, Fujishige M, Dulyaseree P, Wongwiriyapan W, Hashimoto Y. FlatChem, 2021, 29: 100292.

doi: 10.1016/j.flatc.2021.100292     URL    
[28]
Ion-Ebrşu D, Dorin Andrei R, Enache S, Căprărescu S, Negrilă C C, Jianu C, Enache A, Boeraşu I, Carcadea E, Varlam M, Varlam B Ş, Ren J W. Materials, 2021, 14(17): 4952.

doi: 10.3390/ma14174952     URL    
[29]
Ullah S, Liu Y, Hasan M, Zeng W W, Shi Q T, Yang X Q, Fu L, Ta H Q, Lian X Y, Sun J Y, Yang R Z, Liu L J, Rümmeli M H. Nano Res., 2022, 15(2): 1310.

doi: 10.1007/s12274-021-3655-x    
[30]
Zhai Z H, Shen H L, Chen J Y, Li X M, Li Y F. ACS Appl. Mater. Interfaces, 2020, 12(2): 2805.

doi: 10.1021/acsami.9b17546     URL    
[31]
Arkhipova E A, Ivanov A S, Maslakov K I, Savilov S V. Electrochimica Acta, 2020, 353: 136463.

doi: 10.1016/j.electacta.2020.136463     URL    
[32]
Koehler F M, Stark W J. Acc. Chem. Res., 2013, 46(10): 2297.

doi: 10.1021/ar300125w     URL    
[33]
Amaro-Gahete J, Mora M, GutiÉrrez P, Cosano D, Esquivel D, Ruiz J R, JimÉnez-Sanchidrián C, García M C, Romero-Salguero F J. J. Phys. D: Appl. Phys., 2020, 53(43): 435202.

doi: 10.1088/1361-6463/aba069     URL    
[34]
Rio-Castillo A E, Merino C, Díez-Barra E, Vázquez E. Nano Res., 2014, 7(7): 963.

doi: 10.1007/s12274-014-0457-4     URL    
[35]
Yi M, Shen Z G. J. Mater. Chem. A, 2015, 3(22): 11700.

doi: 10.1039/C5TA00252D     URL    
[36]
Li H N, Zhang H M, Huang K K, Liang D, Zhao D D, Jiang Z Y. Ceram. Int., 2022, 48(12): 17171.

doi: 10.1016/j.ceramint.2022.02.273     URL    
[37]
LeÓn V, Rodriguez A M, Prieto P, Prato M, Vázquez E. ACS Nano, 2014, 8(1): 563.

doi: 10.1021/nn405148t     URL    
[38]
Wu Y P, Liu X Y, Xia D D, Sun Q S, Yu D Y, Sun S G, Liu X L, Teng Y F, Zhang W G, Zhao X D. Chin. Chemical Lett., 2020, 31(2): 559.

doi: 10.1016/j.cclet.2019.04.055     URL    
[39]
Wu Y P, Yu D Y, Feng Y, Han L Y, Liu X L, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(12): 3841.

doi: 10.1016/j.cclet.2021.04.054     URL    
[40]
Liu L Y, Xie Z J, Du X M, Yu D Y, Yang B, Li B, Liu X Y. Chem. Eng. J., 2022, 430: 132815.

doi: 10.1016/j.cej.2021.132815     URL    
[41]
Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4(1): 25.

doi: 10.1038/nnano.2008.329    
[42]
Wu Y P, Feng Y, He Z Y, Yu D Y, Xue Y, Liu X L, Han L Y, Zhao X D, Liu X Y. Chin. Chemical Lett., 2021, 32(11): 3596.

doi: 10.1016/j.cclet.2021.03.062     URL    
[43]
Ang P K, Wang S, Bao Q L, Thong J T L, Loh K P. ACS Nano, 2009, 3(11): 3587.

doi: 10.1021/nn901111s     URL    
[44]
Wu Y P, Sun Q S, Yu D Y, Teng Y F, Liu X L, Feng Y, Han L Y, Zhao X D, Liu X Y. Chem. Commun., 2020, 56(13): 2016.

doi: 10.1039/C9CC08887C     URL    
[45]
Jones S, Pramanik A, Kanchanapally R, Viraka Nellore B P, Begum S, Sweet C, Ray P C. ACS Sustainable Chem. Eng., 2017, 5(8): 7175.

doi: 10.1021/acssuschemeng.7b01351     URL    
[46]
He H J, Huang L H, Zhong Z J, Tan S Z. Appl. Surf. Sci., 2018, 441: 285.

doi: 10.1016/j.apsusc.2018.01.298     URL    
[47]
Zakaria M R, Omar M F, Zainol Abidin M S, Md Akil H, Al Bakri Abdullah M M. Compos. A Appl. Sci. Manuf., 2022, 154: 106756.

doi: 10.1016/j.compositesa.2021.106756     URL    
[48]
Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Langmuir, 2010, 26(20): 16096.

doi: 10.1021/la102425a     URL    
[49]
Ge J, Zhu H W, Yang Y, Xie Y F, Wang G, Huang J, Shi L A, Schmidt O G, Yu S H. CCS Chem., 2020, 2(2): 1.

doi: 10.31635/ccschem.020.201900073     URL    
[50]
Liu H, Zhang M M, Ma T J, Wang Y, Song Z X, Wang A, Huang Z Y. Chem. Eng. Sci., 2021, 238: 116613.

doi: 10.1016/j.ces.2021.116613     URL    
[51]
Zhao Z F, Liu Y, Wan F, Wang S, Zhang N N, Liu L L, Cao A Y, Niu Z Q. Chin. Chemical Lett., 2021, 32(2): 594.

doi: 10.1016/j.cclet.2020.11.047     URL    
[52]
Tao S, Wu D J, Chen S M, Qian B, Chu W S, Song L. Chem. Commun., 2018, 54(60): 8379.

doi: 10.1039/C8CC04255A     URL    
[53]
Sun P P, Li Z H, Zhang L, Dong C, Li Z J, Yao H C, Wang J S, Li G H. J. Alloys Compd., 2018, 750: 607.

doi: 10.1016/j.jallcom.2018.04.024     URL    
[54]
Yu X, Pei C G, Feng L G. Chin. Chemical Lett., 2019, 30(5): 1121.

doi: 10.1016/j.cclet.2019.01.009     URL    
[55]
Arvas M B, Gürsu H, Gencten M, Sahin Y. J. Energy Storage, 2021, 35: 102328.

doi: 10.1016/j.est.2021.102328     URL    
[56]
Lin L H, Fu L, Zhang K Y, Chen J, Zhang W L, Tang S L, Du Y W, Tang N J. ACS Appl. Mater. Interfaces, 2019, 11(42): 39062.

doi: 10.1021/acsami.9b11505     URL    
[57]
Liu Y, Shen Y T, Sun L T, Li J C, Liu C, Ren W C, Li F, Gao L B, Chen J, Liu F C, Sun Y Y, Tang N J, Cheng H M, Du Y W. Nat. Commun., 2016, 7: 10921.

doi: 10.1038/ncomms10921    
[58]
Şahin M, Blaabjerg F, Sangwongwanich A. Energies, 2022, 15(3): 674.

doi: 10.3390/en15030674     URL    
[59]
Nithya V D. J. Energy Storage, 2021, 44: 103380.

doi: 10.1016/j.est.2021.103380     URL    
[60]
Abbas Q, Raza R, Shabbir I, Olabi A G. J. Sci. Adv. Mater. Devices, 2019, 4(3): 341.
[61]
Li Z S, Lin J P, Li B L, Yu C L, Wang H Q, Li Q Y. J. Energy Storage, 2021, 44: 103437.

doi: 10.1016/j.est.2021.103437     URL    
[62]
Cui L L, Xu H P, An Y R, Xu M C, Lei Z J, Jin X J. Adv. Powder Technol., 2022, 33(6): 103571.

doi: 10.1016/j.apt.2022.103571     URL    
[63]
Zhang Y, Lu J C, Li Y, Li B J, Ruan Z L, Zhang H, Hao Z L, Sun S J, Xiong W, Gao L, Chen L, Cai J M. Angewandte Chemie Int. Ed., 2022, 61(28): e202204736.
[64]
Cai J M, Pignedoli C A, Talirz L, Ruffieux P, Söde H, Liang L B, Meunier V, Berger R, Li R J, Feng X L, Müllen K, Fasel R. Nat. Nanotechnol., 2014, 9(11): 896.

doi: 10.1038/nnano.2014.184    
[65]
Zhang Y, Yu Y, Xiao R, Du C, Wan L, Ye H, Chen J, Wang T L, Xie M J. J. Energy Storage, 2022, 54: 105299.

doi: 10.1016/j.est.2022.105299     URL    
[66]
Su F, Zheng S H, Liu F Y, Zhang X, Su F Y, Wu Z S. Chin. Chemical Lett., 2021, 32(2): 914.

doi: 10.1016/j.cclet.2020.07.025     URL    
[67]
Mishra R K, Choi G J, Sohn Y, Lee S H, Gwag J S. Chem. Commun., 2020, 56(19): 2893.

doi: 10.1039/D0CC00249F     URL    
[68]
He X X, Tang Z, Gao L L, Wang F Y, Zhao J P, Miao Z C, Wu X Z, Zhou J, Su Y, Zhuo S P. J. Electroanal. Chem., 2020, 871: 114311.

doi: 10.1016/j.jelechem.2020.114311     URL    
[69]
Agnoli S, Favaro M. J. Mater. Chem. A, 2016, 4(14): 5002.

doi: 10.1039/C5TA10599D     URL    
[70]
Balaji S S, Karnan M, Anandhaganesh P, Tauquir S M, Sathish M. Appl. Surf. Sci., 2019, 491: 560.

doi: 10.1016/j.apsusc.2019.06.151     URL    
[71]
Thirumal V, Pandurangan A, Jayavel R, Ilangovan R. Synth. Met., 2016, 220: 524.

doi: 10.1016/j.synthmet.2016.07.011     URL    
[72]
Wen Y Y, Wang B, Huang C C, Wang L Z, Hulicova-Jurcakova D. Chem. Eur. J., 2015, 21(1): 80.

doi: 10.1002/chem.201404779     URL    
[73]
Nie G S, Deng H C, Huang J, Wang C Y. Int. J. Electrochem. Sci., 2020, 15:12578.

doi: 10.20964/2020.12.32     URL    
[74]
Arvas M B, Gençten M, Sahin Y. Int. J. Energy Res., 2020, 44(3): 1624.

doi: 10.1002/er.v44.3     URL    
[75]
Rosli N H A, Lau K S, Winie T, Chin S X, Chia C H. Diam. Relat. Mater., 2021, 120: 108696.

doi: 10.1016/j.diamond.2021.108696     URL    
[76]
Wang H D, Narasaki M, Zhang Z W, Takahashi K, Chen J, Zhang X. Sci. Rep., 2020, 10: 17562.

doi: 10.1038/s41598-020-74618-4    
[77]
Jiang H D, Ye X K, Zhu Y C, Yue Z Y, Wang L H, Xie J L, Wan Z Q, Jia C Y. ACS Sustainable Chem. Eng., 2019, 7(23): 18844.

doi: 10.1021/acssuschemeng.9b03810     URL    
[78]
Wang M, Chen L L, Zhou J Q, Xu L R, Li X Y, Li L J, Li X. J. Mater. Sci., 2019, 54(1): 483.

doi: 10.1007/s10853-018-2840-0    
[79]
Cheng L L, Hu Y Y, Qiao D D, Zhu Y, Wang H, Jiao Z. Electrochimica Acta, 2018, 259: 587.

doi: 10.1016/j.electacta.2017.11.022     URL    
[80]
Jing C, Guo X L, Xia L H, Chen Y X, Wang X, Liu X Y, Dong B Q, Dong F, Li S C, Zhang Y X. Chem. Eng. J., 2020, 379: 122305.

doi: 10.1016/j.cej.2019.122305     URL    
[81]
Zhang L L, Chen H X, Lu X Y, Wang Y, Tan L L, Sui D P, Qi W. Appl. Surf. Sci., 2020, 529: 147022.

doi: 10.1016/j.apsusc.2020.147022     URL    
[82]
Khandelwal M, Van Tran C, Lee J, Bin In J. Chem. Eng. J., 2022, 428: 131119.

doi: 10.1016/j.cej.2021.131119     URL    
[83]
Pham V H, Hur S H, Kim E J, Kim B S, Chung J S. Chem. Commun., 2013, 49(59): 6665.

doi: 10.1039/c3cc43503b     URL    
[84]
Rotte N K, Naresh V, Muduli S, Reddy V, Srikanth V V S, Martha S K. Electrochimica Acta, 2020, 363: 137209.

doi: 10.1016/j.electacta.2020.137209     URL    
[85]
Liu J L, Zhu Y R, Chen X H, Yi W J. J. Alloys Compd., 2020, 815: 152328.

doi: 10.1016/j.jallcom.2019.152328     URL    
[86]
Lee H J, Abdellah A, Ismail F M, Gumeci C, Dale N, Parrondo J, Higgins D C. Electrochimica Acta, 2021, 397: 139241.

doi: 10.1016/j.electacta.2021.139241     URL    
[87]
Su W F, Gao D M, Zheng W C, Lu F, Liu J Y, Chen X C, Sha O, Chen L. Mater. Technol., 2020, 35(4): 195.

doi: 10.1080/10667857.2019.1662982     URL    
[88]
Jin Y N, Meng Y N, Fan W, Lu H Y, Liu T X, Wu S X. Electrochimica Acta, 2019, 318: 865.

doi: 10.1016/j.electacta.2019.06.107     URL    
[89]
Nankya R, Lee J, Opar D O, Jung H. Appl. Surf. Sci., 2019, 489: 552.

doi: 10.1016/j.apsusc.2019.06.015     URL    
[90]
Muthu R N, Tatiparti S S V. Energy Storage, 2020, 2(4): e134.
[91]
Naresh V, Bhattacharjee U, Martha S K. J. Alloys Compd., 2019, 797: 595.

doi: 10.1016/j.jallcom.2019.04.311     URL    
[92]
Zu L, Gao X, Lian H Q, Cai X M, Li C, Zhong Y, Hao Y C, Zhang Y F, Gong Z, Liu Y, Wang X D, Cui X G. Nanomaterials, 2018, 8(6): 417.

doi: 10.3390/nano8060417     URL    
[93]
Suresh Balaji S, Sandhiya M, Sathish M. J. Energy Storage, 2021, 33: 102085.

doi: 10.1016/j.est.2020.102085     URL    
[94]
Kan Y F, Ning G Q, Ma X L. Chin. Chemical Lett., 2017, 28(12): 2277.

doi: 10.1016/j.cclet.2017.11.026     URL    
[95]
Sun X Z, Liu X J, Li F. Appl. Surf. Sci., 2021, 551: 149438.

doi: 10.1016/j.apsusc.2021.149438     URL    
[96]
Jin T X, Chen J F, Wang C Y, Qian Y, Lu L M. J. Mater. Sci., 2020, 55(26): 12103.

doi: 10.1007/s10853-020-04821-1    
[97]
Cheng H H, Yi F Y, Gao A M, Liang H F, Shu D, Zhou X P, He C, Zhu Z H. ACS Appl. Energy Mater., 2019, 2(6): 4084.

doi: 10.1021/acsaem.9b00204     URL    
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[7] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[8] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[9] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[10] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[11] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[14] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[15] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.