English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1249-1251 DOI: 10.7536/PC220624 前一篇   后一篇

所属专题: 中国化学印记

• 中国化学印记 •

高容量富锂锰基正极材料的结构与电压衰减的起源与解决方案

尹祖伟1, 孙世刚2,*()   

  1. 1 厦门大学能源学院 厦门 361005
    2 厦门大学化学与化工学院 厦门 361005
  • 出版日期:2022-08-02 发布日期:2022-08-02
  • 通讯作者: 孙世刚

Origin of Structure and Voltage Fade of High-Capacity Li-Rich Mn-Rich Cathode for Li-Ion Batteries and Its Solution

Zu-Wei Yin1, Shi-Gang Sun2()   

  1. 1 College of Energy, Xiamen University, Xiamen 361005, China
    2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Online:2022-08-02 Published:2022-08-02
  • Contact: Shi-Gang Sun

Oxygen loss is the current mainstream explanation for voltage decay of Li-rich Mn-rich oxide cathode (LMR), which is conflictive with the ineffectiveness of trivial to stabilize its lattice oxygen and voltage decay. The unclear voltage decay mechanism of high-capacity Li-rich cathode hinders its commercial applications. In this finding, the driving force of voltage decay in LMR is attributed to its lattice displacement/strain, which is concluded by state-of-the-art multiscale characterizations and theoretical calculations, and harmonizes many aspects in this field. Dispersing the Li@Mn6 units in layered structure is an effective method to stabilize the structure of LMR.

()
[1]
Zheng J, Ye Y, Pan F. National Science Review, 2020, 7: 242.

doi: 10.1093/nsr/nwz178     URL    
[2]
Assat G, Tarascon J M. Nature Energy, 2018, 3: 373.

doi: 10.1038/s41560-018-0097-0     URL    
[3]
Yin Z W, Li J T, Huang L, Pan F, Sun S G. Chinese Journal of Structural Chemistry, 2020, 39: 20.
[4]
Zheng Z, Weng M Y, Yang L Y, Hu Z X, Chen Z F, Pan F. Chinese Journal of Structural Chemistry, 2020, 38: 2020.
[5]
Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M, Wang C. Nature Nanotechnology, 2019, 14: 602.

doi: 10.1038/s41565-019-0428-8     URL    
[6]
Singer A, Zhang M, Hy S, Cela D, Fang C, Wynn T A, Qiu B, Xia Y, Liu Z, Ulvestad A, Hua N, Wingert J, Liu H, Sprung M, Zozulya A V, Maxey E, Harder R, Meng Y S, Shpyrko O G. Nature Energy, 2018, 3: 641.

doi: 10.1038/s41560-018-0184-2     URL    
[7]
Liu T C, Liu J J, Li L X, Yu L, Diao J C, Zhou T, Li S N, Dai A, Zhao W G, Xu S Y, Ren Y, Wang L G, Wu T P, Qi R, Xiao Y G, Zheng J X, Cha W, Harder R, Robinson I, Wen J G, Lu J, Pan F, Amine K. Nature, 2022, 606: 305.

doi: 10.1038/s41586-022-04689-y     URL    
[8]
Yin Z W, Peng X X, Li J T, Shen C H, Deng Y P, Wu Z G, Zhang T, Zhang Q, Mo Y, Wang K, Huang L, Zheng H, Sun S G. ACS Applied Materials & Interfaces, 2019, 11: 16214.
[9]
Zheng J, Gu M, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang J G. Nano letters, 2014, 14: 2628.

doi: 10.1021/nl500486y     URL    
[10]
Huang W, Lin C, Qiu J, Li S, Chen Z, Chen H, Zhao W, Ren G, Li X, Zhang M, Pan, F. Chem., 2022, DOI: 10.1016/j.chempr.2022.04.012.

doi: 10.1016/j.chempr.2022.04.012    
[11]
Huang W, Yang L, Chen Z, Liu T, Ren G, Shan P, Zhang B, Chen S, Li S, Li J, Lin C, Zhao W, Qiu J, Fang J, Zhang M, Dong C, Li F, Yang Y, Sun C, Ren Y, Huang Q, Hou G, Dou S, Lu J, Amine K, Pan F. Advanced Materials, 2022, 2202745.
No related articles found!