English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2651-2666 DOI: 10.7536/PC220413 前一篇   后一篇

• 综述 •

纳米片层结构MFI分子筛的合成及应用

邵秀丽1, 王驷骐1, 张轩1, 李军1, 王宁宁1, 王政1,2,*(), 袁忠勇3   

  1. 1 宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室, 化学化工学院 银川 750021
    2 宁夏大学测试分析中心 银川 750021
    3 南开大学材料科学与工程学院新催化材料科学研究所, 先进能源材料化学教育部重点实验室 天津 300350
  • 收稿日期:2022-04-11 修回日期:2022-09-03 出版日期:2022-12-24 发布日期:2022-10-30
  • 通讯作者: 王政
  • 作者简介:

    王政 教授,博士生导师,2004-2008年先后在瑞典Lulea University、英国Manchester Metropolitan University、澳大利亚Monash University从事博士后研究。主要从事分子筛催化剂、超薄分子筛膜、以及功能有机-无机膜材料的应用研究。主持完成了国家973研究计划、国家自然科学基金、国家归国留学人员科研启动基金、宁夏科技公关等科研项目。已在Chem. Commun., Inorg. Chem. Front., Microporous Mesoporous Mater., Langmuir., Chinese J. Catal.,等期刊发表论文60余篇。

  • 基金资助:
    国家自然科学基金项目(22169015); 宁夏自然科学基金(2021AAC02003); 宁夏科技领军人才项目(KJT2016001); 宁夏回族自治区一流学科建设项目(NXYLXK2017A04)

Fabrication and Application of MFI Zeolite Nanosheets

Xiuli Shao1, Siqi Wang1, Xuan Zhang1, Jun Li1, Ningning Wang1, Zheng Wang1,2(), Zhongyong Yuan3   

  1. 1 State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University,Yinchuan 750021, China
    2 Analysis and Testing Centre, Ningxia University,Yinchuan 750021, China
    3 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University,Tianjin 300350, China
  • Received:2022-04-11 Revised:2022-09-03 Online:2022-12-24 Published:2022-10-30
  • Contact: Zheng Wang
  • Supported by:
    National Natural Science Foundation of China(22169015); Natural Science Foundation of Ningxia(2021AAC02003); Leading Talent Project of Ningxia(KJT2016001); First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)

纳米片层结构MFI分子筛因其开放的骨架结构、大的外表面积、适宜的表面酸性、易接触的活性位点和优异的分子传质扩散性能,在吸附、分离、催化等领域展现出良好的应用前景,成为MFI分子筛控制合成及其应用研究的前沿。本文系统总结了纳米片层结构MFI分子筛合成及其应用领域的最新研究进展,重点讨论了原位合成法和后处理法形成纳米片层结构MFI分子筛的合成机理、模板剂种类,深入分析了影响纳米片厚度、片层间距及有序性的因素,提出开发经济成本低、可用于大规模生产纳米片层结构MFI分子筛,并将其应用于制备超薄分子筛膜、催化有机大分子反应、制备片层分子筛负载金属催化剂是未来的主要研究方向。

MFI zeolite nanosheets have tremendous application potential in adsorption, separation and catalysis fields, which has become one of the hot topics in control synthesis and application of MFI zeolite due to its open framework structure, large external surface, optimized surface acidity, highly accessible acid sites and excellent molecular mass transfer properties. This review focuses on the synthesis mechanism and template types by in-situ hydrothermal synthesis and post-synthesis, as well as the influencing factors of thickness, lamellar spacing and orderliness in depth on the manufacturing and utilization of MFI zeolite nanosheets. The development of MFI zeolite nanosheets with low economic cost and suitable for mass production, as well as its application in the preparation of ultrathin zeolite membranes, catalysis of organic macromolecular reactions, and the preparation of metal catalysts supported by MFI zeolite nanosheets, are the main future research directions.

Contents

1 Introduction

2 Synthesis method of MFI zeolite nanosheets

2.1 In-situ hydrothermal

2.2 Post-synthesis

3 Applications of MFI zeolite nanosheets

3.1 Synthesis and separation application of ultrathin membrane

3.2 Catalytic conversion of organic compounds

3.3 Confinement synthesis and application of metal catalysts within MFI zeolite nanosheets

4 Conclusion and outlook

()
图1 双模板法合成纳米片层MFI分子筛示意图(A)及SEM(B)、TEM(C)图[49]
Fig. 1 (A) Schematic of preparation of and (B) SEM, (C) TEM images of MFI zeolite nanosheets by dual-template method[49] Copyright 2014, ACS
图2 晶种诱导法合成纳米片层结构MFI分子筛[66] 的光学照片(a)、SEM(b、c)、HR-TEM和SAED(d~f)、高角度环形暗场STEM和元素分布(g)图
Fig.2 Schematic images of MFI zeolite nanosheets by seed-induce method[66] (a) Optical photograph, (b and c) SEM images, (d~f) HR-TEM images and the corresponding SAED pattern in the inset, (g) High-angle annular dark-field STEM image and elemental mappings Copyright 2021, RSC
表1 纳米片层结构MFI分子筛的合成方法和模板剂种类
Table 1 Synthesis method and template type of MFI zeolite nanosheets
Method Template Chemical formula Abbreviation ref
In-situ
synthesis
Single- template CmH2m+1-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) (n = 12, 16, 18, or 22) C m - 6 - 6Br2 12,28~30,35,37
CmH2m+1-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (2OH-)(m=16 or 22) Cm-6-6(OH2) 12,27,37
C18H37-N+(CH3)2-[C6H12-N+(CH3)2]n-2-C6H12-N+(CH3)2-C18H37 (nBr-)(n=3, 4 or 5) 18-Nn-18 38,39
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H12-N+ (CH3)2-C6H12-N+(CH3)2-C22H45 (4Br-) 22-N4-22 38,39
(C3H7)3N+ -(CH2N+)n (C3 H7)3 dC5 25
Ph-(O-CnH2n-N+(Me)2-C6H12N+(Me)2-C6H13·2Br-)3 (n =10 or 12) $\mathrm{TC}_{\mathrm{Ph}-\mathrm{n}-6-6}$ 40
C6H5-O-(CH2)10-N+(CH3)2-C6H13 (Br-) $\mathrm{C}_{\mathrm{Ph}-10-6}$ 41
C6H5-C6H4-O-(CH2)m-N+(CH3)2-C6H13 (Br-) (m =4,6, 8 or 10) $\mathrm{C}_{\mathrm{Ph}}-\mathrm{Ph}-\mathrm{m}-6$ 41,44
C6H13-N+(CH3)2-(CH2)m-O-C6H4-C6H4-O-(CH2)m-N+(CH3)2-C6H13(2Br-) (m =4,6, 8 or 10) $B C_{P h}-m-6$ 41
C6H4-C4H3-O-C10H20-N+(CH3)2-C6H13(Br-) CNh-10-6 44
C6H5-2N-C6H4-O-C10H20-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) Cazo-10-6-6 45
C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)n-O-C6H4-C6H4-O-(CH2)n-N+(CH3)2-C6H12-N+(CH3)2-C6H13(4Br-) (n =6, 10 or 12) BCPh-n-6-6 43
Dual-template CnH2n+1-N+(CH3)2-C6H12-N+(CH3)2-(CH2)10-O-C6H4-C6H4-O-(CH2)10-N+(CH3)2-C6H12-N+(CH3)2-CnH2n+1(4Br-) (n =4 or 8) BCPh-10-6-n 43
C16H33-N+(CH3)3 Br-+ N+(CH2)2 CH3 Br- CTAB + TPABr 51
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13Br2 + N+(CH2)2 CH3 OH- C22-6-6Br2 + TPABr 49
C6H13-N+(CH3)2-C6H12-N+(CH3)2-C18H37Br2+ N+(CH2)2 CH3 Br- C18-6-6Br2 + TPABr 50
C16H33-N+(CH3)3 (Br-) + N+(CH2)2 CH3 (Br-) CTAB+ TPABr 63
Seed-induced C18H45-N+(CH3)2-C6H12N+(CH3)2-C6H13 (2Br-) C18-6-6Br2 61
Si(OCH3)-(CH2)3-N(CH3)-C18H37 (Cl) TPOAC 62
N+(CH3)3 Br--C6H12- N+(CH3)3 (2I-) - 64
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6Br2 56
C6H13-N+(CH3)2-C6H12-N+(CH3)2-(CH2)12-O-(p-C6H4)2-O-(CH2)12-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (4Br-) C6-12-diphe 57
Post-synthesis Etching C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6 Br2 67
C22H45-N+-(CH3)2-C6H12-N+-(CH3)2-C6H13 (2Br-) C22-6-6 Br2 69
N+(CH2)2 CH3 (OH-) TPAOH 70
N+(CH2)2 CH3 (OH-) TPAOH 71
Exfoliating P+(CH2)3 CH3 (OH-) or N+(CH2)2 CH3 (OH-) TBPOH or TBAOH 72
C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13(2Br-) C22-6-6Br2 78
P+(CH2)3 CH3 (OH-) TBPOH 79
Pillaring Cn H 2 n + 1-N+(CH3)2-C6H12-N+(CH3)2-C6H13 (2Br-) (n = 12, 16, or 22) Cn-6-6Br2 75
P+(CH2)3 CH3 (OH-) or N+(CH2)2 CH3 (OH-) TBPOH or TBAOH 76,77
NH2-(CH2)6 -NH2 and C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13Br2 C6DN 48
图3 SiO2柱撑(A)、MEL和MFI交互生长(B)、蒸气相转化(C)形成柱支撑纳米片层结构MFI分子筛示意图和TEM图[75??~78]
Fig. 3 Schematic and TEM images of self-pillared MFI zeolite nanosheets formed by[75??~78] (A) silica pillaring, (B) intergrowth of MEL and MFI, (C) vapor-phase pillarization Copyright 2010, ACS, 2014, Wiley, 2019, ACS
图4 悬浮粒子包覆(A)和真空抽滤法(B)制备超薄b轴取向MFI分子筛膜示意图和SEM图[80,81]
Fig. 4 Schematic illustration and SEM images of b-oriented MFI layers by (A) floating-particle coating and (B) vacuum filtration method[80,81] Copyright 2018, Wiley, Copyright 2019, Wiley
表2 纳米片层结构MFI分子筛在有机物催化转化反应中的应用
Table 2 Application of MFI zeolite nanosheets in catalytic conversion of organic compounds
No Catalytic reaction Catalyst Conversion/% Selectivity/% Lifetime/h Note ref
1 C-MFI(Si/Al=48)
MI-MFI(Si/Al=44)
41.1/55.3
43.6/61.9
26.5/63.2
19.4/68.3
- Conversion (toluene/
trimethylbenzene) Selectivity
(benzene/xylene)
51
2 CZSM-5(Si/Al=13)
NZSM-5(Si/Al=10)
CMFI(Si/Al=43)
Pillared MFI(Si/Al=69)
SPP MFI(Si/Al=75)
23.0
100.0
44.0
98.0
98.0
83.0/17.0
42.0/58.0
-
-
-
- Conversion of benzyl alcohol
Selectivity at reaction time of 20 h (dibenzyl/2-benzyl-1,3,5-trimethylbenzene)
49,88,89
57

76
3 C-MFI(Si/Al=40)
Hi-MFI(Si/Al=40)
44.8
48.2
71.2/16.3
81.7/7.9
- xylene yield and benzene selectivity 63
4 Alkylation of phenol with tertiary butyl alcohol CZSM-5(Si/Al=13)
NZSM-5(Si/Al=10)
6.2
29.8
- - Conversion rate of phenol at 4h 87
5 MTH Zn/Z5(2) (Si/Al=25)
Zn/Z5(2) (Si/Al=50)
Zn/Z5(2) (Si/Al=80)
Zn/Z5(10) (Si/Al=50)
Zn/Z5(60) (Si/Al=50)
- - 22
197
174
127
69
Lifetime (from the beginning to the methanol conversion < 50%) 96
6 Methanol to gasoline C-ZSM-5(Si/Al=28)
NZSM-5(Si/Al=40)
100.0
100.0
5.9/10.3/12.9/21.4
7.7/19.7/12.9/16.4
14
16
Lifetime (the beginning to the methanol conversion < 95%) Selectivity( C 2 =/ C 3 =/ C 4 =/
aromatic) WHSV= 16 h-1
12,62
7 Methanol to propylene NS(Si/Al=55)
CNS(Si/Al=55)
B-CNS(Si/Al=55)
bulky ZSM-5 (Si/Al=149)
lamellar ZSM-5 (Si/Al=140)
layered-bulky ZSM-5(Si/Al=141)
NMZ(Si/Al=432)
CMZ(Si/Al=386)
98.1
99.5
96.2
99.4
99.8
99.6
99.9
99.8
78.1
81.3
77.3
5.4/38.7/23.3/7.2
4.9/40.0/23.8/8.2
4.4/41.4/24.5/9.4
4.2/51.0/21.5/12.1
10.6/38.7/18.6/3.6
103
168
302
30
123
171
240
72
Selectivity( C 2 =~ C 4 =)WHSV=
3 h-1


Selectivity (ethylene/propylene/
butylenes/P/E ratio) WHSV =
1.7 h-1

WHSV = 1. 5 h-1
61


56


97
8 Bulk-MFI(Si/Al= ∞)
UI-MFI(Si/Al= ∞)
66.0
84.0
6.0
90.0
- Selectivity of CL 27
9 C-MFI(Si/Al=50)
MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
16.5
20.9
35.5
41.8/57.6
24.7/74.1
26.6/72.7
- Selectivity (p-xylene/ m-xylene) 40
10 C-MFI(Si/Al=41)
MI-MFI(Si/Al=48)
UI-MFI(Si/Al=53)
16.0
48.0
76.0
50.0/50.0/0
62.0/28.0/10.0
64.0/31.0/5.0
- selectivity (flavanone/ chalcone/
others)
12
11 C-MFI(Si/Al=41)
MI-MFI(Si/Al=48)
UI-MFI(Si/Al=53)
42.0
86.0
86.0
- - - 12
12 C-MFI(Si/Al=50)
MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
19.6
37.1
34.9
- - - 40
13 C-TS-1(Si/Al=108)
M-TS-1(Si/Al=147)
P-TS-1(Si/Al=147)
44.0
35.0
35.0
8.0/49.0/43.0
48.0/28.0/24.0
7.0/57.0/36.0
- Selectivity (benzoquinone/
catechol/hydroquinone)
48
14 Cyclooctene epoxidation C-TS-1(Si/Al=108)
M-TS-1(Si/Al=147)
P-TS-1(Si/Al=147)
15.0
15.0
29.0
49.0/51.0
65.0/35.0
80.0/20.0
- Selectivity (cyclooctene oxide. Diol: 1,2-cyclooctanediol) 48
15 ZSM-5(Si/Al=100)
ZSM-5(SDA1-TPABr)(Si/Al=100)
5.0
90.0
35.0
81.0
- Selectivity(3-Ac indole) 50
16 ZSM-5(Si/Al=100)
ZSM-5(SDA1-TPABr)(Si/Al=100)
3.0
74.0
>99
>99
- - 50
17 cracking of 1-octene MI-MFI(Si/Al=53)
SC-MFI(Si/Al=52)
~ 98% (up
to 8 h)
~ 99% (up
to 13 h)
23.1/15.1
26.8/18.7
- Selectivity (ethylene/propylene) 40
18 cracking of n-dodecane MFI-Al(Si/Al=43)
MFI-Ga(Si/Ga =48)
MFI-Fe(Si/Fe =46)
- 11.7/14.2/1.2
9.1/17.7/0.8
8.4/10.3/0.9
- Selectivity(ethylene/propylene/
aromatics)
102
19 cracking of n-decane ZN-2(Si/Al=48)
DZN-2(Si/Al=51)
PZN-2(Si/Al=57)
CZ-500(Si/Al=52)
92.0
92.0
c83.0
21.0
6.3/9.0/5.9
8.5/16.9/12.4
6.6/13.4/8.2
4.2/7.5/4.7
- Selectivity(ethylene/propylene/
butene)
101
20 cracking of n-heptane N2-25(Si/Al=50) 96.0 22.5/35.0 - Selectivity(ethylene/propylene) 106
图5 浸渍法合成纳米片层结构MFI分子筛负载金属催化剂示意图(A)和STEM图(B、C)[130]
Fig. 5 (A) Synthetic procedure and (B, C) Cs-corrected STEM images of metal clusters in MFI zeolite nanosheets by impregnation method[130] Copyright 2021, ACS
[1]
http://www.iza-structure.org/databases/.
[2]
Corma A. Chem. Rev., 1997, 97(6): 2373.
[3]
Martínez C, Corma A. Coord. Chem. Rev., 2011, 255(13/14): 1558.
[4]
Vermeiren W, Gilson J P. Top. Catal., 2009, 52(9): 1131.
[5]
Chen L Y, Ma X Q, Tang F F, Li Y, Yu Z S, Chen X F. Bioresour. Technol., 2020, 312: 123592.
[6]
Christensen C H, Johannsen K, Tornqvist E, Schmidt I, Topsoe H, Christensen C H,. Catal. Today, 2007, 128(3/4): 117.
[7]
Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.
[8]
Karger J, Valiullin R. Chem. Soc. Rev., 2013, 42(9): 4172.
[9]
Holm M S, Taarning E, Egeblad K, Christensen C H. Catal. Today, 2011, 168(1): 3.
[10]
Peng P, Yan Z F, Mintova S, Gao X H. Natl. Sci. Rev., 2020, 7(11): 1726.

doi: 10.1093/nsr/nwaa184     pmid: 34691504
[11]
Zhang Y J, Che S A. Angew. Chem. Int. Ed., 2020, 59(1): 50.
[12]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461(7261): 246.
[13]
Bai P, Haldoupis E, Dauenhauer P J, Tsapatsis M, Siepmann J I. ACS Nano, 2016, 10(8): 7612.
[14]
Hernandez-Tamargo C E, Roldan A, de Leeuw N H. J. Solid State Chem., 2016, 237: 192.
[15]
Ji Y J, Xu F Y, Wei W, Gao H, Zhang K, Zhang G L, Xu Y Y, Zhang P L. J. Solid State Chem., 2021, 295: 121917.
[16]
Prech J, Pizarro P, Serrano D P, Cejka J. Chem. Soc. Rev., 2018, 47(22): 8263.
[17]
Chen L H, Sun M H, Wang Z, Yang W M, Xie Z K, Su B L. Chem. Rev., 2020, 120(20): 11194.
[18]
Schulman E, Wu W, Liu D X. Materials, 2020, 13(8): 1822.
[19]
Roth W J, Nachtigall P, Morris R E, Cejka J. Chem. Rev., 2014, 114(9): 4807.
[20]
Tsapatsis M. AIChE J., 2014, 60(7): 2374.
[21]
Zhao Z C, Zhang W P. Acta Physico-Chimica Sinica, 2016, 32(10): 2475.
[22]
Du Y J, Yuan Z Q, Wang Y D, He W J, Wang C M, Yang W M. Petrochemical Technology, 2015, 45(2): 227.
[23]
Min Y Y, Shang Y S, Song Y, Li G D, Gong Y J. Prog. Chem., 2015(8): 1002.
(闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军. 化学进展, 2015, 27 (8): 1002.).

doi: 10.7536/PC150150    
[24]
Bonilla G, Díaz I, Tsapatsis M, Jeong H K, Lee Y, Vlachos D G. Chem. Mater., 2004, 16(26): 5697.
[25]
Chaikittisilp W, Suzuki Y, Mukti R R, Suzuki T, Sugita K, Itabashi K, Shimojima A, Okubo T. Angew. Chem. Int. Ed., 2013, 52(12): 3355.

doi: 10.1002/anie.201209638     pmid: 23418100
[26]
Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135(24): 8806.
[27]
Kim J, Park W, Ryoo R. ACS Catal., 2011, 1(4): 337.
[28]
Machoke A G, Knoke I Y, Lopez-Orozco S, Schmiele M, Selvam T, Marthala V R R, Spiecker E, Unruh T, Hartmann M, Schwieger W. Microporous Mesoporous Mater., 2014, 190: 324.
[29]
Emdadi L, Tran D T, Schulman E, Wei L, Shang W J, Chen H Y, Liu D X. Microporous Mesoporous Mater., 2019, 275: 31.
[30]
Xiao X, Zhang Y Y, Jiang G Y, Liu J, Han S L, Zhao Z, Wang R P, Li C, Xu C M, Duan A J, Wang Y J, Liu J, Wei Y C. Chem. Commun., 2016, 52(65): 10068.
[31]
Zhan E S, Xiong Z P, Zhou Y, Li M R, Wang P F, Fan W B, Shen W J. Chin. J. Catal., 2020, 41(7): 1132.
[32]
Xu L, Li C G, Zhang K, Wu P. ACS Catal., 2014, 4(9): 2959.
[33]
Wu W, Tran D T, Cheng S C, Zhang Y, Li N, Chen H Y, Chin Y H, Yao L B, Liu D X. Microporous Mesoporous Mater., 2021, 311: 110710.
[34]
Emdadi L, Tran D T, Zhang J Y, Wu W, Song H M, Gan Q Q, Liu D X. RSC Adv., 2017, 7(6): 3249.
[35]
Na K, Park W, Seo Y, Ryoo R. Chem. Mater., 2011, 23(5): 1273.
[36]
Park W, Yu D, Na K, Jelfs K E, Slater B, Sakamoto Y, Ryoo R. Chem. Mater., 2011, 23(23): 5131.
[37]
Kim Y, Kim K, Ryoo R. Chem. Mater., 2017, 29(4): 1752.
[38]
Jung J, Jo C, Cho K, Ryoo R. J. Mater. Chem., 2012, 22(11): 4637.
[39]
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Science, 2011, 333(6040): 328.
[40]
Singh B K, Xu D D, Han L, Ding J, Wang Y M, Che S N. Chem. Mater., 2014, 26(24): 7183.
[41]
Xu D D, Jing Z F, Cao F L, Sun H, Che S N. Chem. Mater., 2014, 26(15): 4612.
[42]
Zhang Y J, Shen X F, Gong Z, Han L, Sun H, Che S N. Chem. Eur. J., 2019, 25(3): 738.
[43]
Liu B Y, Duan Q Q, Li C, Zhu Z H, Xi H X, Qian Y. New J. Chem., 2014, 38(9): 4380.
[44]
Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S N. Nat. Commun., 2014, 5: 4262.
[45]
Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S N. Angew. Chem. Int. Ed., 2018, 57(3): 724.
[46]
Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1(8): 901.
[47]
Wang J G, Xu L, Zhang K, Peng H G, Wu H H, Jiang J G, Liu Y M, Wu P. J. Catal., 2012, 288: 16.
[48]
Wu W, Tran D T, Wu X Y, Oh S C, Wang M Y, Chen H Y, Emdadi L, Zhang J Y, Schulman E, Liu D X. Microporous Mesoporous Mater., 2019, 278: 414.
[49]
Emdadi L, Wu Y Q, Zhu G H, Chang C C, Fan W, Pham T, Lobo R F, Liu D X. Chem. Mater., 2014, 26(3): 1345.
[50]
Rani P, Srivastava R, Satpati B. Cryst. Growth Des., 2016, 16(6): 3323.
[51]
Liu M, Jia W Z, Liu X H, Li J H, Zhu Z R. Catal. Lett., 2018, 148(5): 1396.
[52]
Liu J, Yang D N, Wang Z M, Hiyoshi N. Adv. Mater. Interfaces, 2020, 7(4): 1901786.
[53]
Meng L Q, Zhu X C, Wannapakdee W, Pestman R, Goesten M G, Gao L, van Hoof A J F, Hensen E J M. J. Catal., 2018, 361: 135.
[54]
Chen H L, Li S W, Wang Y M. J. Mater. Chem. A, 2015, 3(11): 5889.
[55]
Chen Y H, Han D M, Zhang Q, Cui H X. J. Porous Mater., 2020, 27(5): 1265.
[56]
Chen H Y, Shang W J, Yang C B, Liu B Y, Dai C Y, Zhang J B, Hao Q Q, Sun M, Ma X X. Ind. Eng. Chem. Res., 2019, 58(4): 1580.
[57]
Liu B Y, Chen Z P, Huang J J, Chen H Y, Fang Y X. Microporous Mesoporous Mater., 2019, 273: 235.
[58]
Zhang H B, Zhao Y, Zhang H X, Wang P C, Shi Z P, Mao J J, Zhang Y H, Tang Y. Chem. Eur. J., 2016, 22(21): 7141.
[59]
Zhang H B, Zhang H X, Zhao Y, Shi Z P, Zhang Y H, Tang Y. Chem. Mater., 2017, 29(21): 9247.
[60]
Kim J C, Ryoo R, Opanasenko M V, Shamzhy M V, Čejka J. ACS Catal., 2015, 5(4): 2596.
[61]
Shang Y S, Wang W G, Zhai Y L, Song Y, Zhao X M, Ma T, Wei J H, Gong Y J. Microporous Mesoporous Mater., 2019, 276: 173.
[62]
Fan C Y, Wang Y Q, Li H Y, Wang X, Sun C, Zhang X, Wang C, Wang S H. New J. Chem., 2018, 42(20): 17043.
[64]
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, Basahel S N, Al-Thabaiti S, Xu W Q, Cho H J, Fetisov E O, Thyagarajan R, DeJaco R F, Fan W, Mkhoyan K A, Siepmann J I, Tsapatsis M. Nature, 2017, 543(7647): 690.
[65]
Kim D, Shete M, Tsapatsis M. Chem. Mater., 2018, 30(10): 3545.
[66]
Shao X L, Zhang Y, Li J, Wang Z, Zhang X, Wang L, Yuan W, Wang H T. Chem. Commun., 2021, 57(81): 10624.
[67]
Qin Z X, Pinard L, Benghalem M A, Daou T J, Melinte G, Ersen O, Asahina S, Gilson J P, Valtchev V. Chem. Mater., 2019, 31(13): 4639.
[68]
Boltz M, Losch P, Louis B, Rioland G, Tzanis L, Daou T J. RSC Adv., 2014, 4(52): 27242.
[69]
Huang X, Wang C F, Zhu Y F, Xu W Q, Sun Q, Xing A H, Ma L G, Li J, Han Z H, Wang Y G. Microporous Mesoporous Mater., 2019, 288: 109573.
[70]
Prech J, Bozhilov K N, El Fallah J, Barrier N, Valtchev V. Microporous Mesoporous Mater., 2019, 280: 297.
[71]
Liu Y, Qiang W L, Ji T T, Zhang M, Li M R, Lu J M, Liu Y,. Sci. Adv., 2020, 6(7): 5993.

doi: 10.1126/sciadv.aay5993     pmid: 32110732
[72]
Varoon K, Zhang X Y, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee J A, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis L F, McCormick A V, Mkhoyan K A, Tsapatsis M. Science, 2011, 334(6052): 72.

doi: 10.1126/science.1208891     pmid: 21980106
[73]
Zhang H, Xiao Q, Guo X H, Li N J, Kumar P, Rangnekar N, Jeon M Y, Al-Thabaiti S, Narasimharao K, Basahel S N, Topuz B, Onorato F J, Macosko C W, Mkhoyan K A, Tsapatsis M. Angew. Chem. Int. Ed., 2016, 55(25): 7009.
[74]
Rehman A U, Arepalli D, Alam S F, Kim M Z, Choi J, Cho C H. Nanomaterials, 2021, 11(9): 2327.
[75]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.
[76]
Zhang X Y, Liu D X, Xu D D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336(6089): 1684.
[77]
Xu D D, Swindlehurst G R, Wu H H, Olson D H, Zhang X Y, Tsapatsis M. Adv. Funct. Mater., 2014, 24(2): 201.
[78]
Wei L, Song K C, Wu W, Holdren S, Zhu G H, Shulman E, Shang W J, Chen H Y, Zachariah M R, Liu D X. J. Am. Chem. Soc., 2019, 141(22): 8712.

doi: 10.1021/jacs.9b03479     pmid: 31136170
[79]
Guefrachi Y, Sharma G, Xu D D, Kumar G, Vinter K P, Abdelrahman O A, Li X Y, Alhassan S, Dauenhauer P J, Navrotsky A, Zhang W, Tsapatsis M. Angew. Chem. Int. Ed., 2020, 59(24): 9579.

doi: 10.1002/anie.202000395     pmid: 32115827
[80]
Kim D, Jeon M Y, Stottrup B L, Tsapatsis M. Angew. Chem. Int. Ed., 2018, 57(2): 361.
[81]
Min B, Yang S W, Korde A, Kwon Y H, Jones C W, Nair S. Angew. Chem. Int. Ed., 2019, 58(24): 8201.
[82]
Agrawal K V, Topuz B, Pham T C T, Nguyen T H, Sauer N, Rangnekar N, Zhang H, Narasimharao K, Basahel S N, Francis L F, Macosko C W, Al-Thabaiti S, Tsapatsis M, Yoon K B. Adv. Mater., 2015, 27(21): 3339.
[83]
Cao Z S, Zeng S X, Xu Z, Arvanitis A, Yang S W, Gu X H, Dong J H. Sci. Adv., 2018, 4(11): 8634.
[84]
Rassoulinejad-Mousavi S M, Azamat J, Khataee A, Zhang Y W. Sep. Purif. Technol., 2020, 234: 116080.
[85]
Duan X K, Kim D, Narasimharao K, Al-Thabaiti S, Tsapatsis M. Chem. Commun., 2021, 57(5): 580.
[86]
Tian Y, Li Y D. J. Chem. Ind. Eng., 2013, 64(2): 393.
(田野, 李永丹. 化工学报, 2013, 64(2): 393).
[87]
Duan Q Q, Zhu Z H. J. Synth. Cryst, 2014, 43(3): 576.
(段倩倩, 朱智洪. 人工晶体学报, 2014, 43(3): 576).
[88]
Emdadi L, Oh S C, Wu Y Q, Oliaee S N, Diao Y X, Zhu G H, Liu D X. J. Catal., 2016, 335: 165.
[89]
Wu Y Q, Lu Z, Emdadi L, Oh S C, Wang J, Lei Y, Chen H Y, Tran D T, Lee I C, Liu D X. J. Catal., 2016, 337: 177.
[90]
Emdadi L, Mahoney L, Lee I C, Leff A C, Wu W, Liu D X, Nguyen C K, Tran D T. Appl. Catal. A Gen., 2020, 595: 117510.
[91]
Mahoney L, Emdadi L, Leff A C, Tran D T, Wu W, Cheng S C, Liu D X, Nguyen C K, Lee I C. Fuel, 2019, 256: 115953.
[92]
Ye J H, Bai L, Liu B Y, Tian H J, Hu J L, Polo-Garzon F, Mayes R T, Wu Z L, Fang Y X. Ind. Eng. Chem. Res., 2019, 58(17): 7094.
[93]
Bleken B T L, Wragg D S, Arstad B, Gunnæs A E, Mouzon J, Helveg S, Lundegaard L F, Beato P, Bordiga S, Olsbye U, Svelle S, Lillerud K P. Top. Catal., 2013, 56(9/10): 558.
[94]
Meng L Q, Zhu X C, Mezari B, Pestman R, Wannapakdee W, Hensen E J M. ChemCatChem, 2017, 9(20): 3942.
[95]
Wang N, Sun W J, Hou Y L, Ge B H, Hu L, Nie J Q, Qian W Z, Wei F. J. Catal., 2018, 360: 89.
[96]
Wang N, Hou Y L, Sun W J, Cai D L, Chen Z H, Liu L M, Ge B H, Hu L, Qian W Z, Wei F. Appl. Catal. B Environ., 2019, 243: 721.
[97]
Hu S, Shan J, Zhang Q, Wang Y, Liu Y S, Gong Y J, Wu Z J, Dou T. Appl. Catal. A Gen., 2012, 445/446: 215.
[98]
Zhang S L, Zhang L L, Wang W G, Min Y Y, MA T, Song Y, Gong Y J, Dou T. Acta Physico-Chimica Sinica, 2014, 30(3): 535.
[99]
Kim Y, Kim J C, Jo C, Kim T W, Kim C U, Jeong S Y, Chae H J. Microporous Mesoporous Mater., 2016, 222: 1.
[100]
Zhang J X, Ren L M, Zhou A J, Li W H, Shang S J, Liu Y, Jia Z H, Liu W, Zhang A F, Guo X W, Song C S. Chem. Mater., 2022, 34(7): 3217.
[101]
Tian Y J, Zhang B F, Liang H R, Hou X, Wang L, Zhang X W, Liu G Z. Appl. Catal. A Gen., 2019, 572: 24.
[102]
Ji Y J, Shi B F, Yang H H, Yan W. Appl. Catal. A Gen., 2017, 533: 90.
[103]
Chang A, Yang T C, Chen M Y, Hsiao H M, Yang C M. J. Hazard. Mater., 2020, 400: 123241.
[104]
Liu L J, Wang H B, Wang R W, Sun C Y, Zeng S J, Jiang S, Zhang D L, Zhu L K, Zhang Z T. RSC Adv., 2014, 4(41): 21301.
[105]
Shan J F, Li Z K, Zhu S H, Liu H, Li J F, Wang J G, Fan W B. Catalysts, 2019, 9(2): 121.
[106]
Hao J, Cheng D G, Chen F Q, Zhan X L. Microporous Mesoporous Mater., 2021, 310: 110647.
[107]
Xu Z K, Huang J L, Wang T H, Yue Y Y, Bai Z S, Bao X J, Zhu H B. Chem. Ind. Eng. Prog., 2021(4): 1893.
(徐志康, 黄佳露, 王廷海, 岳源源, 白正帅, 鲍晓军, 朱海波. 化工进展, 2021, 40(4): 1893.).
[108]
Moliner M, Gabay J E, Kliewer C E, Carr R T, Guzman J, Casty G L, Serna P, Corma A. J. Am. Chem. Soc., 2016, 138(48): 15743.

pmid: 27934002
[109]
Sun Q M, Wang N, Zhang T J, Bai R S, Mayoral A, Zhang P, Zhang Q H, Terasaki O, Yu J H. Angew. Chem. Int. Ed., 2019, 58(51): 18300.
[110]
Liu Y W, Li Z, Yu Q Y, Chen Y F, Chai Z W, Zhao G F, Liu S J, Cheong W C, Pan Y, Zhang Q H, Gu L, Zheng L R, Wang Y, Lu Y, Wang D S, Chen C, Peng Q, Liu Y Q, Liu L M, Chen J S, Li Y D. J. Am. Chem. Soc., 2019, 141(23): 9305.
[111]
Guo X K, Xu M X, She M Y, Zhu Y, Shi T T, Chen Z X, Peng L M, Guo X F, Lin M, Ding W P. Angew. Chem. Int. Ed., 2020, 59(7): 2606.
[112]
He J, Wu Z J, Gu Q Q, Liu Y S, Chu S Q, Chen S H, Zhang Y F, Yang B, Chen T H, Wang A Q, Weckhuysen B M, Zhang T, Luo W H. Angew. Chem. Int. Ed., 2021, 60(44): 23713.
[113]
Sun Q M, Wang N, Fan Q Y, Zeng L, Mayoral A, Miao S, Yang R O, Jiang Z, Zhou W, Zhang J C, Zhang T J, Xu J, Zhang P, Cheng J, Yang D C, Jia R, Li L, Zhang Q H, Wang Y, Terasaki O, Yu J H. Angewandte Chemie Int. Ed., 2020, 59(44): 19450.
[114]
Salakhum S, Saenluang K, Wattanakit C. Sustain. Energy Fuels, 2020, 4(3): 1126.
[115]
Li C Y, Sun P, Li F W. Chem. - Asian J., 2021, 16(19): 2795.
[116]
Zhu J, Osuga R, Ishikawa R, Shibata N, Ikuhara Y, Kondo J N, Ogura M, Yu J H, Wakihara T, Liu Z D, Okubo T. Angewandte Chemie Int. Ed., 2020, 59(44): 19669.
[117]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.
[118]
Luo H Y, Bui L, Gunther W R, Min E, Román-Leshkov Y. ACS Catal., 2012, 2(12): 2695.
[119]
Wang N, Sun Q M, Bai R S, Li X, Guo G Q, Yu J H. J. Am. Chem. Soc., 2016, 138(24): 7484.
[120]
Wang Y S, Hu Z P, Lv X W, Chen L, Yuan Z Y. J. Catal., 2020, 385: 61.
[121]
Yang Z Y, Li H, Zhou H, Wang L, Wang L X, Zhu Q Y, Xiao J P, Meng X J, Chen J X, Xiao F S. J. Am. Chem. Soc., 2020, 142(38): 16429.
[122]
Meng L Q, Zhu X C, Hensen E J M. ACS Catal., 2017, 7(4): 2709.
[123]
Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.
[124]
Gong P Y, Li B S, Kong X L, Liu J J, Zuo S L. Appl. Surf. Sci., 2017, 423: 433.
[125]
Feng F X, Wang L, Zhang X W, Wang Q F. Ind. Eng. Chem. Res., 2019, 58(29): 13112.
[126]
Liu G Z, Tian Y J, Zhang B F, Wang L, Zhang X W. J. Hazard. Mater., 2019, 367: 568.
[127]
Pan Y, Bhowmick A, Wu W, Zhang Y, Diao Y X, Zheng A G, Zhang C, Xie R X, Liu Z X, Meng J Q, Liu D X. ACS Catal., 2021, 11(15): 9970.
[128]
Liu G Z, Liang H R, Tian Y J, Zhang B F, Wang L. Chin. J. Chem. Eng., 2020, 28(10): 2577.
[129]
Meng L Q, Vanbutsele G, Pestman R, Godin A, Romero D E, van Hoof A J F, Gao L, Kimpel T F, Chai J C, Martens J A, Hensen E J M. J. Catal., 2020, 389: 544.
[130]
Wang N, Sun Q M, Zhang T J, Mayoral A, Li L, Zhou X, Xu J, Zhang P, Yu J H. J. Am. Chem. Soc., 2021, 143(18): 6905.
[1] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[2] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[3] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[4] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[5] 史静, 赵国良, 滕加伟, 王仰东, 唐颐, 谢在库. MFI型沸石形貌研究[J]. 化学进展, 2014, 26(04): 545-552.
[6] 寇龙, 王有和, 彭鹏, 阎子峰. 介孔沸石分子筛的制备[J]. 化学进展, 2014, 26(04): 522-528.
[7] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[8] 王定胜, 李亚栋. 金属、金属氧化物纳米晶催化剂: 结构与催化性能关系研究[J]. 化学进展, 2013, 25(01): 1-11.
[9] 韦悦周. 国外核燃料后处理化学分离技术的研究进展及考察[J]. 化学进展, 2011, 23(7): 1272-1288.
[10] 叶国安, 张虎. 核燃料后处理技术发展及其放射化学问题[J]. 化学进展, 2011, 23(7): 1289-1294.
[11] 朱礼洋, 文明芬, 段五华, 徐景明, 朱永(贝睿). 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7): 1308-1315.
[12] 石伟群, 赵宇亮, 柴之芳. 纳米材料与纳米技术在先进核能系统中的应用前瞻[J]. 化学进展, 2011, 23(7): 1478-1484.
[13] 史荣会,刘,晔,刘,蒲,王向宇. 环钯化合物在Heck反应中的应用研究[J]. 化学进展, 2007, 19(0203): 283-291.